Quasiequilibrium sequences of binary strange quark stars in general relativity
热力学基本概念2-平衡态、准静态、几种热力过程

简单可压缩系统的独立变量数
只交换热量和一种准静态的容积变化功
简单可压缩系统:N = n + 1 = 2
The state of a simple compressible system is completely specified by two independent properties
可逆过程的实现
准静态过程
+ 无耗散效应 = 可逆过程 通过摩擦使功 变热的效应 (摩阻,电阻, 非弹性变性, 磁阻等)
无不平衡势差 耗散效应 Dissipative effect 不平衡势差
不可逆根源
工程热力学
耗散效应 irreversibility
Frequently encountered irreversibilities
平衡Equilibrium与稳定Steady
稳定:参数不随时间变化
稳定但存在不平衡势差 去掉外界影响, 则状态变化
若以(热源+铜棒+冷源) 为系统,又如何?
稳定不一定平衡,但平衡一定稳定
工程热力学
平衡Equilibrium与均匀Even
平衡:时间上 均匀:空间上
平衡不一定均匀,单相平衡态则一定是均匀的
工程热力学
A process that can reversed 注意 leaving any trace on the without surroundings. That is, both the 可逆过程只是指可能性,并不 system and the surroundings are 是指必须要回到初态的过程。 returned to their initial states at the end of the reverse process.
几类常见的RNA二级结构预测方法

几类常见的RNA二级结构预测方法摘要:RNA作为生物遗传信息传递和复制的重要组成部分,其结构非常复杂。
使用计算机算法预测大分子量的RNA二级结构将是一个行之有效的途径。
本文将介绍目前常用的几种RNA二级结构预测算法,并对其特点进行初步的比较分析。
关键词:RNA二级结构;算法;自由能;茎区RNA分子是生物体内参与各种如细胞分化、代谢、记忆存储等重要生命活动的一类大分子,其常见种类有:rRNA、mRNA、tRNA。
其中除tRNA分子量较小外,其余RNA分子都具有非常大的分子量且结构复杂。
传统的物理、化学结构预测方法只适用于测量分子量较小的RNA。
而针对大分子量的RNA二级结构预测,使用计算机技术预测是一条行之有效的方法。
本文主要介绍基于系统发育比较和自由能最小两种技术的RNA二级结构预测算法,并对算法的特点做出简单的阐述。
1RNA二级结构的预测方法从1960年fresco等提出第一个RNA二级结构预测算法开始,RNA二级结构的预测算法经历了近半个世纪的发展,已日趋成熟。
1987年V on heijin对各种预测RNA二级结构的方法进行了综述[1]。
1971年Tinoco et.al首次估算了与二级结构相关的能量,包括双链区中堆叠碱基对相关的稳态能量和未配对区域的稳定影响。
1975年Pipas和McMahon开发出计算机程序可以列出tRNA序列中所有可能的螺旋区。
直到1980年Nussinov和Jacobson首次设计出一个用于预测二级结构的精确而有效的算法,该算法运用了类似动态规划的相关技术,产生了两个记分矩阵,用于记录推测出的RNA分子中碱基的相关信息。
目前,研究人员开发出多种RNA二级结构预测方法。
但总体来说,这些方法可以从研究的数据量出发将其分为两大类:基于系统发育比较技术的预测算法和基于自由能最小技术的预测算法。
1.1基于系统发育比较技术的预测算法基于系统发育比较技术的预测算法即序列比较分析方法(comparative sequence analysis),或称系统发育方法(phylogenetic methods)。
GameTheory:博弈论

EE693H Fall2007Game TheoryTR,12:00pm–1:15pm,Holmes389Course InformationGame theory provides the most natural framework to study the strategic interactions between self-interested decision makers.Due to the emergence of distributed complex systems made up of many autonomous agents (such as the Internet),there has been a resurgence of interest in game theory within the engineering and the computer science communities.This course will introduce the students to the fundamentals of noncoopera-tive game theory as well as the computational tools provided by noncooperative game theory.Emphasis will be on the engineering applications such as control,communications,transportation systems,and resource allocation problems.The course is intended for mathematically inclined students with some background on probability theory.Instructor:G¨u rdal Arslan,Holmes440,Phone:956–3432,E-mail:*****************Office Hours:OpenRecommended Texts:Dynamic Noncooperative Game Theory by Bas.ar and OlsderGame Theory by Fudenberg and Tirole,Webpage:/∼gurdal/EE693H.htmSite of announcements,handouts,homeworks,etc.Grading:Homework30%;Mid-term35%;Project35%.Policies:No credit will be given to late homeworks.Exams must be taken at the announced times.(Tentative)Topics•Introduction(1Lecture)–Examples and various solution concepts•Zero-Sum Finite Games in Normal Form(2Lecture)–Security strategies–Lower and upper values–Saddle-point equilibrium–Mixed strategies–Minmax theorem–Computation of saddle-point equilibria by graphical solution and LP approaches–Dominated strategies–Iterative elimination of dominated strategies•Normal Form Games(6Lecture)–Pure and mixed strategies–Dominated strategies and solution by iterated dominance–Nash equilibrium–Pure equilibrium,Strict equilibrium–Examples of pure equilibrium(Cournot’s model of oligopoly,CDMA uplink power control)–Existence of mixed equilibria infinite normal games(Best response correspondence,Kakutani’s fixed point theorem)–Existence of pure equilibrium in infinite games with continuous payoffs(Quasi-concavity of player payoffs in its own decisions)–Sufficient conditions for the uniqueness of pure equilibrium in infinite games with continuous payoffs(Diagonal strict concavity condition)–Existence of mixed equilibrium in infinite games with continuous payoffs–Discontinuous games–Computation of Nash equilibria infinite normal-form games(algebraic approach,optimization approach)–Correlated equilibrium,coarse correlated equilibrium,correlated equilibrium with information partitions•Well-known Classes of Non-Zero-Sum Games(7Lecture)–Generalized ordinal potential games and existence of pure equilibria–Finite improvement property–Characterization of potential games–Weighted potential games–Congestion games–Inefficiency of Nash equilibria in congestion games,Tolls minimizing the total congestion,Braess’paradox–Price of anarchy and price of stability in congestion games–Infinite potential games–Efficiency loss in resource allocation games–(Weakly)acyclic games–Consensus problem–Supermodular games•Learning in games(8Lecture)–Cournot’s adjustment process–Fictitious play,Asymptotic behavior,Convergence of beliefs in certain classes of games,Shapley’s example,Lack of payoffconsistency,–Stochasticfictitious play,Payoffconsistency,Perturbed equilibria,Convergence of intended be-havior via stochastic approximation theory–Computation,memory,and observation requirements offictitious play–Regret based dynamics,Utility basedfictitious play–Finite memory variants offictitious play,Adaptive play,Elements of Markov processes,Perturbed Markov processes,Stochastic stability•Repeated Games•Auctions;Mechanism design;Incentive design•Games with incomplete/imperfect information;•Extensive form games•Dynamic games;Markov games。
外部效应

E.g. a broadcast television program.
Consumption Externality
Pareto efficient amount of smoke Inefficient equilibrium with negative externality Property rights and price mechanism Quasi-linear utility and the Coase theorem (科斯定理)
Consumption Externality
Agent A is endowed with $yA. Agent B is endowed with $yB. Smoke intensity is measured on a scale from 0 (no smoke) to 1 (maximum concentration).
A well-maintained property next door that raises the market value of your property. A pleasant cologne or scent worn by the person seated next to you. Improved driving habits that reduce accident risks. Education.
Continue to suppose there is no means by which money can be exchanged for changes in smoke level. What is Agent B’s most preferred allocation? Is this allocation efficient?
(熵的定义)

∫ dSHeat source
=
(-δQsys ) Tsur
or
ΔSHeat source
=
-
δQsys Tsur
If Tsur is constant,
ΔSsur
=
ΔSheat source
+ ΔSengin
=
− Qsys Tsur
Here, δQHeat source=-δQsys
5
Calculation of entropy change in isothermal
For irreversible phase change process, it needs to find a reversible route to calculate the entropy change. For example
B(α,T1,p1) ΔS1
B(α,Teq,peq)
ΔS=? Irreversible
(ΔS)insulated=
Δ
S(B)-
Δ
S(A)≥0
{
> =
irreversible reversible
}
2
Any system at equilibrium has a state function, the entropy, which is extensive quantity. The entropy increment of system undergone any process consists two contributions , i.e.,
phase transition of pure substances
① Reversible phase change at equilibrium T and p
中英文对照

工程热力学中英文对照词汇表整理:孙志坚AAbsolute entropy绝对熵Absolute pressure绝对压力Absolute temperature绝对温度Absolute zero of temperature绝对零度Adiabatic enthalpy drop绝热焓降Adiabatic exponent绝热指数Adiabatic flame temperature绝热燃烧温度Adiabatic process绝热过程Adiabatic system绝热系Anergy 火无,无用能Atmosphere大气Available energy有用能A vogadro’s hypothesis阿伏伽德罗假说BBinary vapour cycle两气循环B oltzman’s constant玻尔兹曼常数CCarnot cycle卡诺循环Carnot, N.L.S. 卡诺C arnot’s theorem卡诺定理Celsius temperature scale摄氏温标Characteristic function特性函数Chemical equilibrium化学平衡Chemical equilibrium constant化学平衡常数1Chemical potential化学势Chemical thermodynamics化学热力学Clapeyron equation克拉贝龙方程Classical thermodynamics经典热力学Clausius-Clapeyron equation克劳修斯-克拉贝龙方程Clausius, R. 克劳修斯Closed system闭口系Coefficient of performance of refrigerator制冷系数Coefficient of thermal expansion热膨胀系数Coefficient of utilization of thermal energy热能利用系数Combined cycle联合循环Compressibility factor压缩因子Compression ratio of cycle循环压缩比Compression work压缩功Condition of phase equilibrium相平衡条件Condition of stability稳定性条件Conservation of energy能量守恒Conservation of mass质量守恒Control mass控制质量Control surface控制面Control volume控制容积Continuty equation连续性方程Covergent-divergent nozzle缩放喷管Covergent nozzle渐缩喷管Criteria for equilibrium平衡判据Critical point临界点Critical state临界状态Critical flow临界流动Critical pressure ratio临界压力比Cycle循环DDegradation of energy能量贬值2Density密度Diesel cycle笛塞尔循环Divergent nozzle渐扩喷管Diffuser扩压管Dissipation of energy能量耗散D olton’s law of partial pressare道尔顿分压定律Dry saturated steam干饱和蒸汽Dual cycle混合加热循环EEffect of dissipation耗散效应Energy能量Engineering atmosphere工程大气压力Engineering thermodynamics工程热力学Enthalpy焓Enthalpy drop焓降Entropy熵Entropy balance equation熵方程Equation of energy for steady flow稳定流动能量方程Equation of state状态方程Equation of state in reduced form对比态方程Equilibrium平衡Equilibrium state平衡状态Ericsson cycle埃尔逊循环Exergy火用Expansion work膨胀功Extensive quantity尺度量FFahrenheit temperature scale华氏温标First law of thermodynamics热力学第一定律3Flow work流动功Flux of entropy熵流Free energy自由能Free enthalpy自由焓Free expansion自由膨胀Friction摩擦Force力GGas气体Gas constant气体常数Gauge pressure表压力Generalized compressibility chart通用压缩因子图Generalized work广义功Generation of entropy熵产G ibbs’ function吉布斯函数G ibbs’ J.W.吉布斯G ibbs’ phase rule吉布斯相律Gravitational potential重力位能HHeat热Heat of combustion燃烧热Heat (enthalpy) of formation生成热(生成焓)Heat of reaction反应热Heat pump热泵Heat source热源Helmhotz function亥姆霍兹函数H ess’ law赫斯定律Humidity湿度4IIdeal gas equation of state理想气体状态方程Inequality of Clausius克劳修斯不等式Intensive quantity强度量Internal combustion engine内燃机Internal energy热力学能(内能)Inversion curve转变曲线Inversion temperature转变温度Irreversible cycle不可逆循环Irreversible process不可逆过程Isentropic compressibility绝热压缩系数Isentropic process定熵过程Isobaric process定压过程Isolated system孤立系Isometric process定容过程Isothermal compressibility定温压缩系数Isothermal process定温过程JJoule, J.P. 焦耳Joule-Thomon effect焦—汤效应KKelvin, L. (Thomson, W.) 开尔文Kinetic energy动能K irchhoff’s law基尔霍夫定律5LLatent heat潜热Law of corresponding states对应态定律Law of partial volume分容积定律Le Cha telier’s principle吕—查德里原理Local velocity of sound当地声速Lost available energy有用能损失MMach number马赫数Mass flow rate质量流量Maximum work from chemical reaction反应最大功Maxwell, J.C. 麦克斯韦Maxwell relations麦克斯韦关系M ayer’s formula迈耶公式Mechanical equilibrium力学平衡Metastable equilibrium亚稳定平衡Mixture of gases混合气体Moist air湿空气Moisture content含湿量Molar specific heat摩尔比热NNernst heat theorem奈斯特热定理Nonequilibrium-thermodynamics非平衡热力学Nozzle喷管O6One dimensional flow一维流动Open system开口系Otto cycle奥托循环PParameter of state状态参数Perfect gas理想气体Perpetual motion engine永动机Perpetual motion engine of the second kind第二类永动机Phase相Polytropic process 多变过程Potential energy位能Power cycle动力循环Pressure压力Principle of increase of entropy熵增原理Process过程Psychrometer chart湿空气焓—湿图Push work推挤功Pure substance纯物质QQuantity of refrigeration制冷量Quality of vapor-liquid mixture, Dryness干度Quasi-equilibrium process准平衡过程Quasi-static process准静态过程RRankine cycle朗肯循环Ratio of pressure of cycle循环增压比Real gas实际气体7Reduced parameter对比参数Refrigerant制冷剂Refrigeration cycle制冷循环Refrigerator制冷机Regenerative cycle回热循环Reheated cycle再热循环Relative humidity相对湿度Revesed Carnot cycle逆卡诺循环Reversed cycle逆循环Reversible cycle可逆循环Reversible process可逆过程SSaturated air饱和空气Saturation pressure饱和压力Saturation state饱和状态Saturation tempperature饱和温度Saturated vapor饱和蒸汽Saturated water饱和水Second law of thermodynamics热力学第二定律Simple compressible system简单可压缩系Sink冷源Specific heat比热容Specific heat at constant pressure定压比热容Specific heat at constant volume定容比热容Specific humidity绝对湿度Specific volume比体积Stable equilibrium稳定平衡Stagnation enthalpy滞止焓Standard atmosphere标准大气压力Standard enthalpy of formation标准生成焓Standard state标准状况8State状态State postulate状态公理Statistical thermodynamics统计热力学Steady flow稳定流动Steam水蒸汽Subsonic亚声速Superheated steam过热蒸汽Supersonic超声速TTemperature温度Temperature of dew-point露点温度Temperature scale温度标尺Technical work技术功Theoretical flame temperature理论燃烧温度Thermal coefficient热系数Thermal efficiency热效率Thermal equilibrium热平衡Thermodynamic Probability热力学概率Thermodynamics热力学Thermodynamic system热力学系统Thermodynamic temperature scale热力学温标Third law of thermodynamics热力学第三定律Throttling节流Triple point 三相点UUnavailable energy无用能Universal gas constant通用气体常数9VVacuum真空度V an der Waals’ equation范德瓦尔斯方程Velocity of sound声速Virial equation of state维里状态方程WWet-Bulb temperature湿球温度Wet saturated steam湿饱和蒸汽Work功Working substance 工质ZZeroth law of thermodynamics热力学第零定律10。
专业词汇(天体物理)

24、blazar spectra blazar光谱
25、polarization 偏振
26、doppler broadened 多普勒展宽
27、碰撞激发 collisional excitation
28、photoionization 光致电离
29、horizon of the universe 宇宙视界
122、termination shock 终端激波
123、very hard binary 甚硬双星
124、weak turbulence theory 弱湍流理论
125、nova-like X-ray source 类新星 X 射线源
126、longitudinal chromatic aberration 纵向色差
87、string theory 宇宙弦理论
88、stripped plasma 全电离等离子体
89、close binary star 密近双星
90、stellar-mass black hole 恒星质量黑洞
91、ultraviolet radiation 紫外辐射
92、aberration 光行差
105、parallax second 秒差距(parsec) (pc)
106、geometric aberration 几何象差
107、electric multipole radiation 电多极辐射
108、Voigt effect 佛克特效应
109、monotonic model 单调宇宙模型
148、fast-spinning black hole 快自旋黑洞
量子力学索引英汉对照

21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫—玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, α衰变;Alpha particle, α粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥—沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色—爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克—高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, δ势垒Delta-function well, δ势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克δ函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量—时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米—狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼—海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g—因子Gamma function, Γ函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, “好”量子数"Good" states, “好”的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆—施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆β衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克δLLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g—因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维—西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦—玻尔兹曼分布Maxwell’s equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, μ子Muon-catalysed fusion, μ子催化的聚变Muonic hydrogen, μ原子Muonium, μ子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置—动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋—轨道耦合Spin-orbit interaction, 自旋—轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋—自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番—玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩—盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :g r -q c /0411147v 1 30 N o v 2004SF2A 2004bes,D.Barret,T.Contini,F.Meynadier and L.Pagani (eds)QUASI-EQUILIBRIUM SEQUENCES OF BINARY STRANGE QUARK STARS IN GENERAL RELATIVITY Francois Limousin 1,Dorota Gondek-Rosi´n ska 12and Eric Gourgoulhon 1Abstract.Inspiraling compact binaries are expected to be the strongest sources of gravitational waves for VIRGO,LIGO and other laser interferometers.We present the first computations of quasi-equilibrium sequences of compact bi-naries containing two strange quark stars (which are currently considered as a possible alternative to neutron stars).We study a precoalescing stage in the conformal flatness approximation of general relativity using a multido-main spectral method.A hydrodynamical treatment is performed under the assumption that the flow is irrotational.1Introduction One of the most important prediction of Einstein theory of relativity is gravita-tional radiation.Since the very precise measurement of the orbital decay in the binary pulsar B1913+16system by Hulse and Taylor,the existence of gravitational waves (GW)has been indirectly proved and general relativity has passed another quite constraining test.Due to the emission of GW,binary neutron stars (NS)de-crease their orbital separation and finally merge.The evolution of a binary system can be separated into three phases :point-like inspiral where orbital separation ismuch larger than the NS radius,hydrodynamical inspiral where orbital separation is just a few times larger than the radius of the NS so that hydrodynamics play an important role,and merger in which the two stars coalesce dynamically.The GW signal of the terminal phases (the hydrodynamical phase or the merger phase)of inspiraling binary can bring the information about the stellar structure.In particular it may be possible to impose constraints on the equation of state of NS.It is still an open question whether the core of NS consists mainly of super-fluid neutrons or an exotic matter like kaon condensations,pion condensations or238SF2A2004strange quark matter.As suggested by Bodmer(1971)the absolute true ground state of nuclear matter may be a state of deconfined up,down and strange quarks (since energy per baryon for strange matter is lower than the energy per baryon for Fe56).If it is true then objects made of such matter so called strange stars(SS) could exists(Witten1984).SS are currently considered as a possible alternative to NS as compact objects(see e.g.Madsen1999for a review and Gondek-Rosi´n ska et al.2003).Up to now,majority of the relativistic calculations of the terminal phase of inspiral have been done for binary systems containing NS described by a sim-plified equation of state of dense matter so called polytropic EOS(Taniguchi& Gourgoulhon2003).In the paper we present the results of our studies on the hy-drodynamical phase of inspiraling binary systems containing equal mass strange stars(according to the recent population synthesis calculations(Bulik,Gondek-Rosi´n ska and Belczy´n ski,2004)a significant fraction of the observed binary NS in GW will contain stars with masses∼1.4M⊙).We compare the evolution of SS-SS systems with NS-NS systems in order tofind any characteristic features in the GW waveform that will help to distinguish between SS and NS.2Strange quark stars and stellar modelsAs already mentioned,SS are composed of deconfined up,down and strange quarks.Typically,they are modeled with an equation of state based on the MIT-bag model in which quark confinement is described by an energy term proportional to the volume(Fahri et al.,1984).SS are self-bound objects,having high density (>1014g cm3)at the surface.There are three physical quantities entering the MIT-bag model:the mass of the strange quarks,m s,the bag constant,B,and the strength of the QCD coupling constantα.In the numerical calculations reported in the present paper we consider three different MIT-bag models(corresponding to three different sets of the model parameters):SQS0-the standard MIT bag model:m s c2=200MeV,α=0.2,B= 56MeV/fm3;SQS1-the simplified MIT bag model with m s=0,α=0;B= 60MeV/fm3;SQS2-the”extreme”MIT bag model(relatively low strange quark mass and B but highα):m s c2=100MeV,α=0.6,B=40MeV/fm33Basic assumptionsIn the hydrodynamical phase,since the timescale of orbital shrinking due to the emission of GW is longer than the orbital period,one may consider a binary NS system to be in quasiequilibrium state.For given EOS,we construct so called evolutionary sequence by calculating a sequence of quasiequilibrium configurations with constant baryon mass for decreasing orbital separation.The second assump-tion is to consider a conformallyflat metric,which corresponds to the Isenberg-Wilson-Mathews approximation of general relativity.In this approximation,theF.Limousin,D.Gondek-Rosinska and E.Gourgoulhon :Strange stars239spacetime metric takes the form:ds 2=−(N 2−B i B i )dt 2−2B i dt dx i +A 2f ij dx i dx j ,(3.1)where N is the lapse,A the conformal factor,B i the shift vector and f ij the flat spatial metric.Another assumption concerns the fluid motion inside each star,here we considered irrotational binaries.4Results and conclusionsf GW [Hz]E b i n d [M s o l ]Fig.1.Orbital binding energy of an equal mass binary system (M 1=M 2=1.35M ⊙)versus frequency of GW along two irrotational equilibrium sequences.Solid and long-dashed lines correspond to strange quark stars described by MIT bag model and NS described by polytropic EOS respectively.A diamond indicates the marginally stable orbit.A dotted line corresponds to 3rd post-Newtonian calculations for point masses.In order to calculate the last orbits of inspiral phase of binary NS and SS we use highly accurate numerical code which solves the five elliptic equations for the gravitational field (for A ,N and Bi ),supplemented by an elliptic equation for the velocity potential in the case of irrotational flows (see Limousin,Gondek-Rosi´n ska &Gourgoulhon 2004for boundary conditions in the case of SS).In Fig.1we show the evolution of equal mass binary NS (a long-dashed line)and SS described by SQS1model (a solid line)having total gravitational mass 2.7M ⊙at infinity.The binding energy is defined as the difference between M ADM (see Taniguchi &Gourgoulhon 2003)and the total mass of the system at infinity.We see a good agreement with 3PN calculations for big distances i.e.small frequencies,where the internal structure of the stars is not the predominant effect.In order to compare results for SS and NS we take a polytrope giving the same gravitational mass and the same compaction parameter GM/Rc 2at infinity as obtained for static SS.The minimum of energy (shown as a diamond)for the evolutionary sequence of SS corresponds to the appearance of a dynamical insta-bility for binaries (the innermost stable circular orbit (ISCO)).The frequency of240SF2A2004the ISCO is a potentially observable parameter by the GW detectors.We don’t see the ISCO for NS.The sequence of NS terminates by the mass-shedding limit (corresponding to exchange of matter between two stars).Different evolutions of NS and SS stem from the fact that SS are principally bound by an additional force,strongdeformedthan NS).Fig.2.Orbital binding energy versus frequency of GW along evolutionary sequences of irrotational strange quark star binaries described by three different MIT bag models.In Fig2.we present the evolution of binary SS,with total mass2.7M⊙, described by three different sets of EOS parameters of the MIT bag model.We see that the frequency of GW at the ISCO strongly depends on the compaction parameter-the higher it is,the higher the frequency at the ISCO.Detection of GW may help to impose constraints on the EOS of NS and SS and tofind the ground state of matter at high densities.Partially supported by the KBN grants5P03D.017.21and PBZ-KBN-054/P03/2001;by the “Bourses de recherche2004de la Ville de Paris”and by the Associated European Laboratory Astro-PF(Astrophysics Poland-France).ReferencesBodmer,1971,Phys.Rev.D,4,1601Bulik,T.,Gondek-Rosi´n ska,D.,Belczy´n ski,K.,2004,MNRAS,352,1372Fahri,E.,&Jaffe,R.L.,1984,Phys.Rev.D,30,2379Gondek-Rosi´n ska,D.,Gourgoulhon,E.,Haensel,P.,2003,A&A,412,777Limousin,F.,Gondek-Rosinska,D.,Gourgoulhon,E.,2004,in preparationMadsen,1999,Lect.Notes in Phys.516,162Taniguchi,K.,Gourgoulhon,E.,2003,Phys.Rev.D,68,124025Witten,E.,1984,Phys.Rev.D,30,272。