2018届高三数学第4练集合与常用逻辑用语中的易错题

合集下载

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》知识点总复习有答案

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》知识点总复习有答案

高考数学《集合与常用逻辑用语》练习题一、选择题1.已知集合(){}2||lg 4A x y x ==-,{|B x y ==,则A B =I ( )A .{}|12x x <<B .{}|12x x ≤<C .{}|13x x 剟D .{}|23x x -<…【答案】B 【解析】 【分析】根据对数函数和二次函数的性质,求得集合,A B ,再结合集合交集的运算,即可求解. 【详解】由题意,集合(){}2|lg 4(2,2),{|[1,3]A x y x B x y ==-=-===,所以{|12}A B x x =≤<I . 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中根据函数的定义域的定义,正确求解集合,A B 是解答的关键,着重考查了推理与计算能力.2.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( ) A .[5,)+∞ B .[2,)+∞C .[1,)+∞D .[0,)+∞【答案】A 【解析】 【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫⎪⎝⎭,所以2Z x y =+的最大值为5,因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a的取值范围是5a ≤, 故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.3.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假【答案】D 【解析】 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.4.“13m -<<”是“方程22117x y m m+=+-表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】 【分析】方程22117x y m m +=+-表示椭圆解得13m -<<或37m <<,根据范围大小判断得到答案.【详解】因为方程22117x ym m +=+-表示椭圆,所以107017m m m m+>⎧⎪->⎨⎪+≠-⎩,解得13m -<<或37m <<. 故“13m -<<”是“方程22117x y m m+=+-表示椭圆”的充分不必要条件.故选:A 【点睛】本题考查了充分不必要条件,意在考查学生的推断能力.5.14a =-是函数2()1f x ax x =--有且仅有一个零点的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】 【分析】将14a =-代入函数证明充分性,取0a =得到不必要,得到答案. 【详解】当14a =-时,2211()11042f x x x x ⎛⎫=---=-+= ⎪⎝⎭,2x =-,充分性; 当0a =时,()10f x x =--=,1x =-,一个零点,故不必要. 故选:A . 【点睛】本题考查了充分不必要条件,函数零点,意在考查学生的推断能力.6.集合{}|12A x x =-<,1393x B x ⎧⎫=<<⎨⎬⎩⎭,则A B I 为( ) A .()1,2 B .()1,2-C .()1,3D .()1,3-【答案】B 【解析】 【分析】计算得到{}13A x x =-<<,{}12B x x =-<<,再计算A B I 得到答案. 【详解】18{}13x x =-<<,{}139123x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, 故()1,2A B =-I . 故选:B . 【点睛】本题考查了集合的交集运算,意在考查学生的计算能力.7.已知集合(){}2log 1,0A y y x x ==+≥,{}0.5,1xB y y x ==>,则A B =U ( )A .()0.5,+∞B .[)0,+∞C .()0,0.5D .[)0,0.5【答案】B 【解析】 【分析】根据指数函数和对数函数的性质,化简集合,A B ,再求并集即可. 【详解】0x ≥Q ,11x ∴+≥,2log (1)0x ∴+≥,故{|0}A y y =≥1111,0,|0222xx B y y ⎛⎫⎧⎫>∴<<∴=<<⎨⎬ ⎪⎝⎭⎩⎭Q1{|0}0{|0}2A B y y y y y y ⎧⎫∴⋃=≥⋃<<=≥⎨⎬⎩⎭故选B 【点睛】本题主要考查了集合并集的运算,属于中档题.8.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件 【答案】C 【解析】分析:从两个方向去判断,先看tan tan 1A B >能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出tan tan 1A B >成立,从而必要性也不满足,从而选出正确的结果. 详解:由题意可得,在ABC ∆中,因为tan tan 1A B >,所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<, 所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.9.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( ) A .(1,3) B .(-∞,-1) C .(-1,1) D .(-3,1)【答案】C 【解析】 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A ∩B =(-1,1). 【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.10.已知实数a b 、满足0ab >,则“11a b<成立”是“a b >成立”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .非充分非必要条件【答案】C 【解析】 【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可. 【详解】 由11b a a b ab--=, 0ab >Q ,∴若11a b< 成立, 则0b a -< ,即a b >成立,反之若a b >, 0ab >Q ,110b a a b ab-∴-=<, 即11a b<成立, ∴“11a b <成立”是“a b > 成立”充要条件,故选C. 【点睛】本题主要考查不等式的性质以及充分条件和必要条件的应用,属于中档题. 判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.11.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件. 【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B. 【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.12.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.13.已知,αβ是不同的两个平面,直线a α⊂,直线b β⊂,条件:p a 与b 没有公共点,条件://q αβ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B 【解析】∵a 与b 没有公共点时,a 与b 所在的平面β可能平行,也可能相交(交点不在直线b 上)∴命题p :a 与b 没有公共点⇒命题q :α∥β,为假命题 又∵α∥β时,a 与b 平行或异面,即a 与b 没有公共点 ∴命题q :α∥β⇒命题p :a 与b 没有公共点,为真命题; 故p 是q 的必要不充分条件 故选B14.已知命题p :∀x ∈R ,x+1x≥2;命题q :∃x 0∈[0,]2π,使sin x 0+cos x 0=2,则下列命题中为真命题的是 ( ) A .p ∨(⌝q ) B .p ∧(⌝q )C .(⌝p )∧(⌝q )D .(⌝p )∧q【答案】D 【解析】 【分析】先判断命题p,q 的真假,再判断选项命题的真假. 【详解】对于命题p :当x ≤0时,x+1x≥2不成立, ∴命题p 是假命题,则⌝p 是真命题;对于命题q :当x 0=4π时,sin x 0+cos x 0,则q 是真命题. 结合选项只有(⌝p )∧q 是真命题. 故答案为D. 【点睛】(1)本题主要考查全称命题特称命题的否定及其真假,考查复合命题的真假,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.15.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤ D .21,2n n n ∃>≤【答案】C 【解析】根据命题的否定,可以写出p ⌝:21,2nn n ∀>≤,所以选C.16.若命题“[1,2]x ∀∈,2210x ax -+>”是真命题,则实数a 的取值范围为( ) A .5,4⎛⎫-∞ ⎪⎝⎭B .5,4⎛⎫+∞⎪⎝⎭C .(,1)-∞D .(1,)+∞【答案】C 【解析】 【分析】分离参数,将问题转化为[]1,2x ∀∈,2111()22x a x x x+<=+恒成立,结合基本不等式求解最值即可得解. 【详解】若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则[]1,2x ∀∈,212x ax +>,即2111()22x a x x x+<=+恒成立,11()12x x+≥=Q,当且仅当1x =时等号成立, ∴1a <,即实数a 的取值范围是(,1)-∞. 故选:C . 【点睛】此题考查根据全称命题的真假求参数的取值范围,利用分离参数,将问题转化为求函数最值求解范围,需要注意等价变形.17.若实数a 、b 满足0a ≥,0b ≥且0ab =,则称a 与b 互补,记(),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】C 【解析】 【分析】首先根据(),0a b ϕ=,证明0a ≥,0b ≥且0ab = ,再证明0a ≥,0b ≥且0ab =时,(),0a b ϕ= .【详解】 若(),0a b ϕ=,0a b -=a b =+ 两边平方后可得20ab =,即0a =或0b =当0a =0b b b =-= ,0b ∴≥ ,即a 与b 互补, 同理0b =时,a 与b 互补, 反过来,当0ab =时,0a b -= , 即(),0a b ϕ= ,故(),0a b ϕ=是a 与b 互补的充要条件. 故选:C. 【点睛】本题考查充分必要条件的判断和证明,意在考查逻辑推理和分析证明的能力,属于中档题型,本题的关键需根据充要条件的判断证明(),0a b a ϕ=⇒与b 互补,a 与b 互补(),0a b ϕ⇒=.18.定义在R 上的函数()y f x =满足()555,0222f x f x x f x ⎛⎫⎛⎫⎛⎫+=-->⎪ '⎪ ⎪⎝⎭⎝⎭⎝⎭,任意的12x x <都有()()12f x f x >是125x x +<的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】C 【解析】 【分析】 【详解】因为()5,02x f x '>>; ()5,02x f x '<<,且()f x 关于52x =对称,所以12x x <时, ()()12f x f x > ()212212125555,555222f x x x x x x x x <>=-⇒⇒-<∴<-⇒+<反之也成立: 12x x <时,()()()1212121225555,,55222x x x x x x f x f x f x +<⇒<⇒>-<-=<>,所以选C.点睛:充分、必要条件的三种判断方法.19.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ) A .(,2]-∞- B .[2,)+∞C .(,2]-∞D .[2,)-+∞【答案】B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.20.0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 当,得a <1时方程有根.a <0时,,方程有负根,又a =1时,方程根为,所以选B .。

高考数学压轴专题新备战高考《集合与常用逻辑用语》易错题汇编附答案

高考数学压轴专题新备战高考《集合与常用逻辑用语》易错题汇编附答案

【最新】数学《集合与常用逻辑用语》高考知识点一、选择题1.设全集{}0,1,2,3,4U =,集合{}0,1,2A =,集合{}2,3B =,则()C A B ⋃⋃=( ) A .∅B .{}1,2,3,4C .{}2,3,4D .{}0,1,2,3,4【答案】C【解析】【分析】先求C A ⋃,再根据并集定义求结果.【详解】因为{}3,4C A ⋃=,所以(){}2,3,4C A B ⋃⋃=,选C.【点睛】本题考查集合的补集与并集,考查基本分析求解能力,属基本题.2.下列四个命题中真命题的个数是①命题2“340,1?x x x --==-若则的逆否命题为2“1,340?x x x ≠---≠若则; ②命题“,cos 1?x R x ∀∈≤的否定是00“,cos 1?x R x ∃∈>③命题“(,0)x ∃∈-∞,23x x <”是假命题.④命题[):1,,lg 0"p x x ∀∈+∞≥,命题2:,10q x R x x ∃∈++<,则p q ∨为真命题 A .1B .2C .3D .4 【答案】D【解析】【分析】根据四种命题的关系进行判断.【详解】①命题2“340,1?x x x --==-若则的逆否命题为2“1,340?x x x ≠---≠若则,正确;②命题“,cos 1?x R x ∀∈≤的否定是00“,cos 1?x R x ∃∈>,正确;③命题“(),0x ∃∈-∞,23x x <”是假命题,正确.④命题[):1,,lg 0"p x x ∀∈+∞≥,命题2:,10q x R x x ∃∈++<,p 是真命题, 则p q ∨为真命题,正确.因此4个命题均正确.故选D .【点睛】本题考查四种命题及其关系,解题时可根据四种命题的关系进行判断①②,同指数函数的性质判断③,由或命题的真值表判断④,是解此类题的一般方法,本题属于基础题.3.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)【答案】C【解析】【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解.【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1),∴A ∩B =(-1,1).【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.4.下列三个命题中,真命题的个数为( )①命题p :0(1,)x ∃∈+∞,0002x x >-,则p ⌝:(1,)x ∀∈+∞,02x x ≤-; ②p q ∧为真命题是p q ∨为真命题的充分不必要条件;③若22ac bc >,则a b >的逆命题为真命题;A .3B .2C .1D .0【答案】C【解析】【分析】对三个命题逐一判断即可.【详解】 ①中p ⌝:()1x ∀∈+∞,,02x x ≤-或2x =,所以①为假命题; ②为真命题; ③中逆命题为:若a b >,则22ac bc >,若c 为0,则③错误,即③为假命题. 故选:C .【点睛】本题考查命题的真假,属于基础题.5.已知,αβ是不同的两个平面,直线a α⊂,直线b β⊂,条件:p a 与b 没有公共点,条件://q αβ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】∵a 与b 没有公共点时,a 与b 所在的平面β可能平行,也可能相交(交点不在直线b 上)∴命题p :a 与b 没有公共点⇒命题q :α∥β,为假命题又∵α∥β时,a 与b 平行或异面,即a 与b 没有公共点∴命题q :α∥β⇒命题p :a 与b 没有公共点,为真命题;故p 是q 的必要不充分条件故选B6.已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既非充分也非必要条件【答案】B【解析】分析:由题意考查充分性和必要性即可求得最终结果.详解:若//l αβα⊥,,则l β⊥,又//m β,所以l m ⊥;若l m ⊥,当//m β时,直线l 与平面β的位置关系不确定,无法得到//αβ. 综上,“//αβ”是“l m ⊥”的充分不必要条件.本题选择B 选项.点睛:本题主要考查线面平行的判断定理,面面平行的判断定理及其应用等知识,意在考查学生的转化能力和计算求解能力.7.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒ q ”为真,则p 是q 的充分条件.8.等价法:利用p ⇒ q 与非q ⇒非p , q ⇒ p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.9.已知集合{}2|log ,1,|A y y x x B x y ⎧==>==⎨⎩,则A B =I ( ) A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .1,12⎛⎫ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】A【解析】 ∵集合{}2log ,1A y y x x ==∴集合(0,)A =+∞∵集合|B x y ⎧==⎨⎩ ∴集合1(,)2B =-∞ ∴1(0,)2A B ⋂=故选A.10.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果.【详解】由于公比为q 的等比数列{}n a 的首项10a >,所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的充分不必要条件,故选:A.【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.11.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( ) A .{}13x x -≤< B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<< 【答案】C【解析】【分析】 解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð.【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C.【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.12.给出下列说法:①定义在[],a b 上的偶函数()()24f x x a x b =-++的最大值为20; ②“4x π=”是“tan 1x =”的充分不必要条件;③命题“()00,x ∃∈+∞,0012x x +≥”的否定形式是“()0,x ∀∈+∞,12x x +<”. 其中正确说法的个数为( )A .0B .1C .2D .3【答案】D【解析】【分析】 根据偶函数的定义求得a 、b 的值,利用二次函数的基本性质可判断①的正误;解方程tan 1x =,利用充分条件和必要条件的定义可判断②的正误;根据特称命题的否定可判断③的正误.综合可得出结论.【详解】对于命题①,二次函数()()24f x x a x b =-++的对称轴为直线42a x +=, 该函数为偶函数,则402a +=,得4a =-,且定义域[]4,b -关于原点对称,则4b =, 所以,()24f x x =+,定义域为[]4,4-,()()max 420f x f ∴=±=,命题①正确; 对于命题②,解方程tan 1x =得()4x k k Z ππ=+∈, 所以,tan 14x x π=⇒=,tan 14x x π=⇐=/, 则“4x π=”是“tan 1x =”的充分不必要条件,命题②正确;对于命题③,由特称命题的否定可知③正确.故选:D.【点睛】本题以考查命题真假性的形式,考查函数奇偶性、二次函数最值,充分条件与必要条件 还有特称命题的否定,考查的知识点较多,能较好地检测考生的逻辑推理能力,属中等题.13.已知实数a b 、满足0ab >,则“11a b <成立”是“a b >成立”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件 【答案】C【解析】【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可.【详解】 由11b a a b ab--=, 0ab >Q ,∴若11a b < 成立, 则0b a -< ,即a b >成立,反之若a b >,0ab >Q ,110b a a b ab-∴-=<, 即11a b<成立, ∴“11a b<成立”是“a b > 成立”充要条件,故选C. 【点睛】本题主要考查不等式的性质以及充分条件和必要条件的应用,属于中档题. 判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.14.“13m -<<”是“方程22117x y m m+=+-表示椭圆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】 方程22117x y m m+=+-表示椭圆解得13m -<<或37m <<,根据范围大小判断得到答案.【详解】 因为方程22117x y m m +=+-表示椭圆,所以107017m m m m +>⎧⎪->⎨⎪+≠-⎩,解得13m -<<或37m <<. 故“13m -<<”是“方程22117x y m m+=+-表示椭圆”的充分不必要条件. 故选:A【点睛】本题考查了充分不必要条件,意在考查学生的推断能力.15.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð 【答案】A【解析】【分析】求函数定义域得集合M ,N 后,再判断.【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I .故选A .【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.16.若命题“[1,2]x ∀∈,2210x ax -+>”是真命题,则实数a 的取值范围为( ) A .5,4⎛⎫-∞ ⎪⎝⎭ B .5,4⎛⎫+∞ ⎪⎝⎭ C .(,1)-∞ D .(1,)+∞【答案】C【解析】【分析】分离参数,将问题转化为[]1,2x ∀∈,2111()22x a x x x+<=+恒成立,结合基本不等式求解最值即可得解.【详解】若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则[]1,2x ∀∈,212x ax +>,即2111()22x a x x x +<=+恒成立, 111()12x x x x+≥⋅=Q ,当且仅当1x =时等号成立, ∴1a <,即实数a 的取值范围是(,1)-∞.故选:C .【点睛】此题考查根据全称命题的真假求参数的取值范围,利用分离参数,将问题转化为求函数最值求解范围,需要注意等价变形.17.已知命题p :“x ∈R 时,都有x 2-x +14<0”;命题q :“存在x ∈R ,使sinx +cosx =2成立”.则下列判断正确的是( )A .p ∨q 为假命题B .p ∧q 为真命题C .非p ∧q 为真命题D .非p ∨非q 是假命题 【答案】C【解析】【分析】【详解】试题分析::∵任意x ∈R 时,都有x 2-x+14=(x−12)2≥0, ∴p 是假命题;∵sinx+cosx=2sin (x+4π),当x=4π时,sinx+cosx=2, ∴q 是真命题,∴p ∨q 是真命题,非p n q 为真命题,故选C考点:复合命题的真假18.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )A .3(3,)2-- B .3(3,)2- C .3(1,)2 D .3(,3)2【答案】D【解析】 试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D. 考点:1、一元二次不等式;2、集合的运算.19.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞ 【答案】B【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.20.0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】 当,得a <1时方程有根.a <0时,,方程有负根,又a =1时,方程根为,所以选B .。

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》知识点总复习含解析

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》知识点总复习含解析

高考数学《集合与常用逻辑用语》练习题一、选择题1.“x <﹣1”是“x 2﹣1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】试题分析:由x <﹣1,知x 2﹣1>0,由x 2﹣1>0知x <﹣1或x >1.由此知“x <﹣1”是“x 2﹣1>0”的充分而不必要条件.解:∵“x <﹣1”⇒“x 2﹣1>0”,“x 2﹣1>0”⇒“x <﹣1或x >1”.∴“x <﹣1”是“x 2﹣1>0”的充分而不必要条件.故选A .点评:本题考查充分条件、必要条件和充要条件的应用,解题时要注意基本不等式的合理运用.2.下列三个命题中,真命题的个数为( )①命题p :0(1,)x ∃∈+∞,0002x x >-,则p ⌝:(1,)x ∀∈+∞,02x x ≤-; ②p q ∧为真命题是p q ∨为真命题的充分不必要条件;③若22ac bc >,则a b >的逆命题为真命题;A .3B .2C .1D .0【答案】C【解析】【分析】对三个命题逐一判断即可.【详解】 ①中p ⌝:()1x ∀∈+∞,,02x x ≤-或2x =,所以①为假命题; ②为真命题; ③中逆命题为:若a b >,则22ac bc >,若c 为0,则③错误,即③为假命题. 故选:C .【点睛】本题考查命题的真假,属于基础题.3.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】 根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果.【详解】由于公比为q 的等比数列{}n a 的首项10a >,所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的充分不必要条件,故选:A.【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.4.“0a =”是“函数x a y e -=为偶函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】解析:若0a =,则||x y e =是偶函数,“0a =”是“函数x a y e -=为偶函数”的充分条件;若函数x a y e -=为偶函数,则对称轴为0x =,即0x a ==,则“0a =”是“函数x a y e -=为偶函数”的必要条件,应选答案C .5.已知集合{}|3x M y y ==,{|N x y ==,则M N =I ( ) A .{|01}x x <<B .{|01}x x <≤C .{|1}x x ≤D .{|0}x x > 【答案】B【解析】【分析】根据函数的定义域和值域,求得集合,M N ,再结合集合的交集的运算,即可求解.【详解】由题意,集合{}|3{|0}x M y y y y ===>,{|{|1}N x y x x ===≤, 所以{|01}M N x x ⋂=<≤.故选:B .【点睛】本题主要考查了集合的交集的运算,其中解答中根据函数的定义域和值域的求法,正确求解集合,M N 是解答的关键,着重考查了计算能力.6.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值.A .2B .3C .4D .5【答案】C【解析】【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断.【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n +-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确.故选:C【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.7.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.【详解】Q点P不在直线l、m上,若直线l、m互相平行,则过点P可以作无数个平面,使得直线l、m都与这些平面平行,即必要性成立,若过点P可以作无数个平面,使得直线l、m都与这些平面平行,则直线l、m互相平行成立,反证法证明如下:若直线l、m互相不平行,则l,m异面或相交,则过点P只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的充要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.8.设,则"是""的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据题意得到充分性,验证得出不必要,得到答案.【详解】,当时,,充分性;当,取,验证成立,故不必要. 故选:.【点睛】 本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项.【详解】充分性:由余弦定理,2222cos c a b ab C =+-,所以2ab c >,即222cos ab a b ab C >+-, 整理得,2212cos a b C ab++>, 由基本不等式,22222a b a b ab ab+≥=, 当且仅当a b =时等号成立,此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯, 故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立;故p 是q 的充分不必要条件.故选:A【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.10.下列说法正确的是( )A .命题“0[0,1]x ∃∈,使2010x -…”的否定为“[0,1]x ∀∈,都有2 10x -„” B .命题“若向量a v 与b v 的夹角为锐角,则·0a b >vv ”及它的逆命题均为真命题C .命题“在锐角ABC V 中,sin cos A B <”为真命题D .命题“若20x x +=,则0x =或1x =-”的逆否命题为“若0x ≠且1x ≠-,则20x x +≠”【答案】D【解析】【分析】对于A 选项,利用特称命题的否定即可判断其错误.对于B 选项,其逆命题为“若·0a b >r r ,则向量a r 与b r的夹角为锐角”, 由·0a b >r r 得:·cos 0a b θ>r r ,可得cos 0θ>,则0,2πθ⎡⎫∈⎪⎢⎣⎭,所以该命题错误,所以B 错误.对于C 选项,0222A B A B πππ+>⇒>>->,可得sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,所以C 错误.故选D【详解】命题“0[0,1]x ∃∈,使2110x -…”的否定应为“[0,1]x ∀∈,都有210x -<”,所以A 错误; 命题“若向量a r 与b r 的夹角为锐角,则·0a b >r r ”的逆命题为假命题,故B 错误;锐角ABC V 中,0222A B A B πππ+>⇒>>->, ∴sin sin cos 2A B B π⎛⎫>-=⎪⎝⎭,所以C 错误, 故选D.【点睛】本题主要考查了命题的真假判断,还考查了特称命题的否定,向量的数量积知识,属于中档题.11.“a <0”是“方程ax 2+1=0至少有一个负根”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】C【解析】当0a <时,方程210ax +=,即21x a=-,故此一元二次方程有一个正根和一个负根,符合题意;当方程210ax +=至少有一个负数根时,a 不可以为0,从而21x a =-,所以0a <,由上述推理可知,“0a <”是方程“210ax +=至少有一个负数根”的充要条件,故选C.12.已知全集,U R =2{|2}M x x x =-≥则U C M =( ).A .{|20}x x -<<B .{|20}x x -≤≤C .{|20}x x x <->或D .{|20}x x x ≤-≥或【答案】C【解析】【分析】解二次不等式求出集合M ,进而根据集合补集运算的定义,可得答案.【详解】∵全集U=R ,2{|2}={|20}M x x x x x =-≥-≤≤∴∁U M={x|x<-2或x>0}, 故选C .【点睛】本题考查的知识点是集合的交集,并集,补集运算,熟练掌握并正确理解集合运算的定义是解答的关键.13.等价法:利用p ⇒ q 与非q ⇒非p , q ⇒ p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.14.下列四个命题中真命题的个数是①命题2“340,1?x x x --==-若则的逆否命题为2“1,340?x x x ≠---≠若则; ②命题“,cos 1?x R x ∀∈≤的否定是00“,cos 1?x R x ∃∈>③命题“(,0)x ∃∈-∞,23x x <”是假命题.④命题[):1,,lg 0"p x x ∀∈+∞≥,命题2:,10q x R x x ∃∈++<,则p q ∨为真命题 A .1B .2C .3D .4 【答案】D【解析】【分析】根据四种命题的关系进行判断.【详解】①命题2“340,1?x x x --==-若则的逆否命题为2“1,340?x x x ≠---≠若则,正确;②命题“,cos 1?x R x ∀∈≤的否定是00“,cos 1?x R x ∃∈>,正确;③命题“(),0x ∃∈-∞,23x x <”是假命题,正确.④命题[):1,,lg 0"p x x ∀∈+∞≥,命题2:,10q x R x x ∃∈++<,p 是真命题, 则p q ∨为真命题,正确.因此4个命题均正确.故选D .【点睛】本题考查四种命题及其关系,解题时可根据四种命题的关系进行判断①②,同指数函数的性质判断③,由或命题的真值表判断④,是解此类题的一般方法,本题属于基础题.15.已知x ,y R ∈,则“x y <”是“1x y <”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】【分析】 x y <,不能得到1x y <, 1x y<成立也不能推出x y <,即可得到答案. 【详解】因为x ,y R ∈, 当x y <时,不妨取11,2x y =-=-,21x y =>, 故x y <时,1x y<不成立, 当1x y<时,不妨取2,1x y ==-,则x y <不成立, 综上可知,“x y <”是“1x y <”的既不充分也不必要条件, 故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.16.已知集合{}260A x x x =--≤,(){}lg 2B x y x ==-,则A B =I ( ) A .[)2,2-B .[]2,3C .(]2,3D .()3,+∞【答案】C【解析】【分析】根据一元二次不等式的解答和对数函数的性质,求得,A B ,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}{}26023A x x x x x =--≤=-≤≤,(){}{}lg 22B x y x x x ==-=>,所以(]2,3A B =I .故选:C .【点睛】本题主要考查了集合运算及性质,其中解答中熟记集合交集的概念及运算是解答的关键,着重考查数学运算能力.17.给出下列四个结论:①若()f x 是奇函数,则()2f x 也是奇函数;②若()f x 不是正弦函数,则()f x 不是周期函数;③“若3πθ=,则sin θ=的否命题是“若3πθ≠,则sin θ≠.”; ④若p :11x≤;q :ln 0x ≥,则p 是q 的充分不必要条件. 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B【解析】【分析】根据题意,逐一分析,即可判断得出结论.【详解】解:①若()f x 是奇函数,有()()f x f x -=-,则()()22f x f x -=-,所以()2f x 也是奇函数,①正确;②若()f x 不是正弦函数,而()f x 可以是余弦函数,是周期函数,所以②错误; ③根据否命题的定义可知:对原命题的条件和结论都否定,可知③正确; ④中,由p :11x≤,解得0x <或1x ≥;由q :ln 0x ≥,解得1x ≥, 则p 是q 的必要不充分条件,故④错误.综上可知,正确结论的个数为2个.故答案为:B.【点睛】 本题考查命题真假的判断,涉及定义法判断函数的奇偶性、周期函数、否命题以及充分必要条件的定义等知识.18.若实数a 、b 满足0a ≥,0b ≥且0ab =,则称a 与b 互补,记(),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】C【解析】【分析】首先根据(),0a b ϕ=,证明0a ≥,0b ≥且0ab = ,再证明0a ≥,0b ≥且0ab =时,(),0a b ϕ= .【详解】若(),0a b ϕ=,0a b -=a b =+两边平方后可得20ab =,即0a =或0b =当0a =0b b b =-= ,0b ∴≥ ,即a 与b 互补,同理0b =时,a 与b 互补,反过来,当0ab =时,0a b -= ,即(),0a b ϕ= ,故(),0a b ϕ=是a 与b 互补的充要条件.故选:C.【点睛】本题考查充分必要条件的判断和证明,意在考查逻辑推理和分析证明的能力,属于中档题型,本题的关键需根据充要条件的判断证明(),0a b a ϕ=⇒与b 互补,a 与b 互补(),0a b ϕ⇒=.19.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C【解析】【分析】由余弦函数的单调性找出cos cos A B <的等价条件为A B >,再利用大角对大边,结合正弦定理可判断出“cos cos A B <”是“sin sin A B >”的充分必要条件.【详解】Q 余弦函数cos y x =在区间()0,π上单调递减,且0A π<<,0B π<<,由cos cos A B <,可得A B >,a b ∴>,由正弦定理可得sin sin A B >.因此,“cos cos A B <”是“sin sin A B >”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.20.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.。

【精编】2018届高三数学:第4练 集合与常用逻辑用语中的易错题 含答案

【精编】2018届高三数学:第4练 集合与常用逻辑用语中的易错题 含答案

训练目标 解题步骤的严谨性,转化过程的等价性.训练题型 集合与常用逻辑用语中的易错题.解题策略 (1)集合中元素含参数,要验证集合中元素的互异性;(2)子集关系转化时先考虑空集;(3)参数范围问题求解时可用数轴分析,端点处可单独验证.1.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a 等于( ) A .4 B .2 C .0D .0或42.已知集合A ={-1,12},B ={x |mx -1=0},若A ∩B =B ,则所有实数m 组成的集合是( )A .{-1,0,2}B .{-12,0,1}C .{-1,2}D .{-1,0,12}3.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)4.(2017·烟台质检)已知命题p :∃x ∈R ,mx 2+2≤0;q :∀x ∈R ,x 2-2mx +1>0.若p ∨q 为假命题,则实数m 的取值范围是( ) A .[1,+∞) B .(-∞,-1] C .(-∞,-2]D .[-1,1]5.下列说法不正确的是( )A .命题“∃x 0∈R ,x 20-x 0-1<0”的否定是“∀x ∈R ,x 2-x -1≥0” B .命题“若x >0且y >0,则x +y >0”的否命题是假命题C .命题“∃a ∈R ,使方程2x 2+x +a =0的两根x 1,x 2满足x 1<1<x 2”和命题“函数f (x )=log 2(ax -1)在[1,2]上单调递增”都为真D .△ABC 中,A 是最大角,则sin 2B +sin 2C <sin 2A 是△ABC 为钝角三角形的充要条件 6.满足条件{1,2}M ⊆{1,2,3,4,5}的集合M 的个数是( )A .3B .6C .7D .87.下列有关命题的说法中错误的是( ) A .若“p 或q ”为假命题,则p ,q 均为假命题 B .“x =1”是“x ≥1”的充分不必要条件 C .“cos x =12”的必要不充分条件是“x =π3”D .若命题p :“∃x 0∈R ,x 20≥0”,则命题綈p 为“∀x ∈R ,x 2<0”8.已知命题p :函数f (x )=2ax 2-x -1(a ≠0)在(0,1)内恰有一个零点;命题q :函数y =x2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)二、填空题9.(2016·江西赣州十二县(市)期中联考)设集合M ={-1,0,1},N ={a ,a 2},若M ∩N =N ,则a 的值是________.10.已知命题p :关于x 的方程x 2-mx -2=0在x ∈[0,1]上有解;命题q :f (x )=log 2(x2-2mx +12)在x ∈[1,+∞)上单调递增.若“綈p ”为真命题,“p ∨q ”为真命题,则实数m 的取值范围为____________.11.已知全集为U =R ,集合M ={x |x +a ≥0},N ={x |log 2(x -1)<1},若M ∩(∁U N )={x |x =1或x ≥3},则a 的取值范围是________.12.(2016·安阳月考)已知两个命题r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.如果对∀x ∈R ,r (x )∧s (x )为假,r (x )∨s (x )为真,那么实数m 的取值范围为________________.答案精析1.A [①当a =0时,1=0显然不成立;②当a ≠0时,由Δ=a 2-4a =0,得a =4或a =0(舍).综上可知a =4.选A.]2.A [由A ∩B =B ,得B ⊆A .若B =∅,则m =0.若B ={-1},得-m -1=0, 解得m =-1.若B ={12},则12m -1=0,解得m =2.综上,m 的取值集合是{-1,0,2}.]3.C [由P ∪M =P ,得M ⊆P .又∵P ={x |x 2≤1}={x |-1≤x ≤1},∴-1≤a ≤1.故选C.] 4.A [∵p ∨q 为假,∴p ,q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题, 得∀x ∈R ,mx 2+2>0,∴m ≥0. 由q :∀x ∈R ,x 2-2mx +1>0为假, 得∃x ∈R ,x 2-2mx +1≤0. ∴Δ=(-2m )2-4≥0,得m 2≥1, ∴m ≤-1或m ≥1.∴m ≥1.]5.C [因为2x 2+x +a =0的两根x 1,x 2满足x 1<1<x 2的充要条件是2+1+a <0,所以a <-3,当a <-3时,函数f (x )=log 2(ax -1)在[1,2]上无意义.故选C.]6.C [M 中含三个元素的个数为3,M 中含四个元素的个数也是3,M 中含5个元素的个数只有1个,因此符合题意的共7个.]7.C [对于A ,根据真值表知正确;对于B ,由于x =1可以推出x ≥1,但x ≥1不一定能推出x =1,故正确;对于D ,由特称命题的否定形式知正确;对于C ,“x =π3”应为“cos x =12”的充分不必要条件.]8.C [若命题p 为真,则⎩⎪⎨⎪⎧1+8a ≥0,f ?0?·f ?1?=-1·?2a -2?<0,得a >1.若命题q 为真,则2-a <0,得a >2, 故由p 且綈q 为真命题,得1<a ≤2.] 9.-1解析 因为集合M ={-1,0,1},N ={a ,a 2},M ∩N =N ,又a 2≥0,所以当a 2=0时,a =0,此时N ={0,0},不符合集合元素的互异性,故a ≠0;当a 2=1时,a =±1,a =1时,N ={1,1},不符合集合元素的互异性,故a ≠1,a =-1时,此时N ={-1,1},符合题意.故a =-1.10.(-1,34)解析 根据题意,关于x 的方程x 2-mx -2=0在x ∈[0,1]上有解,可得1-m -2≥0,从而求得m ≤-1;f (x )=log 2(x 2-2mx +12)在x ∈[1,+∞)上单调递增,可得⎩⎪⎨⎪⎧m ≤1,1-2m +12>0,解得m <34.根据“綈p ”为真命题,“p ∨q ”为真命题,可知p 假q 真,所以实数m 的取值范围为(-1,34).11.{-1}解析 因为x +a ≥0, 所以M ={x |x ≥-a }.又log 2(x -1)<1,所以0<x -1<2, 所以1<x <3, 所以N ={x |1<x <3}. 所以∁U N ={x |x ≤1或x ≥3}.又因为M ∩(∁U N )={x |x =1或x ≥3},所以a =-1. 12.(-∞,-2]∪[-2,2)解析 ∵sin x +cos x =2sin(x +π4)≥-2,∴当r (x )是真命题时,m <- 2.当s (x )为真命题时,x 2+mx +1>0恒成立,有Δ=m 2-4<0,∴-2<m <2. ∵r (x )∧s (x )为假,r (x )∨s (x )为真, ∴r (x )与s (x )一真一假,∴当r (x )为真,s (x )为假时,m <-2,同时m ≤-2或m ≥2,即m ≤-2; 当r (x )为假,s (x )为真时,m ≥-2,且-2<m <2,即-2≤m <2. 综上,实数m 的取值范围是m ≤-2或-2≤m <2.。

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》真题汇编含答案解析

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》真题汇编含答案解析

【高中数学】数学《集合与常用逻辑用语》复习资料(1)一、选择题1.已知集合(){}2||lg 4A x y x ==-,{|B x y ==,则A B =I ( )A .{}|12x x <<B .{}|12x x ≤<C .{}|13x x 剟D .{}|23x x -<…【答案】B 【解析】 【分析】根据对数函数和二次函数的性质,求得集合,A B ,再结合集合交集的运算,即可求解. 【详解】由题意,集合(){}2|lg 4(2,2),{|[1,3]A x y x B x y ==-=-===,所以{|12}A B x x =≤<I . 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中根据函数的定义域的定义,正确求解集合,A B 是解答的关键,着重考查了推理与计算能力.2.下列命题是真命题的是( )A .若平面α,β,γ,满足αγ⊥,βγ⊥,则//αβ;B .命题p :x R ∀∈,211x -≤,则p ⌝:0x R ∃∈,2011x -≤;C .“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件;D .命题“若()110xx e -+=,则0x =”的逆否命题为:“若0x ≠,则()110xx e -+≠”.【答案】D 【解析】 【分析】根据面面关系判断A ;根据否定的定义判断B ;根据充分条件,必要条件的定义判断C ;根据逆否命题的定义判断D. 【详解】若平面α,β,γ,满足αγ⊥,βγ⊥,则,αβ可能相交,故A 错误; 命题“p :x R ∀∈,211x -≤”的否定为p ⌝:0x R ∃∈,2011x ->,故B 错误;p q ∨为真,说明,p q 至少一个为真命题,则不能推出p q ∧为真;p q ∧为真,说明,p q都为真命题,则p q ∨为真,所以“命题p q ∨为真”是“命题p q ∧为真”的必要不充分条件,故C 错误;命题“若()110xx e -+=,则0x =”的逆否命题为:“若0x ≠,则()110xx e -+≠”,故D 正确; 故选D 【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.3.14a =-是函数2()1f x ax x =--有且仅有一个零点的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】 【分析】将14a =-代入函数证明充分性,取0a =得到不必要,得到答案. 【详解】当14a =-时,2211()11042f x x x x ⎛⎫=---=-+= ⎪⎝⎭,2x =-,充分性; 当0a =时,()10f x x =--=,1x =-,一个零点,故不必要. 故选:A . 【点睛】本题考查了充分不必要条件,函数零点,意在考查学生的推断能力.4.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.5.集合{}|12A x x =-<,1393x B x ⎧⎫=<<⎨⎬⎩⎭,则A B I 为( ) A .()1,2 B .()1,2-C .()1,3D .()1,3-【答案】B 【解析】 【分析】计算得到{}13A x x =-<<,{}12B x x =-<<,再计算A B I 得到答案. 【详解】18{}13x x =-<<,{}139123x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, 故()1,2A B =-I . 故选:B . 【点睛】本题考查了集合的交集运算,意在考查学生的计算能力.6.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分.【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.7.“0a =”是“函数x a y e -=为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】C 【解析】解析:若0a =,则||x y e =是偶函数,“0a =”是“函数x a y e -=为偶函数”的充分条件;若函数x ay e-=为偶函数,则对称轴为0x =,即0x a ==,则“0a =”是“函数x ay e-=为偶函数”的必要条件,应选答案C .8.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( ) A .(1,3) B .(-∞,-1) C .(-1,1) D .(-3,1)【答案】C 【解析】 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A ∩B =(-1,1). 【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.9.已知x ,y R ∈,则“x y <”是“1xy<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】x y <,不能得到1x y <, 1xy<成立也不能推出x y <,即可得到答案. 【详解】 因为x ,y R ∈,当x y <时,不妨取11,2x y =-=-,21xy=>, 故x y <时,1xy<不成立, 当1xy<时,不妨取2,1x y ==-,则x y <不成立, 综上可知,“x y <”是“1xy<”的既不充分也不必要条件, 故选:D 【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.10.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】 【分析】根据题意得到充分性,验证得出不必要,得到答案.【详解】,当时,,充分性;当,取,验证成立,故不必要.故选:. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.11.如图,在四面体ABCD 中,截面PQMN 是正方形,现有下列结论:①AC BD ⊥②AC ∥截面PQMN③AC BD =④异面直线PM 与BD 所成的角为45o 其中所有正确结论的编号是( ) A .①③ B .①②④ C .③④ D .②③④【答案】B 【解析】 【分析】由线线平行和垂直的性质可判断①,由线面平行的判定定理和性质定理可判断②,由平行线分线段成比例可判断③,由异面直线所成角的定义可判断④. 【详解】Q 截面PQMN 是正方形,PQ MN ∴//,又MN ⊂Q 平面ADC ,PQ ⊄平面ADC ,PQ ∴//平面ADC ,PQ ⊂Q 平面ABC ,平面ABC I 平面ADC AC =PQ AC ∴//,同理可得PN BD //由正方形PQMN 知PQ PN ⊥,则AC BD ⊥,即①正确; 由PQ AC //,PQ ⊂平面PQMN ,AC ⊄平面PQMN , 得AC //平面PQMN ,则②正确; 由PQ AC //,PQ MN //,得AC MN //, 所以AC ADMN DN=, 同理可证BD ADPN AN=, 由正方形PQMN 知PN MN =,但AN 不一定与DN 相等,则AC 与BD 不一定相等,即③不正确;由PN BD //知MPN ∠为异面直线PM 与BD 所成的角, 由正方形PQMN 知45MPN ∠=︒,则④正确. 故选:B.【点睛】本题考查命题的真假判断,主要是空间线线、线面的位置关系,考查推理能力,属于中档题.12.“方程22175x y m m +=--的曲线是椭圆”的一个必要不充分条件是( )A .“6m =”B .“67m <<”C .“57m <<”D .“57m <<”且“6m ≠”【答案】C 【解析】 【分析】由椭圆的定义可列出m 满足的不等式组,从而求出m 的取值范围,再结合选项选出必要不充分条件. 【详解】因为方程22175x y m m +=--的曲线是椭圆,则由椭圆的定义可知:705075m m m m ->⎧⎪->⎨⎪-≠-⎩,解得:57m <<且6m ≠,所以“方程22175x y m m +=--的曲线是椭圆”的充要条件为“57m <<且6m ≠”,Q “57m <<”推不出“57m <<且6m ≠”,反之可推出,所以“57m <<”是方程“22175x y m m +=--的曲线是椭圆”的必要不充分条件.所以“方程22175x y m m +=--的曲线是椭圆”的必要不充分条件是:“57m <<”.故选:C . 【点睛】本题考查必要不充分条件的判断,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意利用集合的关系进行解题.13.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.14.设x ∈R ,则“03x <<”是“12x -<” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】解绝对值不等式12x -<求得x 的取值范围.然后根据两者的范围判断正确选项. 【详解】由12x -<,得212x -<-<,解得13x -<<,()0,3是()1,3-的子集,故“03x <<”是“12x -<”的充分而不必要条件.故选A. 【点睛】本小题主要考查绝对值不等式的解法,考查充分、必要条件的判断,属于基础题.15.已知实数0a >,0b >,则“1a b >>”是“22a b e b e a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】构造函数()e 2(0)xf x x x =->,利用函数()f x 的单调性和充分与必要条件的定义判断即可. 【详解】e 2e 2e 2e 2a b a b b a a b +>+⇔->-,令()e 2(0)xf x x x =->,则()e 2xf x '=-, 令()0f x '=,解得ln 2x =,因为()'fx 为R 上的增函数,所以当()0,ln 2x ∈时,()'0f x <;当()ln 2,x ∈+∞时,()'0f x >,故()f x 在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以当1a b >>时,()()f a f b >,即22a b e a e b ->-, 即“1a b >>”是“e 2e 2a b b a +>+”的充分条件;但当0ln 2a b <<<时,有()()f a f b >,即22a b e a e b ->-, 所以当22a b e b e a +>+时,可得1a b >>或0ln 2a b <<<, 故“1a b >>”是“e 2e 2a b b a +>+”的不必要条件.综上可知“1a b >>”是“22a b e b e a +>+”的充分不必要条件. 故选:A 【点睛】本题考查充分与必要条件;解题的关键是构造函数()e 2(0)xf x x x =->,利用函数的单调性进行判断;属于中档题.16.已知集合{|21}A x x =->,2{|lg(2)}B x y x x ==-,则()R C A B =I ( ) A .(1,2) B .[1,2)C .(2,3)D .(0,1]【答案】B 【解析】 【分析】由绝对值不等式的解法和对数函数的性质,求得{3,1}A x x x =<或,{|02}B x x =<<,再根据集合的运算,即可求解.【详解】由题意,可求得{3,1}A x x x =<或,{|02}B x x =<<,则[]1,3R C A =, 所以()[)1,2R C A B ⋂=.故选B. 【点睛】本题主要考查了对数的混合运算,其中解答中涉及到绝对值不等式的求解,以及对数函数的性质,正确求解集合,A B 是解答的关键,着重考查了运算与求解能力,属于基础题.17.若命题“[1,2]x ∀∈,2210x ax -+>”是真命题,则实数a 的取值范围为( ) A .5,4⎛⎫-∞ ⎪⎝⎭B .5,4⎛⎫+∞⎪⎝⎭C .(,1)-∞D .(1,)+∞【答案】C 【解析】 【分析】分离参数,将问题转化为[]1,2x ∀∈,2111()22x a x x x+<=+恒成立,结合基本不等式求解最值即可得解. 【详解】若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则[]1,2x ∀∈,212x ax +>,即2111()22x a x x x+<=+恒成立,11()12x x+≥=Q,当且仅当1x =时等号成立, ∴1a <,即实数a 的取值范围是(,1)-∞. 故选:C . 【点睛】此题考查根据全称命题的真假求参数的取值范围,利用分离参数,将问题转化为求函数最值求解范围,需要注意等价变形.18.已知集合{}260A x x x =--≤,(){}lg 2B x y x ==-,则A B =I ( )A .[)2,2-B .[]2,3C .(]2,3D .()3,+∞【答案】C 【解析】 【分析】根据一元二次不等式的解答和对数函数的性质,求得,A B ,再结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}26023A x x x x x =--≤=-≤≤,(){}{}lg 22B x y x x x ==-=>,所以(]2,3A B =I . 故选:C . 【点睛】本题主要考查了集合运算及性质,其中解答中熟记集合交集的概念及运算是解答的关键,着重考查数学运算能力.19.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->;故“()0ab a b ->”是“0a b >>”的必要不充分条件,故选:B.【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.20.0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】 当,得a <1时方程有根.a <0时,,方程有负根,又a =1时,方程根为,所以选B .。

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》知识点训练附答案

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》知识点训练附答案

【高中数学】数学复习题《集合与常用逻辑用语》知识点练习一、选择题1.已知集合(){}2||lg 4A x y x ==-,{|B x y ==,则A B =I ( )A .{}|12x x <<B .{}|12x x ≤<C .{}|13x x 剟D .{}|23x x -<…【答案】B 【解析】 【分析】根据对数函数和二次函数的性质,求得集合,A B ,再结合集合交集的运算,即可求解. 【详解】由题意,集合(){}2|lg 4(2,2),{|[1,3]A x y x B x y ==-=-===,所以{|12}A B x x =≤<I . 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中根据函数的定义域的定义,正确求解集合,A B 是解答的关键,着重考查了推理与计算能力.2.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.3.已知集合307x A x x +⎧⎫=≤⎨⎬-⎩⎭,8,1B x x N N x ⎧⎫=∈∈⎨⎬+⎩⎭,则A B I =( )A .{}0,1,3B .{}3,2,1,3--C .{}0,1,3,7D .{}3,2,0,1,3--【答案】A 【解析】 【分析】根据分式不等式的解法和集合的表示方法,求解,A B ,再结合集合的交集运算,即可求解. 【详解】由题意,集合[)303,77x A xx +⎧⎫=≤=-⎨⎬-⎩⎭,8,1B x x N N x ⎧⎫=∈∈⎨⎬+⎩⎭{}0,1,3,7=,所以{}0,1,3A B =I . 故选:A . 【点睛】本题主要考查了集合交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集运算求解是解答的关键,着重考查了推理与运算能力.4.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C.本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.5.已知集合(){}2log 1,0A y y x x ==+≥,{}0.5,1xB y y x ==>,则A B =U ( )A .()0.5,+∞B .[)0,+∞C .()0,0.5D .[)0,0.5【答案】B 【解析】 【分析】根据指数函数和对数函数的性质,化简集合,A B ,再求并集即可. 【详解】0x ≥Q ,11x ∴+≥,2log (1)0x ∴+≥,故{|0}A y y =≥1111,0,|0222xx B y y ⎛⎫⎧⎫>∴<<∴=<<⎨⎬ ⎪⎝⎭⎩⎭Q1{|0}0{|0}2A B y y y y y y ⎧⎫∴⋃=≥⋃<<=≥⎨⎬⎩⎭故选B 【点睛】本题主要考查了集合并集的运算,属于中档题.6.“13m -<<”是“方程22117x y m m+=+-表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】方程22117x y m m+=+-表示椭圆解得13m -<<或37m <<,根据范围大小判断得到答案.【详解】因为方程22117x ym m +=+-表示椭圆,所以107017m m m m+>⎧⎪->⎨⎪+≠-⎩,解得13m -<<或37m <<. 故“13m -<<”是“方程22117x y m m+=+-表示椭圆”的充分不必要条件.故选:A本题考查了充分不必要条件,意在考查学生的推断能力.7.下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数; ②若0a b ⋅=r r,则0a =r r 或0b =r r;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题;④函数()x xe ef x x--=是偶函数.A .1B .2C .3D .4【答案】B 【解析】 【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论. 【详解】对于①中,当x =时,22x =为有理数,故①错误;对于②中,若0a b ⋅=r ,可以有a b ⊥r r,不一定要0a =r r 或0b =r r ,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题,其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-,且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称, 所以函数()x xe ef x x--=是偶函数,故④正确.综上,真命题的个数是2. 故选:B. 【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.8.已知集合{}2log 1A x x =>,{}1B x x =≥,则A B =U () A .(]1,2 B .()1,+∞C .()1,2D .[)1,+∞【答案】D 【解析】解出对数不等式可得集合A ,根据并集的运算即可得结果. 【详解】由{}{}2log 12A x x x x =>=>,{}1B x x =≥,则[)1,A B ∞=+U , 故选D. 【点睛】本题主要考查了对数不等式的解法,并集的概念,属于基础题.9.已知圆222:(1)(0)C x y r r +-=>,设:0p r <<q :圆C 上至多有2个点到直线30x y ++=p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】由圆C 的圆心为(0,1),得到其到直线30x y ++=的距离为“,r d ”法,分析当0r <<,r =r <<,r =r >时,圆C 上的点到直线30x y ++=的个数,再根据逻辑条件的定义求解.【详解】圆C 的圆心为(0,1),其到直线30x y ++=的距离为.当0r <<;当r =;r <时,圆上有2;当r =3;当r >,圆上有4.若圆C 上至多有2个点到直线30x y ++=的距离为2,则0r << 所以p 是q 的充要条件. 故选:C . 【点睛】本题主要考查逻辑条件以及直线与圆的位置关系,还考查了理解辨析的能力,属于中档题.10.“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”是“4a ≤-”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【分析】先分析“4a ≤-”能否推出“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”,这是必要性分析;然后分析“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”能否推出“4a ≤-”,这是充分性分析,然后得出结果. 【详解】若4a ≤-,则对称轴(1)32x a =-+≥>,所以()f x 在(,2]-∞上为单调递增, 取3a =-,则对称轴(1)2x a =-+=,()f x 在(,2]-∞上为单调递增,但4a >-,所以“()f x 在(,2]-∞上为单调递增”是“4a ≤- ”的必要不充分条件. 【点睛】充分、必要条件的判断,需要分两步:一方面要说明充分性是否满足,另一方面也要说明必要性是否满足.11.设全集{}0,1,2,3,4U =,集合{}0,1,2A =,集合{}2,3B =,则()C A B ⋃⋃=( ) A .∅ B .{}1,2,3,4C .{}2,3,4D .{}0,1,2,3,4【答案】C 【解析】 【分析】先求C A ⋃,再根据并集定义求结果. 【详解】因为{}3,4C A ⋃=,所以(){}2,3,4C A B ⋃⋃=,选C. 【点睛】本题考查集合的补集与并集,考查基本分析求解能力,属基本题.12.集合法:若A ⊆ B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.13.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.14.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab +≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.15.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件 【答案】C 【解析】分析:从两个方向去判断,先看tan tan 1A B >能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出tan tan 1A B >成立,从而必要性也不满足,从而选出正确的结果. 详解:由题意可得,在ABC ∆中,因为tan tan 1A B >,所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<, 所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.16.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.17.已知集合{}260A x x x =--≤,(){}lg 2B x y x ==-,则A B =I ( )A .[)2,2-B .[]2,3C .(]2,3D .()3,+∞【答案】C 【解析】根据一元二次不等式的解答和对数函数的性质,求得,A B ,再结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}26023A x x x x x =--≤=-≤≤,(){}{}lg 22B x y x x x ==-=>,所以(]2,3A B =I . 故选:C . 【点睛】本题主要考查了集合运算及性质,其中解答中熟记集合交集的概念及运算是解答的关键,着重考查数学运算能力.18.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)2【答案】D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.19.对于非零向量,,“”是“//a b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】 【详解】不一定有,若,则一定有//a b .考点:判断必要性和充分性.20.0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件【解析】当,得a<1时方程有根.a<0时,,方程有负根,又a=1时,方程根为,所以选B.。

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》专项训练解析附答案

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》专项训练解析附答案

数学《集合与常用逻辑用语》复习知识点(1)一、选择题1.已知集合(){}2||lg 4A x y x ==-,{|B x y ==,则A B =I ( )A .{}|12x x <<B .{}|12x x ≤<C .{}|13x x 剟D .{}|23x x -<…【答案】B 【解析】 【分析】根据对数函数和二次函数的性质,求得集合,A B ,再结合集合交集的运算,即可求解. 【详解】由题意,集合(){}2|lg 4(2,2),{|[1,3]A x y x B x y ==-=-===,所以{|12}A B x x =≤<I . 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中根据函数的定义域的定义,正确求解集合,A B 是解答的关键,着重考查了推理与计算能力.2.给出下列说法: ①定义在[],a b 上的偶函数()()24f x x a x b =-++的最大值为20;②“4x π=”是“tan 1x =”的充分不必要条件;③命题“()00,x ∃∈+∞,0012x x +≥”的否定形式是“()0,x ∀∈+∞,12x x+<”. 其中正确说法的个数为( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据偶函数的定义求得a 、b 的值,利用二次函数的基本性质可判断①的正误;解方程tan 1x =,利用充分条件和必要条件的定义可判断②的正误;根据特称命题的否定可判断③的正误.综合可得出结论. 【详解】对于命题①,二次函数()()24f x x a x b =-++的对称轴为直线42a x +=,该函数为偶函数,则402a +=,得4a =-,且定义域[]4,b -关于原点对称,则4b =, 所以,()24f x x =+,定义域为[]4,4-,()()max 420f x f ∴=±=,命题①正确; 对于命题②,解方程tan 1x =得()4x k k Z ππ=+∈,所以,tan 14x x π=⇒=,tan 14x x π=⇐=/,则“4x π=”是“tan 1x =”的充分不必要条件,命题②正确;对于命题③,由特称命题的否定可知③正确. 故选:D. 【点睛】本题以考查命题真假性的形式,考查函数奇偶性、二次函数最值,充分条件与必要条件 还有特称命题的否定,考查的知识点较多,能较好地检测考生的逻辑推理能力,属中等题.3.已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既非充分也非必要条件【答案】B 【解析】分析:由题意考查充分性和必要性即可求得最终结果. 详解:若//l αβα⊥,,则l β⊥,又//m β,所以l m ⊥;若l m ⊥,当//m β时,直线l 与平面β的位置关系不确定,无法得到//αβ. 综上,“//αβ”是“l m ⊥”的充分不必要条件. 本题选择B 选项.点睛:本题主要考查线面平行的判断定理,面面平行的判断定理及其应用等知识,意在考查学生的转化能力和计算求解能力.4.记全集{1,2,3,4,5,6,7,8},U =集合{1,2,3,5},{2,4,6},A=B =则图中阴影部分所表示的集合是( )A .{4,6,7,8}B .{2}C .{7,8}D .{1,2,3,4,5,6}【答案】C 【解析】 【分析】根据图像可知,阴影部分表示的是()U C A B ⋃,由此求得正确结论. 【详解】根据图像可知,阴影部分表示的是()U C A B ⋃,{}1,2,3,4,5,6A B =U ,故(){}7,8U C A B ⋃=,故选C.【点睛】本小题主要考查集合的并集和补集的概念即运算,考查图像所表示集合的识别,属于基础题.5.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( ) A .[5,)+∞ B .[2,)+∞C .[1,)+∞D .[0,)+∞【答案】A 【解析】 【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫⎪⎝⎭,所以2Z x y =+的最大值为5, 因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a的取值范围是5a ≤, 故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.6.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.“4sin 25α=”是“tan 2α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】直接利用二倍角的正弦公式换化简222sin cos 4sin 2sin cos 5ααααα==+,再利用齐次式进行弦切互化,得出22tan 4tan 15αα=+,即可求出tan α,即可判断充分条件和必要条件.【详解】 解:2242sin cos 4sin 25sin cos 5ααααα=⇔=+Q , 则22tan 4tan 2tan 15ααα=⇔=+或12,所以“4sin 25α=”是“tan 2α=”的必要不充分条件. 故选:B. 【点睛】本题考查必要不充分条件的判断,运用到三角函数中的二倍角正弦公式、同角平方关系、齐次式进行弦切互化.8.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m ≥-,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】试题分析:2:()e ln 21xp f x x x mx =++++在内单调递增,则,即在(0)+∞,上恒成立,令,由于,则, ,则,则,设的最大值为N ,则必有,则的取值范围是,所以p 是q 的必要不充分条件.考点:1.导数与函数的单调性;2.均值不等式;3.估算法;4.充要条件与集合的包含关系;9.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】【分析】根据题意得到充分性,验证得出不必要,得到答案.【详解】,当时,,充分性;当,取,验证成立,故不必要.故选:. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.10.给出如下四个命题:①“250x x -<”是“|1|1x -<”的充分而不必要条件;②命题“若1a =-,则函数2()21f x ax x =+-有一个零点”的逆命题为真命题; ③若p 是q 的必要条件,则p ⌝是q ⌝的充分条件;④在ABC V 中,“A B >”是“sin sin A B >”的既不充分也不必要条件. 其中正确的命题的个数是( ) A .1 B .2 C .3 D .4【答案】A 【解析】 【分析】利用四种命题的关系,充要条件,复合命题的真假,逐一判断即可得到结论. 【详解】①由250x x -<,解得05x <<;由|1|1x -<,解得02x <<; 所以,“250x x -<”是“|1|1x -<”的必要不充分条件,故命题①错误;②由函数()221f x ax x =+-有一个零点,当0a =时,函数()21f x x =-有一个零点,符合题意;当0a ≠时,由440a D =+?,解得1a ≥-,此时函数有一个零点; 所以,函数()221f x ax x =+-有一个零点的等价条件为1a ≥-,故命题“若1a =-,则函数()221f x ax x =+-有一个零点”的逆命题为“函数()221f x ax x =+-有一个零点,则1a =-”此命题为假命题,故命题②错误;③若p 是q 的必要条件,可得q p ⇒,则p q ⌝⇒⌝,所以p ⌝是q ⌝的充分条件,故命题③正确;④在ABC ∆中,若A B >,由于A B π+<,必有B A π<-,若A ,B 都是锐角,有sin sin A B >成立;若A ,B 之一为锐角,必是B 为锐角,此时有A π-不是钝角,由于A B π+<,必有2B A ππ<-≤,此时有()sin sin sin A A B π-=>;若sin sin A B >,当A 不是锐角时,有A B >,当A 为锐角时,仍可得到A B >;故“A B >”是“sin sin A B >”的充要条件,故命题④错误. 综上,命题③正确. 故选:A. 【点睛】本题以命题的真假判断为载体,考查了充要条件,复合命题等知识,难度不大,属于基础题.11.下面说法正确的是( )A .命题“若0α=,则cos 1α=”的逆否命题为真命题B .实数x y >是22x y >成立的充要条件C .设p ,q 为简单命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”也为假命题D .命题“0x R ∃∈,使得20010x x ++≥”的否定是“x R ∀∈,使得210x x ++≥”【答案】A 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】A. 命题“若0α=,则cos 1α=”是真命题,所以它的逆否命题为真命题,所以该选项正确;B. 由22x y >得x y >或x y <-,所以实数x y >是22x y >成立的充分不必要条件,所以该选项错误;C. 设p ,q 为简单命题,若“p q ∨”为假命题,则,p q 都是假命题,则“p q ⌝∧⌝”为真命题,所以该选项错误;D. 命题“0x R ∃∈,使得20010x x ++≥”的否定是“x R ∀∈,使得210x x ++<”,所以该选项错误. 故选:A 【点睛】本题主要考查四种命题及其关系,考查充要条件的判断,考查复合命题的真假的判断,考查特称命题的否定,意在考查学生对这些知识的理解掌握水平.12.“a <0”是“方程ax 2+1=0至少有一个负根”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 【答案】C 【解析】当0a <时,方程210ax +=,即21x a=-,故此一元二次方程有一个正根和一个负根,符合题意;当方程210ax +=至少有一个负数根时,a 不可以为0,从而21x a=-,所以0a <,由上述推理可知,“0a <”是方程“210ax +=至少有一个负数根”的充要条件,故选C.13.设x ∈R ,则“03x <<”是“12x -<” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】解绝对值不等式12x -<求得x 的取值范围.然后根据两者的范围判断正确选项. 【详解】由12x -<,得212x -<-<,解得13x -<<,()0,3是()1,3-的子集,故“03x <<”是“12x -<”的充分而不必要条件.故选A. 【点睛】本小题主要考查绝对值不等式的解法,考查充分、必要条件的判断,属于基础题.14.已知命题p :∀x ∈R ,x+1x≥2;命题q :∃x 0∈[0,]2π,使sin x 0+cos x 0=,则下列命题中为真命题的是 ( ) A .p ∨(⌝q ) B .p ∧(⌝q )C .(⌝p )∧(⌝q )D .(⌝p )∧q【答案】D 【解析】 【分析】先判断命题p,q 的真假,再判断选项命题的真假. 【详解】对于命题p :当x ≤0时,x+1x≥2不成立, ∴命题p 是假命题,则⌝p 是真命题;对于命题q :当x 0=4π时,sin x 0+cos x 0,则q 是真命题. 结合选项只有(⌝p )∧q 是真命题. 故答案为D. 【点睛】(1)本题主要考查全称命题特称命题的否定及其真假,考查复合命题的真假,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.15.下列四个命题中真命题的个数是①命题2“340,1?x x x --==-若则的逆否命题为2“1,340?x x x ≠---≠若则; ②命题“,cos 1?x R x ∀∈≤的否定是00“,cos 1?x R x ∃∈> ③命题“(,0)x ∃∈-∞,23x x <”是假命题.④命题[):1,,lg 0"p x x ∀∈+∞≥,命题2:,10q x R x x ∃∈++<,则p q ∨为真命题 A .1 B .2C .3D .4【答案】D 【解析】 【分析】根据四种命题的关系进行判断. 【详解】①命题2“340,1?x x x --==-若则的逆否命题为2“1,340?x x x ≠---≠若则,正确;②命题“,cos 1?x R x ∀∈≤的否定是00“,cos 1?x R x ∃∈>,正确; ③命题“(),0x ∃∈-∞,23x x <”是假命题,正确.④命题[):1,,lg 0"p x x ∀∈+∞≥,命题2:,10q x R x x ∃∈++<,p 是真命题, 则p q ∨为真命题,正确. 因此4个命题均正确. 故选D . 【点睛】本题考查四种命题及其关系,解题时可根据四种命题的关系进行判断①②,同指数函数的性质判断③,由或命题的真值表判断④,是解此类题的一般方法,本题属于基础题.16.若数列{}n a 的前n 项和为n S ,则“()12n n n a a S +=”是“数列{}n a 是等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】必要性显然成立;由()12n n n a a S +=,()111(1)2n n n a a S ---+=,得11(1)(2)n n n a a n a --=+-①,同理可得211(2)(3)n n n a a n a ---=+-②,综合①,②,得122n n n a a a --=+,充分性得证,即可得到本题答案. 【详解】必要性显然成立;下面来证明充分性, 若()12n n n a a S +=,所以当2n …时,()111(1)2n n n a a S ---+=,所以()()1112(1)n n n a n a a n a a -=+--+,化简得11(1)(2)n n n a a n a --=+-①,所以当3n …时,211(2)(3)n n n a a n a ---=+-②, ①-②得()122(2)(2)n n n n a n a a ---=-+,所以122n n n a a a --=+,即数列{}n a 是等差数列,充分性得证,所以“()12n n n a a S +=”是“数列{}n a 是等差数列”的充要条件.故选:C. 【点睛】本题主要考查等差数列的判断与证明的问题,考查推理能力,属于中等题.17.已知集合{}260A x x x =--≤,(){}lg 2B x y x ==-,则A B =I ( )A .[)2,2-B .[]2,3C .(]2,3D .()3,+∞【答案】C 【解析】 【分析】根据一元二次不等式的解答和对数函数的性质,求得,A B ,再结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}26023A x x x x x =--≤=-≤≤,(){}{}lg 22B x y x x x ==-=>,所以(]2,3A B =I . 故选:C . 【点睛】本题主要考查了集合运算及性质,其中解答中熟记集合交集的概念及运算是解答的关键,着重考查数学运算能力.18.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】【分析】由余弦函数的单调性找出cos cos A B <的等价条件为A B >,再利用大角对大边,结合正弦定理可判断出“cos cos A B <”是“sin sin A B >”的充分必要条件.【详解】Q 余弦函数cos y x =在区间()0,π上单调递减,且0A π<<,0B π<<,由cos cos A B <,可得A B >,a b ∴>,由正弦定理可得sin sin A B >.因此,“cos cos A B <”是“sin sin A B >”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.19.对于非零向量,,“”是“//a b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】【详解】 不一定有,若,则一定有//a b .考点:判断必要性和充分性.20.已知命题:p 函数()20.5log 2y x x a =++的定义域为R ,命题:q 函数()52x y a =--是减函数.若p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,则实数a 的取值范围是( )A .1a ≤B .12a <<C .2a <D .1a ≤或2a ≥【答案】A【解析】【分析】由题意知p 为假命题,q 为真命题.由p 为假命题,即:220x x a ++>不恒成立,故4401a a ∆=-≥⇒≤ . q 为真命题,即: 5212a a ->⇒<.由此便可得出答案.【详解】由p q ∨为真命题,p q ∧为假命题,p ⌝为真命题,得p 为假命题,q 为真命题. 由p :函数()20.5log 2y x x a =++为假命题得,220x x a ++>在R 上不恒成立.即4401a a ∆=-≥⇒≤.由:q 函数()52x y a =--是减函数,即:()52xy a =-是增函数,即5212a a ->⇒<.a .两者取交集得:1故选:A【点睛】本题主要考查逻辑联结词“或”、“且”、“非”,属于中档题目.。

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》易错题汇编含答案解析

高考数学压轴专题(易错题)备战高考《集合与常用逻辑用语》易错题汇编含答案解析

【最新】数学《集合与常用逻辑用语》专题解析一、选择题1.给出如下四个命题:①“250x x -<”是“|1|1x -<”的充分而不必要条件;②命题“若1a =-,则函数2()21f x ax x =+-有一个零点”的逆命题为真命题; ③若p 是q 的必要条件,则p ⌝是q ⌝的充分条件;④在ABC V 中,“A B >”是“sin sin A B >”的既不充分也不必要条件. 其中正确的命题的个数是( ) A .1 B .2 C .3 D .4【答案】A 【解析】 【分析】利用四种命题的关系,充要条件,复合命题的真假,逐一判断即可得到结论. 【详解】①由250x x -<,解得05x <<;由|1|1x -<,解得02x <<; 所以,“250x x -<”是“|1|1x -<”的必要不充分条件,故命题①错误;②由函数()221f x ax x =+-有一个零点,当0a =时,函数()21f x x =-有一个零点,符合题意;当0a ≠时,由440a D =+?,解得1a ≥-,此时函数有一个零点; 所以,函数()221f x ax x =+-有一个零点的等价条件为1a ≥-,故命题“若1a =-,则函数()221f x ax x =+-有一个零点”的逆命题为“函数()221f x ax x =+-有一个零点,则1a =-”此命题为假命题,故命题②错误;③若p 是q 的必要条件,可得q p ⇒,则p q ⌝⇒⌝,所以p ⌝是q ⌝的充分条件,故命题③正确;④在ABC ∆中,若A B >,由于A B π+<,必有B A π<-,若A ,B 都是锐角,有sin sin A B >成立;若A ,B 之一为锐角,必是B 为锐角,此时有A π-不是钝角,由于A B π+<,必有2B A ππ<-≤,此时有()sin sin sin A A B π-=>;若sin sin A B >,当A 不是锐角时,有A B >,当A 为锐角时,仍可得到A B >; 故“A B >”是“sin sin A B >”的充要条件,故命题④错误. 综上,命题③正确. 故选:A. 【点睛】本题以命题的真假判断为载体,考查了充要条件,复合命题等知识,难度不大,属于基础题.2.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据直线平行的等价条件,求出m 的值,结合充分条件和必要条件的定义进行判断即可. 【详解】当m=1时,两直线方程分别为直线l 1:x+y ﹣1=0,l 2:x+y ﹣2=0满足l 1∥l 2,即充分性成立,当m=0时,两直线方程分别为y ﹣1=0,和﹣2x ﹣2=0,不满足条件. 当m≠0时,则l 1∥l 2⇒32211m m m --=≠-, 由321m mm -=得m 2﹣3m+2=0得m=1或m=2, 由211m -≠-得m≠2,则m=1, 即“m=1”是“l 1∥l 2”的充要条件, 故答案为:A 【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线1110a x b y c ++=和直线2220a x b y c ++=平行,则12210a b a b -=且两直线不重合,求出参数的值后要代入检验看两直线是否重合.3.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.4.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( ) A .[5,)+∞ B .[2,)+∞C .[1,)+∞D .[0,)+∞【答案】A 【解析】 【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫⎪⎝⎭,所以2Z x y =+的最大值为5, 因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a的取值范围是5a ≤, 故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.5.已知命题:,sin cos 10p x R x x ∀∈++…;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-;则下列命题中是真命题的是( ) A .p B .()p q ∨⌝C .()p q ⌝∧D .p q ∧【答案】C 【解析】 【分析】由辅助角公式化简命题p ,利用特殊值判断命题p 为假命题;根据直线与圆相切的性质,结合点到直线距离公式,可求得m 的值,判断出命题q 为真命题.即可由复合命题真假判断选项. 【详解】命题:,sin cos 10p x R x x ∀∈++≥由辅助角化简可得sin cos 114x x x π⎛⎫++=++ ⎪⎝⎭,可知当34x π=-104x π⎛⎫++< ⎪⎝⎭,故p 为假;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-若直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切,则d == 即|1|4d m =+=,解得3m =或5m =-,故q 为真, 故()p q ⌝∧为真, 故选:C. 【点睛】本题考查了三角函数式的化简,根据直线与圆位置关系求参数的值,充分必要条件的判定,复合命题真假的判断,综合性强,属于中档题.6.已知命题:p m ∃∈R ,10+<m ,命题:q x ∀∈R ,210x mx ++>恒成立,若p ,q 至少有一个是假命题,则实数m 的取值范围是( ) A .[)2,1-- B .(],2-∞-C .[]2,1--D .[)1,-+∞【答案】B 【解析】 【分析】根据题意可判断命题p 为真命题,所以可得命题q 必定为假命题,进而得到参数的取值范围; 【详解】因为p ,q 中至少有一个为假命题,而命题:p m ∃∈R ,10+<m 为真命题; 所以命题q 必定为假命题,所以2410m ∆=-⨯≥,解得2m ≤-或2m ≥.又命题:p m ∃∈R ,10+<m 为真命题,所以1m <-,于是2m ≤-. 故选:B. 【点睛】本题考查全称命题真假性的判断、复合命题真假性求参数取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.7.已知实数0a >,0b >,则“1a b >>”是“22a b e b e a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】构造函数()e 2(0)xf x x x =->,利用函数()f x 的单调性和充分与必要条件的定义判断即可. 【详解】e 2e 2e 2e 2a b a b b a a b +>+⇔->-,令()e 2(0)xf x x x =->,则()e 2xf x '=-, 令()0f x '=,解得ln 2x =,因为()'fx 为R 上的增函数,所以当()0,ln 2x ∈时,()'0f x <;当()ln 2,x ∈+∞时,()'0f x >,故()f x 在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增, 所以当1a b >>时,()()f a f b >,即22a b e a e b ->-, 即“1a b >>”是“e 2e 2a b b a +>+”的充分条件;但当0ln 2a b <<<时,有()()f a f b >,即22a b e a e b ->-, 所以当22a b e b e a +>+时,可得1a b >>或0ln 2a b <<<, 故“1a b >>”是“e 2e 2a b b a +>+”的不必要条件.综上可知“1a b >>”是“22a b e b e a +>+”的充分不必要条件. 故选:A 【点睛】本题考查充分与必要条件;解题的关键是构造函数()e 2(0)xf x x x =->,利用函数的单调性进行判断;属于中档题.8.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.9.给出下列说法: ①定义在[],a b 上的偶函数()()24f x x a x b =-++的最大值为20;②“4x π=”是“tan 1x =”的充分不必要条件;③命题“()00,x ∃∈+∞,0012x x +≥”的否定形式是“()0,x ∀∈+∞,12x x+<”. 其中正确说法的个数为( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据偶函数的定义求得a 、b 的值,利用二次函数的基本性质可判断①的正误;解方程tan 1x =,利用充分条件和必要条件的定义可判断②的正误;根据特称命题的否定可判断③的正误.综合可得出结论. 【详解】对于命题①,二次函数()()24f x x a x b =-++的对称轴为直线42a x +=,该函数为偶函数,则402a +=,得4a =-,且定义域[]4,b -关于原点对称,则4b =,所以,()24f x x =+,定义域为[]4,4-,()()max 420f x f ∴=±=,命题①正确;对于命题②,解方程tan 1x =得()4x k k Z ππ=+∈,所以,tan 14x x π=⇒=,tan 14x x π=⇐=/,则“4x π=”是“tan 1x =”的充分不必要条件,命题②正确;对于命题③,由特称命题的否定可知③正确. 故选:D. 【点睛】本题以考查命题真假性的形式,考查函数奇偶性、二次函数最值,充分条件与必要条件 还有特称命题的否定,考查的知识点较多,能较好地检测考生的逻辑推理能力,属中等题.10.给出下列命题,则假命题的个数是( )①若,,a b c ∈R ,则“a b >”的充要条件是“22ac bc >”;②给定两个命题p ,q ,p ⌝是q 的必要不充分条件,则p 是q ⌝的充分不必要条件; ③设,x y R ∈,若7x y +≠,则3x ≠或4y ≠;④命题“若0m >,则方程2230x x m +-=有实数根”的否命题.( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】当0c =时,22ac bc >不成立,反过来,若22ac bc >,则可得a b >,即可判断①;利用原命题与逆否命题的关系可判断②③,写出否命题即可判断④. 【详解】若a b >,当0c =时,22ac bc >不成立,反过来,若22ac bc >,则可得a b >,故22ac bc >是a b >的充分不必要条件,故①错误;若p ⌝是q 的必要不充分条件,由原命题与逆否命题的等价性可知,q ⌝是p 的必要不充分条件,即p 是q ⌝的充分不必要条件,故②正确;若7x y +≠,则3x ≠或4y ≠的逆否命题为若3x =且4x =,则7x y +=,显然逆否命 题为真命题,则原命题也为真命题,故③正确;若0m >,则方程2230x x m +-=有实数根的否命题为若0m ≤,则方程2230x x m +-=无实根,显然是假命题,因为0m =时,方程就有实根,故④错误. 故选:C【点睛】本题考查判断命题的真假,涉及到充分条件、必要条件、四种命题之间的关系,考查学生的逻辑推理能力,是一道中档题.11.某个命题与自然数n 有关,且已证得“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立 D .当6n =时,该命题成立【答案】C 【解析】 【分析】写出命题“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断. 【详解】由逆否命题可知,命题“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”的逆否命题为“假设当()1n k k N *=+∈时该命题不成立,则当n k =时该命题也不成立”,由于当7n =时,该命题不成立,则当6n =时,该命题也不成立,故选:C. 【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.12.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2 D .-1或2【答案】C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.13.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30;③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x ∀∈+>R ”. 其中错误说法的个数为( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..14.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件. 【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B. 【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.15.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.16.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.17.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.18.给出下列四个结论:①若()f x 是奇函数,则()2f x 也是奇函数;②若()f x 不是正弦函数,则()f x 不是周期函数;③“若3πθ=,则sin 2θ=.”的否命题是“若3πθ≠,则sin 2θ≠.”; ④若p :11x≤;q :ln 0x ≥,则p 是q 的充分不必要条件. 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B【解析】【分析】根据题意,逐一分析,即可判断得出结论.【详解】解:①若()f x 是奇函数,有()()f x f x -=-,则()()22f x f x -=-,所以()2f x 也是奇函数,①正确;②若()f x 不是正弦函数,而()f x 可以是余弦函数,是周期函数,所以②错误; ③根据否命题的定义可知:对原命题的条件和结论都否定,可知③正确; ④中,由p :11x≤,解得0x <或1x ≥;由q :ln 0x ≥,解得1x ≥, 则p 是q 的必要不充分条件,故④错误.综上可知,正确结论的个数为2个.故答案为:B.【点睛】 本题考查命题真假的判断,涉及定义法判断函数的奇偶性、周期函数、否命题以及充分必要条件的定义等知识.19.“1a <-”是“直线30ax y +-=的倾斜角大于4π”的() A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】【分析】设直线30ax y +-=的倾斜角为θ,则tan a θ=-,由“1a <-”,可得4πθ>,再举特例34πθ=,可得由“直线30ax y +-=的倾斜角大于4π” 不能得到“1a <-”,即可得解.【详解】解:设直线30ax y +-=的倾斜角为θ,则tan a θ=-,若“1a <-”,则tan 1a θ=->,即4πθ>,即由“1a <-”能推出“直线30ax y +-=的倾斜角大于4π”, 若“直线30ax y +-=的倾斜角大于4π”,不妨令34πθ=, 则3tan 14a π=-=,则不能得到“1a <-”, 即“1a <-”是“直线30ax y +-=的倾斜角大于4π”的充分而不必要条件, 故选A.【点睛】 本题考查了直线的斜率与倾斜角、充分必要条件,重点考查了逻辑推理能力,属基础题.20.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4练 集合与常用逻辑用语中的易错题 训练目标 解题步骤的严谨性,转化过程的等价性.
训练题型 集合与常用逻辑用语中的易错题.
解题策略
(1)集合中元素含参数,要验证集合中元素的互异性;(2)子集关系转化时先考虑空集;(3)参数范围问题求解时可用数轴分析,端点处可单独验证.
一、选择题
1.若集合A ={x ∈R |ax 2
+ax +1=0}中只有一个元素,则a 等于( )
A .4
B .2
C .0
D .0或4 2.已知集合A ={-1,12
},B ={x |mx -1=0},若A ∩B =B ,则所有实数m 组成的集合是( ) A .{-1,0,2}
B .{-12,0,1}
C .{-1,2}
D .{-1,0,12} 3.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( )
A .(-∞,-1]
B .[1,+∞)
C .[-1,1]
D .(-∞,-1]∪[1,+∞)
4.(2017·烟台质检)已知命题p :∃x ∈R ,mx 2+2≤0;q :∀x ∈R ,x 2-2mx +1>0.若p ∨q
为假命题,则实数m 的取值范围是( )
A .[1,+∞)
B .(-∞,-1]
C .(-∞,-2]
D .[-1,1] 5.下列说法不正确的是( )
A .命题“∃x 0∈R ,x 20-x 0-1<0”的否定是“∀x ∈R ,x 2-x -1≥0”
B .命题“若x >0且y >0,则x +y >0”的否命题是假命题
C .命题“∃a ∈R ,使方程2x 2+x +a =0的两根x 1,x 2满足x 1<1<x 2”和命题“函数f (x )= log 2(ax -1)在[1,2]上单调递增”都为真
D .△ABC 中,A 是最大角,则sin 2B +sin 2C <sin 2A 是△ABC 为钝角三角形的充要条件
6.满足条件{1,2}
M ⊆{1,2,3,4,5}的集合M 的个数是( ) A .3
B .6
C .7
D .8
7.下列有关命题的说法中错误的是( )
A .若“p 或q ”为假命题,则p ,q 均为假命题
B .“x =1”是“x ≥1”的充分不必要条件
C .“cos x =12”的必要不充分条件是“x =π3
” D .若命题p :“∃x 0∈R ,x 20≥0”,则命题綈p 为“∀x ∈R ,x 2
<0”
8.已知命题p :函数f (x )=2ax 2-x -1(a ≠0)在(0,1)内恰有一个零点;命题q :函数y =x 2-a 在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )
A .(1,+∞)
B .(-∞,2]
C .(1,2]
D .(-∞,1]∪(2,+∞)
二、填空题
9.(2016·江西赣州十二县(市)期中联考)设集合M ={-1,0,1},N ={a ,a 2},若M ∩N =N ,则a 的值是________.
10.已知命题p :关于x 的方程x 2-mx -2=0在x ∈[0,1]上有解;命题q :f (x )=log 2(x 2-2mx +12
)在x ∈[1,+∞)上单调递增.若“綈p ”为真命题,“p ∨q ”为真命题,则实数m 的取值范围为____________.
11.已知全集为U =R ,集合M ={x |x +a ≥0},N ={x |log 2(x -1)<1},若M ∩(∁U N )={x |x =1或x ≥3},则a 的取值范围是________.
12.(2016·安阳月考)已知两个命题r (x ):sin x +cos x >m ,s (x ):x 2
+mx +1>0.如果对∀x ∈R ,r (x )∧s (x )为假,r (x )∨s (x )为真,那么实数m 的取值范围为________________.
答案精析
1.A [①当a =0时,1=0显然不成立;②当a ≠0时,由Δ=a 2-4a =0,得a =4或a =0(舍).综上可知a =4.选A.]
2.A [由A ∩B =B ,得B ⊆A .若B =∅,则m =0.若B ={-1},得-m -1=0,
解得m =-1.若B ={12},则12
m -1=0,解得m =2. 综上,m 的取值集合是{-1,0,2}.]
3.C [由P ∪M =P ,得M ⊆P .又∵P ={x |x 2≤1}={x |-1≤x ≤1},∴-1≤a ≤1.故选C.]
4.A [∵p ∨q 为假,∴p ,q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题, 得∀x ∈R ,mx 2+2>0,∴m ≥0.
由q :∀x ∈R ,x 2-2mx +1>0为假,
得∃x ∈R ,x 2-2mx +1≤0.
∴Δ=(-2m )2-4≥0,得m 2≥1,
∴m ≤-1或m ≥1.∴m ≥1.]
5.C [因为2x 2+x +a =0的两根x 1,x 2满足x 1<1<x 2的充要条件是2+1+a <0,所以a <-3,当a <-3时,函数f (x )=log 2(ax -1)在[1,2]上无意义.故选C.]
6.C [M 中含三个元素的个数为3,M 中含四个元素的个数也是3,M 中含5个元素的个数只有1个,因此符合题意的共7个.]
7.C [对于A ,根据真值表知正确;对于B ,由于x =1可以推出x ≥1,但x ≥1不一定能
推出x =1,故正确;对于D ,由特称命题的否定形式知正确;对于C ,“x =π3
”应为“cos x =12
”的充分不必要条件.] 8.C [若命题p 为真,
则⎩⎪⎨⎪⎧ 1+8a ≥0,f ?0?·f ?1?=-1·?2a -2?<0,
得a >1.
若命题q 为真,则2-a <0,得a >2,
故由p 且綈q 为真命题,得1<a ≤2.]
9.-1
解析 因为集合M ={-1,0,1},N ={a ,a 2},M ∩N =N ,又a 2≥0,所以当a 2
=0时,a =0,此时N ={0,0},不符合集合元素的互异性,故a ≠0;当a 2=1时,a =±1,a =1时,N ={1,1},不符合集合元素的互异性,故a ≠1,a =-1时,此时N ={-1,1},符合题意.故a =-1.
10.(-1,34
) 解析 根据题意,关于x 的方程x 2-mx -2=0在x ∈[0,1]上有解,可得1-m -2≥0,从而求得m ≤-1;f (x )=log 2(x 2-2mx +12)在x ∈[1,+∞)上单调递增,可得⎩
⎪⎨⎪⎧ m ≤1,1-2m +12>0, 解得m <34
.根据“綈p ”为真命题,“p ∨q ”为真命题,可知p 假q 真, 所以实数m 的取值范围为(-1,34
). 11.{-1}
解析 因为x +a ≥0,
所以M ={x |x ≥-a }.
又log 2(x -1)<1,所以0<x -1<2,
所以1<x <3,
所以N ={x |1<x <3}.
所以∁U N ={x |x ≤1或x ≥3}.
又因为M ∩(∁U N )={x |x =1或x ≥3},所以a =-1.
12.(-∞,-2]∪[-2,2)
解析 ∵sin x +cos x =2sin(x +π4)≥-2,∴当r (x )是真命题时,m <- 2. 当s (x )为真命题时,x 2+mx +1>0恒成立,有Δ=m 2-4<0,∴-2<m <2.
∵r (x )∧s (x )为假,r (x )∨s (x )为真,
∴r (x )与s (x )一真一假,
∴当r (x )为真,s (x )为假时,m <-2,同时m ≤-2或m ≥2,即m ≤-2;
当r (x )为假,s (x )为真时,m ≥-2,且-2<m <2,即-2≤m <2.
综上,实数m 的取值范围是m ≤-2或-2≤m <2.。

相关文档
最新文档