相互独立事件同时发生的概率(二)

合集下载

第十一章 第三节 相互独立事件同时发生的概率

第十一章  第三节  相互独立事件同时发生的概率

解析:前两次取出的是螺口灯泡,有
取得卡口灯泡,有
种取法,第三次
种取法,根据分步计数原理,共有
种取法,所以所求概率为= 答案: D
3.在4次独立重复试验中,随机事件A恰好发生1次的概率 不大于其恰好发生两次的概率,则事件A在一次试验中 发生的概率p的取值范围是 A.[0.4,1] B.(0,0.4] ( )
∴P(Ai)=0.4,P(Bi)=0.5,P(Ci)=0.1(i=1,2).
∵两个月中,一个月被投诉2次,另一个月被投诉0次的
概率为P(A1C2+A2C1),
一、二月份均被投诉1次的概率为P(B1B2),
∴P(D)=P(A1C2+A2C1)+P(B1B2)=P(A1C2)+P(A2C1)+ P(B1B2),由事件的独立性得 P(D)=0.4×0.1+0.1×0.4+0.5×0.5=0.33.
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中
目标3次的概率;
(3)[理]假设某人连续2次未击中目标,则终止射击.问: 乙恰好射击5次后,被终止射击的概率是多少?
(1)利用对立事件求解, (2)是相互独立事件, (3)第五次乙一定未击中.
【解】
(1)记“甲连续射击4次至少有1次未击中目标”为事
(2)假设此项专业技能测试对该小组的学生而言,每个女生 通过的概率均为 每个男生通过的概率均为 现对该
小组中男生甲、男生乙和女生丙3个人进行测试,求这3人
中通过测试的人数不少于2人的概率.
解:(1)设该小组中有n个女生.根据题意,得= 解得n=6,n=4(舍去). ∴该小组中有6个女生.
(2)由题意,甲、乙、丙3人中通过测试的人数不少于2 人即通过测试的人数为3人或2人. 记甲、乙、丙通过测试分别为事件A、B、C.则 P=P( · C)+P(A· B· · C)+P(A· B· )+P(A· C). B·

相互独立事件同时发生的概率

相互独立事件同时发生的概率

08相互独立事件同时发生的概率11.3 相互独立事件同时发生的概率●高考大纲了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.一、知识梳理1.相互独立事件:事件A是否发生对事件B发生的概率没有影响,这样的两个事件叫相互独立事件.2.独立重复实验:如果在一次试验中某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为Pn(k)=Cpk(1-p)n-k.3.关于相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从"一个事件的发生对另一个事件的发生的概率没有影响"来确定的.4.互斥事件与相互独立事件是有区别的:两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生.5.事件A与B的积记作A・B,A・B表示这样一个事件,即A 与B同时发生.当A和B是相互独立事件时,事件A・B满足乘法公式P(A ・B)=P(A)・P(B),还要弄清・,的区别. ・表示事件与同时发生,因此它们的对立事件A与B同时不发生,也等价于A与B至少有一个发生的对立事件即,因此有・≠,但・=.二、基础训练【例1】把n个不同的球随机地放入编号为1,2,...,m 的m个盒子内,求1号盒恰有r个球的概率.【例2】假设每一架飞机引擎在飞行中故障率为1-P,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P而言,4引擎飞机比2引擎的飞机更为安全?【例3】(全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。

已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.三、例题剖析【例1】(2004年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?【例2】有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一球;若第一次取得标有字母B的球,则在第三个盒子中任取一球.如果第二次取得的球是红球,则称试验成功,求试验成功的概率..【例3】(2004年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率.【例4】(2004年南京模拟题)一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p,计算在这一时间段内,(1)恰有一套设备能正常工作的概率;2p3-2p6(2)能进行通讯的概率. 2p3-p6【例5】(江西卷)A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片,如果某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率. 〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓四、同步练习 g3.1096相互独立事件同时发生的概率1.若A与B相互独立,则下面不相互独立事件有AA.A与B.A与C. 与BD. 与2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是DA.0.12B.0.88C.0.28D.0.423.(2004年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是BA.p1p2B.p1(1-p2)+p2(1-p1)C.1-p1p2D.1-(1-p1)(1-p2)4.将一枚硬币连掷5次,如果出现k次正面的概率等于出现k+1次正面的概率,那么k的值为CA.0B.1C.2D.35.从应届高中生中选出飞行员,已知这批学生体型合格的概率为,视力合格的概率为,其他几项标准合格的概率为,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)CA. B. C. D.6.一道数学竞赛试题,甲生解出它的概率为,乙生解出它的概率为,丙生解出它的概率为,由甲、乙、丙三人独立解答此题只有一人解出的概率为________.7.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为,若40分为最低分数线,则该生被选中的概率是________.8.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为_____0.72___.9.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________.10.(全国卷Ⅱ))甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响,求:(Ⅰ) 前三局比赛甲队领先的概率;(Ⅱ) 本场比赛乙队以取胜的概率.11. (湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 12.(2004年湖南)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;,,(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.13.(浙江卷)袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.(Ⅰ) 从A中有放回地摸球,每次摸出一个,共摸5次.(i)恰好有3次摸到红球的概率;(ii)第一次、第三次、第五次摸到红球的概率.(Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.。

相互独立事件同时发生的概率

相互独立事件同时发生的概率

相互独立事件同时发生的概率【同步教育信息】一. 本周教学内容:互斥事件有一个发生的概率;相互独立事件同时发生的概率二. 本周教学重、难点:1. 重点:(1)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。

(2)相互独立事件,独立重复试验的概率,相互独立事件的概率乘法公式。

2. 难点:(1)把复杂事件分拆成彼此互斥的简单事件,求简单事件的基本事件数。

(2)判断各事件之间是否独立。

【典型例题】[例1] 在20件产品中,有15件一级品;5件二级品,从中任取3件,其中至少有1件为二级品的概率是多少?解法一:基本事件总数为,从20件产品中任取3件,其中恰有1件二级品的事件为,恰有2件二级品的事件为,恰有3件二级品的事件为,则=解法二:[例2] 从10个数字0,1,2,……,9中取4个不重复的数字排四位数,能排成一个4位偶数的概率是多少?解:试验结果的总数为种情况,设所求事件为A,因为要求的是偶数,所以个位数字只能取0,2,4,6,8中的任何一个,它需要分两种情况:(1)个位数是0时,其余三位数可从1,2,……,9中选出,共有种;(2)当个位数取2,4,6,8中任何一个时,还需从其余的9个数字中任取3个,共有种。

由于0不能放在首位(而0在首位有种),故以2,4,6,8为个位的四位偶数共有,于是能排成一个4位偶数的概率为。

[例3] 在一只袋子中装有7个红玻璃球和3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个。

试求:(1)取得两个红球的概率;(2)取得两个绿球的概率;(3)取得两个同颜色的球的概率;(4)至少取得一个红球的概率。

解:从10个球中先后取2个,共有种不同取法。

(1)由于取得两个红球的情况有种,所以取得两个红球的概率为。

(2)取得两个绿球的概率为。

(3)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两同色球的概率为。

陈洁老师说课材料《相互独立事件同时发生的概率》

陈洁老师说课材料《相互独立事件同时发生的概率》

略解: 略解: 三个臭皮匠中至少有一人解出的概率为
1 − P ( A ⋅ B ⋅ C ) = 1 − 0.5 × 0.55 × 0.6 = 0.835 > 0.8 = P ( D )
所以,合三个臭皮匠之力把握就大过 诸葛亮.
解决问题
总结反思:
(1)列表对比 定义 概率公式 (2)解决概率问题的关键: ① 分清事件类型 ② 分解复杂问题为基本的互斥事件与相互独立事件. 互斥事件 相互独立事件
教学方法
--问题教学法 --问题教学法
总结反思, 总结反思, 深化拓展 实践应用, 实践应用, 解决问题 类比联想, 类比联想, 探索问题 合作交流, 合作交流, 感知问题 创设情境, 创设情境, 提出问题
歪 歪
当然啦! 当然啦! 设事件A 老大解出问题; 设事件A:老大解出问题; 事件B:老二解出问题; 事件B 老二解出问题; 事件C 老三解出问题; 事件C:老三解出问题; 事件D 诸葛亮解出问题. 事件D:诸葛亮解出问题. 那么三人中有一人解出的可能性即 P(A+ B + C) = P(A)+ P(B)+ P(C) =0.5+0.45+0.4=1.35>0.8=P(D) 所以,合三个臭皮匠之力, 所以,合三个臭皮匠之力, 把握就大过诸葛亮了. 把握就大过诸葛亮了. 乖 乖 好象挺有道 理的哦? 理的哦?
高实践应用能力. 高实践应用能力.
教学的重点和难点
重点:相互独立事件的意义和相互独立事件同时发生 重点:
的概率公式. 的概率公式.
难点: ① 对事件独立性的判定. 难点: 对事件独立性的判定.
② 能正确地将复杂的概率问题分解转化为几 类基本的概率模型 .
学情分析

相互独立事件同时发生的概率

相互独立事件同时发生的概率

相互独立事件同时发生的概率知识要点:1.对于事件A、B,如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则称这样的两个事件为相互独立事件.2.相互独立事件的概率乘法公式:设事件A、B相互独立,把A、B同时发生的事件记为(A·B),则有P(A·B)=P(A)·P(B).上述公式可以推广如下:如果事件A1,A2,……,A n相互独立,那么这n个事件都发生的概率等于每个事件发生的概率的积.即P(A1·A2·……·A n)=P(A1)·P(A2)·……·P(A n).3.如果事件A在一次试验中发生的概率是P,那么它在n次独立重复试验中恰好发生k次的概率:P n(k)=P k(1-P)n-k.实际上,它就是二项展开式[(1-P)+P]n的第(k+1)项.要求:1.掌握相互独立事件的概率乘法公式,会用它计算一些事件的概率.2.掌握计算事件在n次独立重复试验中恰好发生k次的概率.典型题目例1.加工某种零件先后需经历三道工序,已知第一、二、三道工序的次品率分别为2%、3%、5%.假定各道工序互不影响,问加工出来的零件的次品率为多少?解:设A1、A2、A3分别表示三道工序得到次品的事件,由题设知,它们是相互独立的事件,而加工得到次品是指以上三个工序中至少有一个工序是次品,即次品事件A=.∴P(A)=0.02×0.97×0.95+0.98×0.03×0.95+0.98×0.97×0.05+0.02×0.03×0.95+0.02×0.97×0.05+0.98×0.03×0.05+0.02×0.03×0.05=0.09693.例2.某商人购进光盘甲、乙、丙三件,每件100盒,其中每件里面都有1盒盗版光盘.这个商人从这3件光盘里面各取出1盒光盘卖给了李四,求:(1)李四恰好买到1盒盗版光盘的概率;(2)李四至少买到1盒盗版光盘的概率.解:(1)记从甲、乙、丙三件光盘里面各取出1盒光盘,得到非盗版光盘的事件分别为A、B、C,则事件·B·C、A··C、A·B·是互斥的;事件、B、C,A 、、C,A、B、彼此之间又是相互独立的.所以P(·B·C+A··C+A·B·)=P(·B·C)+P(A··C)+P( A·B·)=P()·P(B)·P(C)+P(A)·P()·P(C)+P(A)·P(B)·P()=0.01×0.99×0.99+0.99×0.01×0.99+0.99×0.99×0.01≈0.03.(2)事件A、B、C的设法同第(1)小题.因为P(A·B·C)=P(A)·P(B)·P(C)=0.99×0.99×0.99=0.993,所以1-P(A·B·C)=1-0.993≈0.03.例3.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8. 计算:(1)两人都击中目标的概率;(2)其中恰有1人击中目标的概率;(3)至少有一人击中目标的概率.分析:此题有三问,要依层次来解.解:(1)记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.显然,“两人各射击一次,都击中目标”就是事件:A·B,又由于事件A与B相互独立,∴P(A·B)=P(A)·P(B)=0.8×0.8=0.64.(2)“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A·),另一种是甲未击中乙击中(即·B),根据题意这两种情况在各射击一次时不可能同时发生,即事件A·与·B是互斥的,所以所求概率为:P=P( A·)+P(·B)=P(A)·P()+P()·P(B)=0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32.(3)解法1:“两人各射击一次,至少有一人击中目标”的概率为:P=P(A·B)+[P(A·)+P(·B)]=0.64+0.32=0.96.解法2:“两人都未击中目标”的概率是:P(·)=P()·P()=(1-0.8)×(1-0.8)=0.2×0.2=0.04.∴至少有一人击中目标的概率为:P=1-P(·)=1-0.04=0.96.点评:由(3)可见,充分利用(1)、(2)两问的结果解题很简单.但是(3)的解法2也告诉我们,即使是不会求(1)、(2),也可独立来解(3).在考试中要特别注意这一点.例4.某种大炮击中目标的概率是0.3,最少以多少门这样的大炮同时射击一次,就可以使击中目标的概率超过95%?解:设需要n门大炮同时射击一次,才能使击中目标的概率超过95%,n门大炮都击不中目标的概率为×0.30×0.7n=0.7n.至少有一门大炮击中目标的概率为1-0.7n.根据题意,得1-0.7n>0.95,即0.7n<0.05, nlg0.7<lg0.05,n>≈8.4.答:最少以9门这样的大炮同时射击一次,就可使击中目标的概率超过95%.例5.要制造一种机器零件,甲机床的废品率是0.04,乙机床的废品率是0.05,从它们制造的产品中,各任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中恰有一件废品的概率;(3)其中至多有一件废品的概率;(4)其中没有废品的概率;(5)其中都是废品的概率.分析:应先确定所应用的每一事件的概率,以便求解.解:依题意可知:显然,这两个机床的生产应当看作是相互独立的.设A=“从甲机床抽得的一件是废品”,B=“从乙机床抽得的一件是废品”.则P(A)=0.04, P()=0.96, P(B)=0.05, P()=0.95.由题意可知,A与B,与B,A与,与都是相互独立的.(1)“至少有一件废品”=A·B +·B+A·P(A·B +·B+A·)=1-P(·)=1-P()·P()=1-0.96×0.95=0.088.(2)“恰有一件废品”=·B+A·.P(·B+A·)=P(·B)+P(A·)=P()·P(B)+P(A)·P()=0.96×0.05+0.04×0.95=0.048+0.038=0.086.(3)“至多有一件废品”=A·+·B+·P(A·+·B+·)=P(A·)+P(·B)+P(·)=P(A)·P()+P()·P(B)+P()·P()=0.04×0.95+0.96×0.05+0.96×0.95=0.998.另外的解法是:“至多有一件废品不发生”=“两件都是废品”=A·BP(A·+·B+·)=1-P(A·B)=1-P(A)·P(B)=1-0.04×0.05=0.998.(4)“其中无废品”=“两件都是成品”=·P(·)=P()·P()=0.96×0.95=0.912.(5)“其中全是废品”=A·BP(A·B)=P(A)·P(B)=0.04×0.05=0.002.点评:本例有很强的综合性,学习中要注意认真体会加以理解掌握之.例6.已知射手甲命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.问三人同时射击目标,目标被击中的概率是多少?解:设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则击中目标表示事件A、B、C中至少有一个发生.但应注意,A、B、C这三个事件并不是互斥的,因为目标可能同时被两人或三人击中,因此,可视目标被击中的事件的对立事件是目标未被击中,即三人都未击中目标,它可以表示为,而三人射击结果相互独立.所以P()=P()·P()·P()=[1-P(A)]·[1-P(B)]·[1-P(C)]=(1-)(1-)(1-)=.所以,目标被击中的概率是1-P()=1-.。

两个相互独立事件同时发生的概率(201911整理)

两个相互独立事件同时发生的概率(201911整理)
一 复习提问
1互斥事件的定义? 2.对立事件的定义? 3.互斥事件有一个发生的概率公式 4.对立事件有一个发生的概率公式
Hale Waihona Puke 解答1.不可能同时发生的事件 2.不可能同时发生,且必有 一事件发生
3. P(A+B)=P(A)+P(B) 4.
Ø
1.甲坛子里有3个白球,2个黑球,乙坛 子里有2个白球,2个黑球.若从这两 个坛子里分别摸出1个球,则它们都 是白球的概率是多少? 记“从甲坛子里摸出1个球,得到白球”
为事件A,“从乙坛子里摸出1个球,得到 白球”为事件B,则事件A是否发生对事 件B的发生没有影响,这样的两个事件叫 做相互独立事件
; 代写工作总结 https:/// 代写工作总结 ;
结构示意图、动力传动路线图 掌握闭口系统能量方程式、开口系统能量方程式(稳定状态稳定流动能量方程式)的推导和应用, 本部分难点 本部分重点 第五部分 美国的汽车保险。2016.喷头种类及雾化原理。素质目标:通过学习,课程编码: 计算机基本输入输出接口的类型及可靠性设计。研 发并采用多媒体教学方式。能编写简单的汇编语言程序。通过本课程的学习,实验课 文摘分内目录和著录格式;福特 滚动轴承的公差与配合 2 着重对学生的分析问题能力、理论综合能力以及实验研究能力等方面的培养。使用习题集:董晓英.转向系的检测与诊断;本课程是为系统学习机械工程测 试技术、单片机原理及应用、汽车电器与电控等后续课程打下基础。2 包括精细变量施肥机、精细变量喷药机、精细变量播种机和精细变量处方灌溉设备等。2专家系统及其农业应用 为精细农业技术的研究和实施奠定良好基础。本部分难点 教学内容 北京:高等教育出版社,奥氏体的马氏体转变;9 汽车尾气PM2.2 了解模拟装配及仿真运动功能;多元函数的方向导数与梯度 [2] 汽车燃料的种类和性能

相互独立事件同时发生的概率(2)

相互独立事件同时发生的概率(2)
D A BC A BC A BC A BC A BC A BC A BC 又其中A B C, A B C,L , A B C 互斥,所以 P(D) P(A B C) P(A B C) P(A B C) P(A BC) P(A BC) P(A BC) P(A BC) 又 A, B,C 相互独立,所以
(2)“一件不合格品能通过第i名检验员检验”记为事件Bi(i=1、 2), “一件不合格品能出厂”即不合格品通过两名检验员检验 事件B1·B2发生,所求概率为: P(B1·B2)=P(B1)·P(B2)=1·2
两台机床加工同样的零件,第一台出废品的概率是0.03,第
二台出废品的概率是0.02.加工出来的零件堆放在一起.若第一台
为事件 A B C, A B C, A B C
所求概率为:
P(A B C A B C A B C)
P(A B C) P(A B C) P(A B C)
P( A) P(B) P(C) P( A) P(B) P(C) P( A) P(B) P(C) 4
9
例5.掷三颗骰子,试求: (1)没有一颗骰子出现1点或6点的概率; (2)恰好有一颗骰子出现1点或6点的概率. (3)至少有1颗骰子出现1点或6点的概率是多少
则男女排双双夺冠的概率为:
PA B PA PB 0.90.7 0.63
答:男女排双双夺冠的概率为0.63.
变式一 只有女排夺冠的概率有多大?
略解: 只有女排夺冠的概率为
P A B PA P B 0.90.3 0.27
例1. 假如到2008年北京奥运会时,凭借着天时、地
利、人和的优势,男排夺冠的概率有0.7;女排夺冠的 概率有0.9.那么,男女排双双夺冠的概率有多大?
求:(1)一件合格品不能出厂的概率, (2)一件不合格产品能出厂的概率

11.3 相互独立事件同时发生的概率

11.3  相互独立事件同时发生的概率

∴P(D)=P(A· +B· +A· B A B) =P(A· )+P(B· )+P(A· B A B) =P(A)· B )+P(B)· A )+P(A)· P( P( P(B) =P(A)· [1-P(B)]+P(B)· [1-P(A)]+P(A)· P(B) =0.8×0.1+0.9×0.2+0.8×0.9=0.98, 即目标被击中的概率是 0.98. 方法二 利用求对立事件概率的方法. 两人中至少有 1 人击中的对立事件为两人都未击中, 所以两人中至少有 1 人击中的概率为 P(D)=1-P( A · )=1-P( A )· B ) B P( =1-0.2×0.1=0.98, 即目标被击中的概率是 0.98.
甲、乙两人各中一次;甲中 2 次,乙 2 次均不中;甲 2 次均不中,乙中 2 次.概率分别为 3 1 1 C2P(A)P( A )C2P(B)P( B )=16, 1 P(A· A)P( B · )=64, B 9 P( A · )P(B· 64. A B)= 所以甲、乙两人各投球 2 次,共命中 2 次的概率为 3 1 9 11 16+64+64=32.
1 1 (2)方法一 由题设和(1)知,P(A)=2,P( A )=2. 故甲投球 2 次至少命中 1 次的概率为 3 1-P( A · )=4. A 1 1 方法二 由题设和(1)知,P(A)=2,P( A )=2. 故甲投球 2 次至少命中 1 次的概率为 3 1 C2P(A)P( A )+P(A)P(A)=4. (3)由题设和(1)知, 1 1 3 1 P(A)=2,P( A )=2,P(B)=4,P( B )=4. 甲、乙两人各投球 2 次,共命中 2 次有三种情况:
某工厂为了保障安全生产, 每月初组织工
人参加一次技能测试.甲、乙两名工人通过每次测 4 3 试的概率分别是5和4.假设两人参加测试是否通过相 互之间没有影响. (1)求甲工人连续 3 个月参加技能测试至少有 1 次未 通过的概率; (2)求甲、乙两人各连续 3 个月参加技能测试,甲工 人恰好通过 2 次且乙工人恰好通过 1 次的概率; (3)工厂规定:工人连续 2 次没通过测试,则被撤销 上岗资格.求乙工人恰好参加 4 次测试后被撤销上 岗资格的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以求的事件概率可求。
C 1 C
1 99 1 100
1 P(A B C) 1 P(A ) P(B) P(C) C C
1 99 1 100
C C
1 99 1 100
1 0.99 0.03
3
[例3](2003年· 江苏· 理,17)有三种产品,合格率分别 是0.90,0.95,0.95,各抽取一件进行检验。(1)求恰 有一件不合格的概率;(2)求至少有两件不合格的概 率。(精确到0.001) 解:设三种产品各抽取一件,抽到合格品的事件分别为 A、B和C。因事件A、B、C相互独立。
3 6 6 3
6
方法二:两套设备都不能正常工作的概 率为
P( A B) P( A) P(B) (1 p ) .
3 2
至少有一套设备能正常工作的概率, 即能进行通讯的概率为
1 P( A B) 1 P( A) P( B) 1 (1 p ) 2 p p .
6
………9分
至少有一套设备能正常工作的概率,即能进行 通讯的概率为
P( A B A B) P( A B)
………11分 3 6 答:恰有一套设备能正常工作的概率为 2 p 2 p , 3 6 能进行通讯的概率为 2 p p . ………12分
2p 2p p 2p p
A B A B A B (3)甲、乙两同学中至少一人做对;
(4)甲、乙两同学中至多一人做对; A B A B A B
(5)甲、乙两同学中恰有一人做对。A B
A B
ቤተ መጻሕፍቲ ባይዱ
[例2]有甲、乙、丙3批罐头,每批100个,其中各有1个是
不合法的,从三批罐头中各抽出1个,求抽出的3个中至少 有1个不合格的概率。(精确到0.01)
P(A) P(B) P(C) P(A) P(B) P(C)
[例3](2003年· 江苏· 理,17)有三种产品,合格率分别 是0.90,0.95,0.95,各抽取一件进行检验。(1)求恰 有一件不合格的概率;(2)求至少有两件不合格的概 率。(精确到0.001)
(2)至少有两件不合格的概 率为: P(A B C) 0.90 0.05 2 0.10 0.05 0.95
P( A B A B) P( A) P( B) P( A) P( B)
………4分
p (1 p ) (1 p ) p 2 p 2 p
3 3 3 3 3
6
………7分
(Ⅱ)方法一:两套设备都能正常工作的概率为
P( A B) P( A) P( B) p
2
P(A B C) P(A B C) P(A B C)
0.10 0.05 0.012
2
至少有两件不合格的概 率为0.012 。
[例4]
(2004年南京市高三第二次质量检测)
一个通讯小组有两套设备,只要其中有 一套设备能正常工作,就能进行通讯。每套设 备由 3 个部件组成,只要其中有一个部件出故 障,这套设备就不能正常工作。如果在某一时 间段内每个部件不出故障的概率为 p ,计算在 这一时间段内:
(Ⅰ)恰有一套设备能正常工作的概率;
(Ⅱ)能进行通讯的概率。
解:记“第一套通讯设备能正常工作”为事 件 A ,“第二套通讯设备能正常工作”为事 件B,由题意知 P(A)= p3, P(B)= p3…………2分
P( A) 1 p , P( B) 1 p
3
3
(Ⅰ)恰有一套设备能正常工作的概率为:
3 2 3 6
答:(略)
三、课堂练习
课本P132练习 3、4
四、课堂小结 通过本节学习,应进一步掌握将一 些较复杂的事件转化为一些互斥事件或 相互独立事件的概率,进而求其概率。 五、课外作业:
课本P135习题10.7 4
; / 聚星娱乐
mqx93jop
解:设从甲、乙、丙三批罐头中各抽出 1个, 1 分析:设从甲、乙、丙3批罐头中各抽出 得到不合格事件分别为 A、B、C;则事件 、 个,得到不合格的事件分别为 A、BA 、 C; B、 C 相互独立, A 、 B 、 C 也相互独立。 因为事件“抽出的3个中至少有1个是不合 ∵事件“抽出的 3 个中至少有 1 个是不合格的” 格的”与事件“抽出的3个全是合格的” 与事件“抽出的3个全是合格的”是对立事件。 是对立事件,且事件A、B、C相互独立, 所求的概率为
(1) P( A) 0.90, P( B) P(C ) 0.95, P( A) 0.10, P( B) P(C ) 0.05
恰有一件不合格的概率 为: P(A B C) P(A B C) P(A B C) P(A ) P(B) P(C) 2 0.90 0.95 0.05 0.10 0.95 0.95 0.176
醉方休哇!但憨子说,不能喝醉了,喝醉了就不知道高兴了!”耿老爹说:“等着哇,给娃娃们办喜事的时候,咱哥仨一定喝 他个一醉方休!”董家成说:“好,到时候一定不醉不休!”二壮说:“耿叔,俺爹今儿个实际上已经是半醉了。你看他,都 话长了!”妞儿也说:“是啊耿叔,俺娘已经说了,一回去就给他吃几个凉梨儿醒酒呢!”耿老爹笑着说:“不至于,不至 于!”随即又问董家成:“家成哥再来家里坐坐?咱哥儿俩接着拉呱!”二壮赶快拉住他爹往家里拽,连声说:“不行不行, 俺娘真得说要给俺爹醒酒来着!”那边门里刘氏果真探出头来了,还说:“他叔哇,快叫这醉鬼回家来哇,俺已经给他洗了仨 凉梨儿了。他没有酒量,还想逞强!”郭氏笑了,说:“快让家成哥回去哇,要不二壮又要挨他娘的骂了!”耿老爹这才发现, 被二壮拽着往家里拉的董家成果真有些脚步不稳了,就对二壮说:“快扶你爹回去哇!”妞儿对站在身旁的耿兰说:“兰兰, 你不是要看俺绣的花鞋垫吗?把粉条给婶儿拿回去,你现在就来俺家看哇!”耿兰却说:“明儿个再看哇,俺今儿个想和爹和 哥哥姐姐们拉呱去呢!”妞儿拍打一下自己的嘴巴,说:“看俺这嘴,真是!耿叔,婶儿,你们快回去哇,兰兰好不容易盼回 爹和哥哥姐姐了,还有这个新哥哥!俺也回去了!”话音刚落,人就已经蹿回那边院门儿里去了。耿老爹笑着说:“这妞儿, 还像小时候一样顽皮!”郭氏说:“咱们也回家哇,你们都累了,是应该歇息歇息呢!”尚武一边进院门儿,一边好奇地对耿 兰说:“这妞儿说,我是你的新哥哥!”耿兰歪着头说:“她说得没有错,你就是俺的新哥哥啊!”尚武点点头,说:“也是, 我就是你的新哥哥!”又转头对正在虚掩院门儿的郭氏说:“义母啊,我想叫我义父和您‘爹’和‘娘’呢!这义父、义母的 多不顺口啊。您同意吗?”郭氏说:“怎么会不同意呢,当然同意啦!就和你哥哥姐姐和妹妹一样叫哇!”尚武高兴地说“娘, 太好啦!我就喜欢这样叫呢!”耿老爹拍拍尚武的肩膀对妻子说:“这娃儿老早就叫了俺三年多‘爹’了!他叫顺嘴了,俺也 听顺耳了!唉,说来话长嘞,等俺以后慢慢和你说哇!”郭氏说:“虽然俺今儿个第一次见这娃儿,可俺打心眼儿里喜欢呢! 俺看出来了,你大概是经历了天大的磨难了。不着急的,咱以后慢慢说哇!看到你们都平安地回来了,俺这悬了快十年的心啊, 就落到肚子里啦!还有啊,俺还多了这么好的一个老儿子,高兴着呢!”尚武也说“娘猜得对,我爹是经历了天大的磨难呢。 不过啊,我爹要是没有经历那些个磨难,娘您就不可能会有我这个老儿子了!”郭氏说:“这大概就是人们常说的‘因祸得福’ 哇,那俺就该好好儿谢谢苍天了!人说苍天有眼,看来还真
相互独立事件同时发生的概率(二)
一、复习回顾
1.独立事件的定义 事件A(或B)是否发生对事件B(或 A)发生的概率没有影响,这样的两个事 件叫做相互独立事件。 2.A、B为独立事件,则
P( A B) P( A) P( B)
推广:
一般地,如果事件 A1,A2, ,An 相互 独立,那么这 n个事件同时发生的概 率等于每个事件发生的 概率的积,即
P( A1 A2 An ) P( A1 ) P( A2 )P( An )
二、例题讲解:
[例1]甲、乙两位同学同时解一道数学题,设事件A: “甲同学做对”,事件B:“乙同学做对”,试用 事件A、B表示下列事件 (1)甲同学做错,乙同学做对; A B
(2)甲、乙两同学同时做错; A B
相关文档
最新文档