圆周运动各种问题
圆周运动的实例及临界问题

圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R=90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大?(2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v2R=(2 000×10-2000×10290) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图12.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示) (1)向心力:F 合=mg tan_α(2)运动分析:F 合=mω2r =mω2l sin α(3)缆绳与中心轴的夹角α满足cos α=g ω2l. 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( )A .速度v A >vB B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mgtan θ,由F =F 合=mgtan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v = grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3 铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ解析 由牛顿第二定律F 合=m v 2R,解得F 合=mg tanθ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg ,则N =mg cos θ,内、外轨道对火车均无侧向压力,故C 正确,A 、B 、D 错误. 答案 C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A 运动的半径比B 的大,则( )A .A 所需的向心力比B 的大 B .B 所需的向心力比A 的大C .A 的角速度比B 的大D .B 的角速度比A 的大解析 小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F =mg tanθ=mω2l sin θ,θ越大,向心力F 越大,所以A 对,B 错;而ω2=gl cos θ=gh.故两者的角速度相同,C 、D 错.答案 A3.半径为R 的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A ,今给它一个水平初速度v 0=Rg ,则物体将( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .沿半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动答案 D解析 当v 0=gR 时,所需向心力F =m v 20R=mg ,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )A .m g 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg解析 空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg 与F垂直,故F 升=m 2g 2+F 2,又F =m v 2R ,联立解得F升=m g 2+v 4R2. 图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RD .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)解析 (1)物块做平抛运动,竖直方向有 H =12gt 2① 水平方向有x =v 0t ②联立①②两式得v 0=x g 2H =1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有 μmg =m v 20R ④ 联立③④得μ=v 20gR = 8.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5 A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg =m v 2R ,解得F N =mg +m v 2R,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来. (3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有m v 2m R=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则f a=mω2l=23kmg,选项D错误.答案AC3.[接触与脱离的临界问题]如图8所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=gl cos θ即ω0=gl cos θ=522 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.210.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误. 答案 BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误. 答案 C。
圆周运动多解问题

在此时间内筒转过的角度最小为 θ,筒转动最短时间 t2= π -θ d π -θ ωd ,由等时关系 t1= t2,得 = ,故 v= ,这是子 ω v ω π -θ 弹的最大速度; 若在 t1 时间内筒转过的角度为 2nπ + (π - θ) ,则 t2′ = 2nπ+ (π-θ) . ω d 2nπ+ (π-θ) 由 t1=t2′得 = v ω ωd 所以 v= (n= 0,1,2,… ). (2n+ 1)π- θ ωd 答案 (n=0,1,2,…) (2n+1)π-θ
本题的常见错误是认为圆盘转动一周时,小球恰 2h 2π g 好落在 B 点h 忽视了圆周运动的周期性,即 t1 这段时间内,只要 B 点转动 2π 的整数倍角度,小球都可以与 B 点相碰.
设小球在空中的飞行时间为 t1,初速度为 v0, 2h 圆盘的角速度为 ω,小球平抛时间 t1= g .小球水平方 R g 向分运动 v0t1=R,可得 v0= =R . t1 2h 正确解析 当 OB 再 次 与 v0 平行 时 ,圆 盘 运动 时间 t2 = nT(n = 2π 2h 2nπ 1,2,3,4,…),T= ω ,依题意 t1=t2, g = ω ,解得 ω 2g = nπ h (n=1,2,3,4,…).
答案 (1)R g 2h (2)nπ 2g h (n=1,2,3,4,…)
正本清源 (1)多解原因:因匀速圆周运动具有周期性,使得 前一个周期中发生的事件在后一个周期中同样可能发生,这 将造成多解. (2)多解问题模型:常涉及两个物体的两种不同的运动,其中 一个物体做匀速圆周运动,另一个物体做其他形式的运动 . 由于涉及两个物体的运动是同时进行的,因此求解的基本思 路是依据等时性建立等式求出待求量 .
跟踪训练 3 如图 10 所示,直径为 d 的纸筒以角速度 ω 绕垂直于纸面的 O 轴匀速转动(图示为截面).从枪口 射出的子弹沿直径穿过圆筒,在圆周 弹的速度.
考点01圆周运动的运动学问题

[考点01] 圆周运动的运动学问题1.描述圆周运动的物理量2.匀速圆周运动(1)定义:如果物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.1.对公式v =ωr 的理解 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 3.常见的传动方式及特点同轴转动皮带传动齿轮传动装置A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点角速度、周期相同线速度大小相等典例1(圆周运动物理量的分析和计算)(2023·罗平县·月考)小红同学在体验糕点制作“裱花”环节时,她在绕中心匀速转动的圆盘上放置一块直径8英寸(20 cm)的蛋糕,在蛋糕边缘每隔4 s 均匀“点”一次奶油,蛋糕转动一周正好均匀“点”上15点奶油.下列说法正确的是( )A .圆盘转动的转速为2π r/minB .圆盘转动的角速度大小为π30 rad/sC .蛋糕边缘的线速度大小为π3m/sD .蛋糕边缘的奶油半个周期内的平均速度为0 答案 B解析 由题意可知,圆盘转动的周期为T =15×4 s =60 s =1 min ,则圆盘转动的转速为1 r/min ,A 错误;圆盘转动的角速度为ω=2πT =2π60 rad/s =π30 rad/s ,B 正确;蛋糕边缘的线速度大小为v =rω=0.1×π30 m/s =π300 m/s ,C 错误;蛋糕边缘的奶油半个周期内的平均速度约为v=2r T 2=0.230 m/s =1150 m/s ,故D 错误. 典例2(圆周传动问题)(多选)如图所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三个轮的半径关系是r A =r C =2r B .若皮带不打滑,则A 、B 、C 三轮边缘上a 、b 、c 三点的( )A.角速度之比为2∶1∶2B.线速度大小之比为1∶1∶2C.周期之比为1∶2∶2D.转速之比为1∶2∶2 答案 BD解析 A 、B 两轮通过皮带传动,皮带不打滑,则A 、B 两轮边缘的线速度大小相等;B 、C 两轮固定在一起绕同一轴转动,则B 、C 两轮的角速度相等. a 、b 比较:v a =v b由v =ωr 得:ωa ∶ωb =r B ∶r A =1∶2 b 、c 比较:ωb =ωc由v =ωr 得:v b ∶v c =r B ∶r C =1∶2 所以ωa ∶ωb ∶ωc =1∶2∶2v a ∶v b ∶v c =1∶1∶2,A 错误,B 正确; 由ω=2πn 知,n a ∶n b ∶n c =1∶2∶2,D 正确; T =1n,故T a ∶T b ∶T c =2∶1∶1,C 错误.典例3(圆周运动的多解问题)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘L ,且对准圆盘上边缘的A 点水平抛出(不计空气阻力,重力加速度为g ),初速度为v 0,飞镖抛出的同时,圆盘绕垂直圆盘过盘心O 的水平轴匀速转动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A.d =L 2g v20B.ω=π(2n +1)v 0L (n =0,1,2,3…)C.v 0=ωd2D.ω2=g π2(2n +1)2d(n =0,1,2,3…)答案 B解析 依题意飞镖做平抛运动的同时,圆盘上A 点做匀速圆周运动,恰好击中A 点,说明A 正好在最低点被击中,平抛的时间t =Lv 0,可得ω=(2n +1)πt =π(2n +1)v 0L (n =0,1,2,3…),v 0=Lω(2n +1)π(n =0,1,2,3…),B 正确;平抛的竖直位移为d ,则d =12gt 2=12g (L v 0)2=gL 22v 20,故A 、C错误;ω2=π2(2n +1)2v 20L 2=π2(2n +1)2g2d (n =0,1,2,3…),故D 错误.1.火车以60 m/s 的速率驶过一段圆弧弯道,某乘客发现放在水平桌面上的指南针在10 s 内匀速转过了10°.在此10 s 时间内,火车( ) A .运动位移为600 m B .加速度为零 C .角速度约为1 rad/s D .转弯半径约为3.4 km 答案 D解析 由Δs =v Δt 知,弧长Δs =600 m 是路程而不是位移,A 错误;火车在弯道内做曲线运动,加速度不为零,B 错误;由10 s 内匀速转过10°知,角速度ω=ΔθΔt =10°360°×2π10 rad/s =π180 rad/s ≈0.017 rad/s ,C 错误;由v =rω知,r =v ω=60π180m ≈3.4 km ,D 正确. 2.如图所示为“南昌之星”摩天轮,它的转盘直径为153米,转一圈的时间大约是30分钟.乘客乘坐观光时,其线速度大约为( )A .5.0 m/sB .1.0 m/sC .0.50 m/sD .0.27 m/s答案 D解析 半径R =1532m ,周期T =30 min =1 800 s ,根据匀速圆周运动各物理量间的关系可得v =ωR =2πTR ,代入数据得v ≈0.27 m/s ,故选D.3.(2021·全国甲卷·15)“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50 r/s ,此时纽扣上距离中心 1 cm 处的点向心加速度大小约为( )A .10 m/s 2B .100 m/s 2C .1 000 m/s 2D .10 000 m/s 2答案 C解析 根据匀速圆周运动的规律,此时ω=2πn =100π rad/s ,向心加速度a =ω2r ≈1 000 m/s 2,故选C.4.(2023·泰州市·期中)甲、乙两物体都做匀速圆周运动,甲的转动半径为乙的一半,当甲转过60°时,乙在这段时间内正好转过45°,则甲、乙两物体的线速度大小之比为( ) A .1∶4 B .4∶9 C .2∶3 D .9∶16 答案 C解析 当甲转过60°时,乙在这段时间内正好转过45°,由角速度的定义式ω=ΔθΔt 有:ω1ω2=60°45°=43,甲的转动半径为乙的一半,根据线速度与角速度的关系式v =rω可得:v 1v 2=ω1r 1ω2r 2=43×12=23,故选项C 正确,A 、B 、D 错误. 5.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R 和r ,且R =3r ,A 、B 分别为两轮边缘上的点,则皮带运动过程中,关于A 、B 两点,下列说法正确的是( )A .向心加速度大小之比a A ∶aB =1∶3 B .角速度大小之比ωA ∶ωB =3∶1C .线速度大小之比v A ∶v B =1∶3D .在相同的时间内通过的路程之比为s A ∶s B =3∶1 答案 A解析由于两轮为皮带传动,A、B线速度大小相等,由a n=v2r可知,a n与r成反比,所以向心加速度大小之比a A∶a B=1∶3,故A正确,C错误;由ω=vr可知,ω与r成反比,所以角速度大小之比ωA∶ωB=1∶3,故B错误;由于A、B的线速度大小相等,在相同的时间内通过的路程相等,所以s A∶s B=1∶1,故D错误.6.(多选)(2023·辽宁省·质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,关于小齿轮边缘的A点和大齿轮边缘的B点,()A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.以上三个选项只有一个是正确的答案AC解析题图中三个齿轮边缘线速度相等,A点和B点的线速度大小之比为1∶1,由v=ωr 可得,线速度一定时,角速度与半径成反比,A点和B点角速度之比为3∶1,选项A、C 正确,选项B、D错误.7.如图所示是一辆自行车,A、B、C三点分别为自行车轮胎和前后两齿轮外沿上的点,其中R A=2R B=5R C,下列说法中正确的是()A.ωB=ωCB.v C=v AC.2ωA=5ωBD.v A=2v B答案C解析B轮和C轮是链条传动,v B=v C,根据v=ωR,得5ωB=2ωC,故A错误;由于A轮和C轮同轴,故两轮角速度相同,根据v=ωR,得v A=5v C,故B错误;因v A=5v C,v A=ωA R A,v C=v B=ωB R B,故v A=5v B,2ωA=5ωB,故C正确,D错误.8.某新型自行车,采用如图甲所示的无链传动系统,利用圆锥齿轮90°轴交,将动力传至后轴,驱动后轮转动,杜绝了传统自行车“掉链子”问题.如图乙所示是圆锥齿轮90°轴交示意图,其中A 是圆锥齿轮转轴上的点,B 、C 分别是两个圆锥齿轮边缘上的点,两个圆锥齿轮中心轴到A 、B 、C 三点的距离分别记为r A 、r B 和r C (r A ≠r B ≠r C ).下列有关物理量大小关系正确的是( )A.B 点与C 点的角速度:ωB =ωCB.C 点与A 点的线速度:v C =r Br A v AC.B 点与A 点的线速度:v B =r Ar B v AD.B 点和C 点的线速度:v B >v C 答案 B解析 B 点与C 点的线速度相等,由于r B ≠r C ,所以ωB ≠ωC ,故A 、D 错误;B 点的角速度与A 点的角速度相等,所以v B r B =v A r A ,即v B =r Br A v A ,故C 错误;B 点与C 点的线速度相等,所以v C =v B =r Br Av A ,故B 正确.9.(2022·南通市高一期末)如图所示为旋转脱水拖把,拖把杆内有一段长度为25 cm 的螺杆通过拖把杆下段与拖把头接在一起,螺杆的螺距(相邻螺纹之间的距离)d =5 cm ,拖把头的半径为10 cm ,拖把杆上段相对螺杆向下运动时拖把头就会旋转,把拖把头上的水甩出去. 某次脱水时,拖把杆上段1 s 内匀速下压了25 cm ,该过程中拖把头匀速转动,则( )A .拖把杆向下运动的速度为0.1π m/sB .拖把头边缘的线速度为π m/sC .拖把头转动的角速度为5π rad/sD .拖把头的转速为1 r/s 答案 B解析 拖把杆向下运动的速度v 2=lt=0.25 m/s ,故A 错误;拖把杆上段1 s 内匀速下压了25 cm ,则螺杆转动5圈,即拖把头的转速为n =5 r/s ,则拖把头转动的角速度ω=2πn =10π rad/s 拖把头边缘的线速度v 1=ωR =π m/s ,故B 正确,C 、D 错误.10.(2023·嘉兴市·期中)如图为车牌自动识别系统的直杆道闸,离地面高为1 m 的细直杆可绕O 在竖直面内匀速转动.汽车从自动识别线ab 处到达直杆处的时间为3.3 s ,自动识别系统的反应时间为0.3 s ;汽车可看成高1.6 m 的长方体,其左侧面底边在aa ′直线上,且O 到汽车左侧面的距离为0.6 m ,要使汽车安全通过道闸,直杆转动的角速度至少为( )A.π4 rad/sB.3π4 rad/sC.π6 rad/sD.π12 rad/s 答案 D解析 由题意可知,在汽车行驶至a ′b ′时,横杆上a ′上方的点至少要抬高1.6 m -1 m =0.6 m ,即横杆至少转过π4,所用时间为t =3.3 s -0.3 s =3 s ,则角速度ω=θt =π12 rad/s ,故选D.11.(多选)如图所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( )A.线速度大小之比为3∶3∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.周期之比为2∶3∶3 答案 AD解析 A 轮、B 轮靠摩擦传动,边缘点线速度相等,故v a ∶v b =1∶1,根据公式v =rω,有ωa ∶ωb =3∶2,根据ω=2πn ,有n a ∶n b =3∶2,根据T =2πω,有T a ∶T b =2∶3;B 轮、C轮是同轴转动,角速度相等,故ωb ∶ωc =1∶1,根据v =rω,有v b ∶v c =3∶2,根据ω=2πn ,有n b ∶n c =1∶1,根据T =2πω,有T b ∶T c =1∶1,联立可得v a ∶v b ∶v c =3∶3∶2,ωa ∶ωb ∶ωc=3∶2∶2,n a ∶n b ∶n c =3∶2∶2,T a ∶T b ∶T c =2∶3∶3,故A 、D 正确,B 、C 错误. 12.两个小球固定在一根长为L 的杆的两端,绕杆上的O 点做圆周运动,如图所示.当小球1的速度大小为v 1时,小球2的速度大小为v 2,则O 点到小球2的距离是( )A.L v 1v 1+v 2B.L v 2v 1+v 2C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2答案 B解析 两球在同一杆上,旋转的角速度相等,均为ω,设两球的转动半径分别为r 1、r 2,则r 1+r 2=L .又知v 1=ωr 1,v 2=ωr 2,联立得r 2=L v 2v 1+v 2,B 正确.13.(多选)如图所示,直径为d 的纸筒以角速度ω绕中心轴匀速转动,将枪口垂直指向圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,若忽略空气阻力及子弹自身重力的影响,则子弹的速度可能是( )A.dωπB.dω2πC.dω3π D.dω4π答案 AC解析 由题意知圆筒上只有一个弹孔,说明子弹穿过圆筒时,圆筒转过的角度应满足θ=(2k +1)π(k =0,1,2…),子弹穿过圆筒所用的时间t =d v =θω,则子弹的速度v =dω(2k +1)π(k =0,1,2…),故选项A 、C 正确.14.如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一小球,不计空气阻力,重力加速度为g ,要使球与盘只碰一次,且落点为B ,求小球的初速度v 及圆盘转动的角速度ω的大小.答案 Rg2h2n πg2h(n =1,2,3…) 解析 设球在空中运动时间为t ,此圆盘转过θ角,则 R =v t ,h =12gt 2故初速度大小v =R g 2hθ=n ·2π(n =1,2,3…) 又因为θ=ωt则圆盘角速度ω=n ·2πt=2n πg2h(n =1,2,3…).15.(多选)(2023·江西南昌·校考)如图所示,靠在一起的M 、N 两转盘靠摩擦传动,两盘均绕过圆心的竖直轴转动,M 盘的半径为r ,N 盘的半径R=2r ,A 为M 盘边缘上的一点,B 、C 为N 盘直径的两个端点,当O '、A 、B 、C 共线时(如图所示的位置),从O '的正上方P 点以初速度v 0地沿O O '方向水平抛出一小球,小球落至圆盘C 点,重力加速度为g ,则下列5r0,1,2),可以落0,1,2),可知当的角速度为M ω=.若小球抛出时到O 下落的时间2t =1,2,3),可以落在2,3)可知当的角速度为''M 2ωω==。
圆周运动问题汇总

圆周运动问题汇总一.传动装置问题1.同轴传动的各点角速度相同2.当皮带不打滑时,传动皮带、用皮带连接的两轮边沿上的各点线速度大小相等例1:如图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系r A=r C=2r B,若皮带不打滑,求A、B、C轮边缘的a、b、c三质点的角速度,线速度和向心加速度之比。
解析:由于b、c是同轴的物体,所以ωb=ωc,由于a、b是轮子边缘上的点,所以v a=v b,线速度与角速度的关系v=rω,则可以得到ωa:ωb:ωc=1:2:2,v a:v b:v c=1:1:2,a a:a b:a c=1:2:4二.转弯问题1.水平路面转弯由静摩擦力提供向心力2.倾斜路面转弯由重力和支持力的合力提供向心力例2:汽车甲和汽车乙质量相等,以相等的速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧,两车沿半径方向受到的摩擦力分别为f甲和f乙,以下说法正确的是A. f甲小于f乙B. f甲等于f乙C. f甲大于f乙D. f甲和f乙均与速率无关解析:因为在水平路面上转弯由静摩擦力提供向心力,根据向心力公式F=m v 2r可得 f甲小于f乙,所以选A项例3:高速行驶的竞赛汽车依靠摩擦力转弯是有困难的,所以竞赛场地的弯道处做成侧向斜坡,如果弯道半径为r,斜坡和水平方向成θ角,则汽车完全不依靠摩擦力转弯折速度大小为A.√grsinθB.√grcosθC.√grtanθD.√grtanθ解析:高速行驶的竞赛汽车完全不依靠摩擦力转弯时所需的向心力由重力和路面的支持力的合力提供,力图如图.根据牛顿第二定律得mg tanθ=m v 2r,可得v=√gr tanθ,所以选C项三.圆锥摆问题圆锥摆问题中物体所受的重力与弹力提供向心力例4:如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的CA a BbA.运动周期相同B.运动线速度大小相同C.运动角速度相同D.向心加速度大小相同解析:对其中一个小球受力分析,如图,受重力,绳子的拉力,由于小球做匀速圆周运动,故细线的拉力与重力的合力提供向心力;将重力与拉力合成,合力指向圆心,由几何关系得,细线的拉力T=mgcosθ,因θ不同,故T不同,故A错误.B、C、D合力F=mgtanθ ①;由向心力公式得到,F=mω2r ②;设绳子与悬挂点间的高度差为h,由几何关系,得:r=htanθ ③;由①②③三式得,ω=gh,与绳子的长度和转动半径无关,故C正确;由v=wr,两球转动半径不等,故B错误;由a=ω2r,两球转动半径不等,故D错误;故选:C.四、汽车过拱桥问题汽车过拱桥问题中物体所受的重力与弹力提供向心力例5:有一辆质量为1.2 t的小汽车驶上半径为50 m的圆弧形拱桥,如图所示。
圆周运动专题

圆周运动专题经典例题1. 基本概念、公式的理解和运用【例1】关于匀速圆周运动,下列说法正确的是( )A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变【例2】在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。
ωO60°30°AB图12. 传动带传动问题【例3】如图2所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑。
求:(1)=B C ωω: ;(2)=B C v v : ;(3)=B C a a : 。
C A B abO r A r B图2【例4】如下图所示,质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时求杆OA 和AB 段对球A 的拉力之比。
OF 1A BF 2F 2【例5】如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是( )A. 球A 的线速度必定大于球B 的线速度B. 球A 的角速度必定小于球B 的角速度C. 球A 的运动周期必定小于球B 的运动周期D. 球A 对筒壁的压力必定大于球B 对筒壁的压力αF NA G AB G BF N F AF B【例6】甲、乙两名滑冰运动员,kg M 80=甲,kg M 40=乙,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,如图5所示,两人相距0.9m ,弹簧秤的示数为9.2N ,下列判断中正确的是( )A. 两人的线速度相同,约为40m/sB. 两人的角速度相同,为6rad/sC. 两人的运动半径相同,都是0.45mD. 两人的运动半径不同,甲为0.3m ,乙为0.6m甲乙图53.匀速圆周运动的多解问题 【例7】如图13所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v ,并沿直径匀速穿过圆筒。
高考物理生活中的圆周运动题20套(带答案)含解析

则有
mvP=MvQ
解得
vP=1 m/s
对P、Q和弹簧组成的系统,由能量守恒定律有
解得
Ep=3 J
9.如图所示,将一质量m=0.1 kg的小球自水平平台顶端O点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A并沿斜面下滑,斜面底端B与光滑水平轨道平滑连接,小球以不变的速率过B点后进入BC部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2 m,斜面高H=15 m,竖直圆轨道半径R=5 m.取sin 53°=0.8,cos 53°=0.6,g=10 m/s2,求:
F=59.04N
由牛顿第三定律得:粘合体S对轨道的压力F′=59.04N,方向沿OB向下。
8.如图所示,在光滑水平桌面EAB上有质量为m=2 kg的小球P和质量为M=1 kg的小球Q,P、Q之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E处放置一质量也为M=1 kg的橡皮泥球S,在B处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、Q两小球被轻弹簧弹出,小球P与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q与弹簧分离后与桌面边缘的橡皮泥球S碰撞后合为一体飞出,落在水平地面上的D点。已知水平桌面高为h=0.2 m,D点到桌面边缘的水平距离为x=0.2 m,重力加速度为g=10 m/s2,求:
小物块经过B点时,有:
解得:
根据牛顿第三定律,小物块对轨道的压力大小是62N
(2)小物块由B点运动到C点,根据动能定理有:
在C点,由牛顿第二定律得:
代入数据解得:
根据牛顿第三定律,小物块通过C点时对轨道的压力大小是60N
(3)小物块刚好能通过C点时,根据
常见的圆周运动问题

常见的圆周运动问题[知识梳理]一.水平面内的匀速圆周运动1.物体在水平面内作匀速圆周运动,其所受的合外力提供向心力,故物体所受的水平合力即为__________。
竖直方向的合力为__________。
2.处理匀速圆周运动问题时,一要进行正确的受力分析,还要设法确定圆周运动的圆心和半径,这一点在磁场中尤其重要。
二.竖直平面内的圆周运动1.运动物体在竖直平面内作圆周运动,如果物体带电,且处在电磁场中,此时物体有可能作匀速圆周运动。
2.对没有物体支撑的小球(如小球系在细绳的一端、小球在圆轨道的内侧运动等)在竖直平面内作圆周运动过最高点的临界条件:绳子和轨道对小球无力作用,则若小球作圆周运动的半径为 R,它在最高点的临界速度为:V=__________。
3.对有物体支撑的小球(如球固定在杆的一端、小球套在圆环上或小求在空心管内的运动)在竖宜平面内作圆周运动过最高点的,临界速度为:V=__________。
[能力提高]火车转弯处的铁轨一般是外轨略高于内轨,试结合作图分析这样铺轨的原因,并说出火车转弯时要求按规定速度行驶的道理。
[典型例题][例1]长为L的轻绳一端系一质量为M的小球,以另一端为圆心,使小球恰好能在竖直平面内做圆周运动,则小球通过最高点时,下列说法正确的是A.绳中张力恰好为mg B.小球加速度恰好为gC.小球速度恰好为零 D.小球所受重力恰好为零[例2]长L=0.5m、质量可忽略的杆,其下端固定在O点,上端连接着一个零件A,A的质量为m=2kg,它绕O点做圆周运动,如图所示,在A点通过最高点时,求在下列两种情况下杆受的力:(1)A的速率为1m/s;(2)A的速率为4m/s。
[例3]如图所示,一种电动夯的结构为:在固定于夯上的电动机的转轴上固定一杆,杆的另一端固定一铁块。
工作时电动机带动杆与铁块在竖直平面内匀速转动,则当铁块转至最低点时,夯对地面将产生很大的压力而夯实地面。
设夯的总质量为M,铁块的质量为m,杆的质量不计。
圆周运动大全(附答案)

圆周运动练习题1班别姓名学号一.单项选择题1.关于作匀速圆周运动的物体的向心加速度,下列说法正确的是:()A.向心加速度的大小和方向都不变B.向心加速度的大小和方向都不断变化C.向心加速度的大小不变,方向不断变化D.向心加速度的大小不断变化,方向不变2.对于做匀速圆周运动的质点,下列说法正确的是:()A.根据公式a=v2/r,可知其向心加速度a与半径r成反比B.根据公式a=ω2r,可知其向心加速度a与半径r成正比C.根据公式ω=v/r,可知其角速度ω与半径r成反比D.根据公式ω=2πn,可知其角速度ω与转数n成正比3.机械手表的时针、分针、秒针的角速度之比为()A.1:60:360B.1:12:360C.1:12:720D.1:60:72004.甲、乙两个物体分别放在广州和北京,它们随地球一起转动时,下面说法正确的是()A.甲的线速度大,乙的角速度小B.甲的线速度大,乙的角速度大C.甲和乙的线速度相等D.甲和乙的角速度相等5.一个做匀速圆周运动的物体,如果半径不变,而速率增加到原来速率的三倍,其向心力增加了64牛顿,那么物体原来受到的向心力的大小是()A.16NB.12NC.8ND.6N6.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有()A.车对两种桥面的压力一样大B.车对平直桥面的压力大C.车对凸形桥面的压力大D.无法判断7.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:()A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用8.如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球受力说法正确的是()A.只受重力B.只受拉力C.受重力、拉力和向心力D.受重力和拉力.钟表上时针、分针都在做圆周运动 A .分针角速度是时针的12倍 B .时针转速是分针的1/60 C .若分针长度是时针的1.5倍,则端点线速度是时针的1.5倍 D .分针角速度是时针的60倍10.如图,一物块以1m/s 的初速度沿曲面由A 处下滑,到达较低的B 点时速度恰好也是1m/s ,如果此物块以2m/s 的初速度仍由A 处下滑,则它达到B 点时的速度A .等于2m/sB .小于2m/sC .大于2m/sD .以上三种情况都有可能11.如图所示,一水平平台可绕竖直轴转动,平台上有a 、b 、c 三个物体,其质量之比m a ︰m b ︰m c =2︰1︰1,它们到转轴的距离之比r a ︰r b ︰r c =1︰1︰2,三物块与平台间的动摩擦因数相同,且最大静摩擦力均与其压力成正比,当平台转动的角速度逐渐增大时,物块将会产生滑动,以下判断正确的是 A .a 先滑B .b 先滑C .c 先滑D .a 、c 同时滑12.一个小球在竖直环内至少做N 次圆周运动,当它第(N -2)次经过环的最低点时,速度是7m/s ;第(N -1)次经过环的最低点时,速度是5m/s ,则小球在第N 次经过环的最低点时的速度一定满足 ( ) A .v >1m/s B .v =1m/s C .v <1m/s D .v =3m/s13.甲、乙两球分别以半径R 1、R 2做匀速圆周运动,M 甲=2M 乙,圆半径R 甲=R 乙/3,甲球每分钟转30周,乙球每分钟转20周,则甲、乙两球所需向心力大小之比为 A .2:3 B .3:2 C .3:1 D .3:414.在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过A .g mr m M +B .g mr m M +C .g mr m M -D .mrMg二.多项选择题15.一质点做圆周运动,速度处处不为零,则 ( ) A.任何时刻质点所受的合力一定不为零 C.质点速度的大小一定不断地变化 B.任何时刻质点的加速度一定不为零D.质点速度地方向一定不断地变化ωm16.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:( )A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力17.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘 上的一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火 根据牛顿第二定律: 车 转 F合=F向=mg·tanθ=m 弯 问 v0= gR tan 题
当火车以车速v0转弯时,车轮缘与内外轨无侧压力;
V>v0时,外轨受挤压对轮缘有向内的侧压力F向=F+F侧
v<v0时,F侧
斜 抛 运 动
1.斜抛运动的处理方法 竖直方向匀变速直线运动,水平方向匀速直线运动 斜抛运动也可看作从曲线的最高点往两边分解的二个平 抛运动对接起来的运动.故在处理时,前半部分可采用逆向 思维从曲线的最高点往回看,用平抛运动的研究方法处 理.后半部分自然按平抛运动方法处理.由此看出斜抛运动 具有对称性. 2.由于斜抛运动只有重力做功,机械能守恒,故可采用 机械能守恒解答.0
6
(2)当 V
3 gL 2
时,求绳对物体的拉力 θ
O
圆 周 运 动 转 盘 的 临 界 问 题
在一水平面放置的圆盘上放有一劲度系数为k的弹 簧,如图所示,弹簧的一端固定于轴 O 上,另一端 挂质量为m 的物体A, 物体与盘面间的动摩擦因数 为μ,开始时弹簧未发生形变,长度为R ,求: (1)盘的转速n0 多大时,物体A开始滑动? (2)当转速达到 2n0 时,弹簧的伸长量Δx 是多少?
A
O
R
P60 例4例5
小结:关键是要准确的找出临界态; 常见的有出现最大静摩擦力,弹力为 零(绳子或接触面)
圆 周 运 动 的 周 期 性 问 题
如右图所示,半径为R的水平圆板绕竖直轴做 匀速圆周运动,当半径OB转到某一方向时,在圆
板中心正上方h处以平行于OB方向水平抛出一小球,
若小球直接落到B点.求:
圆 周 运 动 绳 子 的 临 界 问 题
如图所示,一个光滑的圆锥体固定在水平桌面上, 其轴线沿竖直方向,母线与轴线之间的夹角 θ=300 ,一条长为L的绳(质量不计),一端固 定在圆锥体的顶点O处,另一端拴着一个质量为m 的小物体(物体可看作质点),物体以速率v绕 圆锥体的轴线做水平匀速圆周运动。 (1)当 V 1 gL 时,求绳对物体的拉力。
火 车 转 弯 问 题
1、内外轨道一样高时
FN
F
G a:此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹 力。 b:外轨对轮缘的弹力F提供向心力。 c:由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质 量很大,故轮缘和外轨间的相互作用力很大,易损坏铁轨。
火 2、为了使铁轨不容易损坏,在转弯处使外轨略 车 高于内轨,受力图如下,重力和支持力的合力提 转 供了向心力;这样,外轨就不受轮缘的挤压了。 弯 问 题
(1)小球的初速度v0;
(2)圆板转动的角速度ω.
圆 周 运 动 的 周 期 性 问 题
解析:(1)小球平抛的水平位移R=v0t①
1 2 小球平抛的竖直位移h= gt ② 2
由①②式解得
R R g v0= = =R t 2h 2h/g (2)设在小球运动的时间内圆板转动了 n圈,则圆板转动的
角速度为
2πn 2πn ω= = =πn t 2h/g 2g h
(圈数n取n=1,2,3……).
答案: (1)R
g (2)πn 2h
2g h
圆 周 运 动 的 周 期 性 问 题
匀速圆周运动具有周期性,这样结合其它 类型的运动可建构相遇类型的问题,那么,掌 握各运动的特点,抓住运动的等时性,挖掘题 的条件,就能正确解答. 第四章单元检测卷11题 P272 12