ANSYS桁架优化分析实例

合集下载

利用ANSYS有限元分析软件对三杆组成的桁架结构进行数值模拟.

利用ANSYS有限元分析软件对三杆组成的桁架结构进行数值模拟.

利用 ANSYS 有限元分析软件对三杆组成的桁架结构进行数值模拟,并根据计算结果,建立优化设计数学模型,在优化处理器指定分析文件, 对三根横截面积为
A1A2A3基本尺寸 B 为变量进行分析对比, 通过数值迭代模拟主要的到如下结论
(1横截面积迭代进行 ANSYS 优化分析时,在分析得到的重量,应力,横截面,三个图中当寻优迭代进行到第 16次主动变量被调整到相同的优化效率时 A1为 1
10
7056
. 4-
⨯A2为 4
10
0000
. 6-
⨯A3为 2
10
3055
. 3-
⨯, 桁架重量取得最小值 130370kg 与初始设计重量 481520.422kg 相比,得到了很大程度的减轻。

符合最优化准则 (2根据计算结果,改进的桁架明显好于其他情况, ansys 软件数值模拟得到最优解,其计算误差很小,完全能满足工程精度要求
ANSYS 程序中进行优化的方法是成功的 , 方法本身收敛速度快 , 精度高 , 稳定性强。

本文使用迭代法得到的最优解都非常接近于或优于所求问题的最优解 , 这表明将迭代法一类的高效优化方法用 APDL 语言嵌套到 AnSYS 程序中来求解优化问题的方法既可行又简便 , 结构优化设计领域具有很好的应用前景。

基于ANSYS的空间桁架结构拓扑优化设计

基于ANSYS的空间桁架结构拓扑优化设计
( 3) ANSYS进行多工况加权求和时, 加权系 数可以用自己预先定义的数组, 也可以取加权 系 数均为工况总数的倒数, 本文取 4 种工况加权 系 数均为 0 25并且加大侧载, 优化出能承受侧向弯 矩的腹杆结构。
( 4) 在 得 到的 拓 扑优 化 结 果基 础 上, 利 用 APDL 命令提取和输出节点的坐标, 得出各节杆的 节距, 可以实现在满足一 定强度条件下杆的截 面 尺寸优化。
2 建模
AN SY S 拓扑 优化 功能 可以 用 于求 得 最 优结 构 , 以获得最大刚度、最小体积或最大 自振频率。拓 扑优化的原理是在满足结构体积减小量的条件 下 使结构的柔度极小化, 极 小化的结构柔度实际 就 是要求结构的刚度最大化, 优化过程是通过自 动 改变设计变量, 即单元伪密度 ( ) 来实现的。单 元伪密度 = 0的材料为可以删除的部分, 单元伪 密度 = 1的材料为保留的部分 [ 1, 2] 。
作 者: 魏文儒 地 址: 大连理工大学机械工程学院 邮 编: 116023
四连杆式带式制动器的结构与计算
中船重工集团第七 & 四研究所 姚化利 上海吴泾化工设计院 刘朝阳
带式制动器有多种结构形式, 本文介绍基本 式四连杆式带式制动器, 其结构原理源于普通 带 式制动器, 另外给出了具有代表 性的 2种动力 配 置结构形式: 螺杆动力式和两段螺 杆式。分析 了 其结构、功能特点和计算方法。
4 汪希萱, 曾胜 电磁式在线自动平衡系统及其动平衡方 法研究 热能动力工程, 2003, 18 ( 103): 53# 57
5 ISO 1925, Ba lanc ing - V ocabu lary, 1981
作 者: 程 峰 地 址: 山西太原中北大学机电工程学院航空宇航工程系 邮 编: 030051

基于 Ansys 的钢桁架桥静力和模态分析

基于 Ansys 的钢桁架桥静力和模态分析

土木结构分析专题陈晨20104336基于Ansys的钢桁架桥静力和模态分析陈晨20104336(西南交通大学力学与工程学院结构2010-01班,四川成都)摘要:本文应用Ansys软件,采用有限元分析技术及其优化技术,分别采用GUI方式和命令流方式,对给定的一架钢桁架简支梁桥进行了静力学分析和模态分析,对强度、内力分布及前六届振型状况进行了查看。

关键词:力学;土木工程;桥梁工程;结构分析1设计概况图1钢桁架桥简图已知下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。

设桥面板为0.3米厚的混凝土板。

桁架杆件规格有三种,见下表:表1钢桁架桥杆件规格杆件截面号形状规格端斜杆1工字形400×400×16×16上下弦2工字形400×400×12×12横向连接梁2工字形400×400×12×12其他腹杆3工字形400×300×12×12所用材料属性如下表:表2材料属性参数钢材混凝土弹性模量EX 2.1×1011 3.5×1010泊松比PRXY0.30.1667密度DENS785025002建立有限元模型2.1定义单元类型和选项Main Menu>Preprocessor>Element Type>Add/Edit/Delete,弹出“Element Types”选择“Structural Beam—3D elastic4”,单击“Ok”,定义“BEAM4”单元,如图6-17。

继续单击“Add”按钮,选择“Structural Shell—Elastic4node63”,定义“SHELL63”单元。

得到如图6-18所示的结果。

最后单击“Close”,关闭单元类型对话框。

图2单元类型对话框2.2定义梁单元截面Main Menu>Preprocessor>Sections Beam>Common Sections,弹出“Beam Tool”工具条,如图6-19填写。

基于ansys的钢桁架桥的分析和计算

基于ansys的钢桁架桥的分析和计算

基于ansys的钢桁架桥的分析和计算姓名: 马彦学院:建筑与环境专业:工程力学学号:1043055033指导老师:朱哲明2013/6/151.问题简述钢桁架桥简图如下,尺寸如图,单元长12m,高16m。

设桥面板为0.3m厚的混凝土板。

杆件截面号形状规格端斜杆 1 工字梁400*400*16*16上下弦 2 工字梁400*400*12*12横向连接梁 2 工字梁400*400*12*12其他腹杆 3 工字梁400*300*12*12参数钢材混凝土EX 2.1x1011 3.5x1010PRXY 0.3 0.1667DENS 7850 25002.材料实常数3.半横架桥模型镜面对称,生成整体模型3.施加约束及受力4.计算及分析结果◆整体位移云图◆结点总位移矢量图◆单元第一主应力云图◆单元第二主应力云图◆单元第三主应力云图◆节点位移结果PRINT U NODAL SOLUTION PER NODE***** POST1 NODAL DEGREE OF FREEDOM LISTING *****LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATESYSTEMNODE UX UY UZ USUM1 0.18808E-02-0.20919E-01 0.70316E-03 0.21015E-012 0.11411E-02-0.21354E-01 0.59772E-03 0.21393E-013 0.14813E-02-0.20809E-01 0.11202E-02 0.20892E-014 0.15919E-02-0.20373E-01 0.11392E-02 0.20467E-015 0.22549E-02-0.18918E-01 0.10528E-02 0.19081E-016 0.23458E-02-0.18310E-01 0.10055E-02 0.18487E-017 -0.10050E-02-0.18459E-01-0.38731E-02 0.18887E-018 -0.11376E-02-0.19066E-01-0.38598E-02 0.19486E-019 0.24977E-02-0.12074E-01 0.72603E-03 0.12351E-0110 0.29237E-02-0.11079E-01 0.68719E-03 0.11479E-0111 -0.35033E-02-0.10438E-01-0.84626E-02 0.13887E-0112 -0.38537E-02-0.10965E-01-0.84226E-02 0.14353E-0113 0.27521E-02 0.0000 0.0000 0.27521E-0214 0.34768E-02 0.0000 0.0000 0.34768E-0215 0.82671E-03-0.17947E-01 0.14911E-03 0.17967E-0116 0.67748E-03-0.19250E-01 0.10648E-03 0.19262E-0117 0.42077E-02-0.19398E-01 0.59595E-02 0.20725E-0118 0.40812E-02-0.18095E-01 0.59727E-02 0.19488E-0119 0.40101E-03-0.10784E-01 0.34385E-04 0.10791E-0120 0.34470E-03-0.12307E-01 0.25523E-06 0.12312E-0121 0.69212E-02-0.11199E-01 0.10204E-01 0.16656E-0122 0.65820E-02-0.10142E-01 0.10244E-01 0.15847E-0123 0.0000 0.0000 0.0000 0.000024 0.0000 0.0000 0.0000 0.0000MAXIMUM ABSOLUTE VALUESNODE 21 2 22 2VALUE 0.69212E-02-0.21354E-01 0.10244E-01 0.21393E-01◆单元受力结果PRINT ELEMENT TABLE ITEMS PER ELEMENT***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J1 -49659. 7936.32 -42695. -3502.73 -9873.9 -28642.4 9567.9 -51440.5 -15016. 23374.6 -22120. -5510.47 -26981. -11385.8 -33355. 18549.9 -17656. -15556.10 -16095. -16301.11 -16203. -16943.12 -12683. -20132.13 4836.6 5157.114 -17901. -18351.15 -2331.6 23001.16 -18331. -20015.17 -6067.9 50464.18 -19568. -26493.19 -5052.8 51411.20 -26836. -34142.21 -23626. -29919.22 -32522. -21349.23 -35649. -25215.24 -699.47 1061.525 690.13 -1048.326 5802.4 -1462.327 -9677.8 5182.928 16212. -4765.129 -4310.8 3979.130 -25.038 0.000031 -9.3064 0.000032 23.898 0.000033 -3569.2 -42609.34 8110.9 -49823.35 -5544.6 -22051.36 -11343. -27005.37 18453. -33238.38 -28592. -9977.139 -51593. 9648.540 23614. -15193.41 -16998. -16116.***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J42 -20120. -12682.43 -15489. -17761.44 -16350. -16082.45 5157.1 4836.646 -18351. -17901.47 -2225.2 22850.48 -18463. -19869.49 -6087.5 50530.50 -19228. -26843.51 -5332.4 51796.52 -21374. -32473.53 -25205. -35655.54 -34114. -26894.55 -29953. -23607.56 -1061.5 699.4757 1048.3 -690.1358 5171.8 -9672.159 -1448.6 5796.560 3928.8 -4269.361 -4732.8 16215.62 -20.844 0.000063 -5.2944 0.000064 36.585 0.0000MINIMUM VALUESELEM 39 4VALUE -51593. -51440.MAXIMUM VALUESELEM 40 51VALUE 23614. 51796.5.命令流文件/FILNAM,Structural/TITLE,Truss Bridge Static Analysis/COM,Structural/prep7et,1,beam4et,2,shell63sectype,1,beam,i,,0 !定义工字型截面secoffset,cent !截面至心不偏移secdata,0.4,0.4,0.4,0.016,0.016,0.016,0,0,0,0 !定义工字型截面参数sectype,2,beam,i,,0secoffset,centsecdata,0.4,0.4,0.4,0.012,0.012,0.012,0,0,0,0sectype,3,beam,i,,0secoffset,centsecdata,0.3,0.3,0.4,0.012,0.012,0.012,0,0,0,0r,1,0.0187,0.00017,0.00054,0.4,0.4,0, !定义单元实常数r,2,0.0141,0.128e-3,0.415e-3,0.4,0.4,,r,3,0.0117,0.541e-4,0.324e-3,0.3,0.4,,r,4,0.3,,,,,,MP,EX,1,2.1E11MP,PRXY,1,0.3MP,DENS,1,7850MP,EX,2,3.5E10MP,PRXY,2,0.1667MP,DENS,2,2500N,,0,0,-5,,,, !创建节点,复制结点NGEN,4,4,ALL,,,12,,,1,NGEN,2,1,ALL,,,,,10,1,NGEN,2,1,2,10,4,,16,,1,NGEN,2,1,3,11,4,,,-10,1,TYPE,1MAT,1REAL,1ESYS,0 !单元坐标系SECNUM,1TSHAP,LINEE,11,14 !建立单元TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,2 TSHAP,LINE E,2,6E,6,10E,10,14 E,1,5E,5,9E,9,13E,3,7E,7,11E,4,8E,8,12E,1,2E,3,4E,5,6E,7,8E,9,10E,13,14 TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,3 TSHAP,LINE E,3,6E,6,11E,4,5E,5,12E,2,3E,1,4E,6,7E,5,8E,10,11 E,9,12 TYPE,2 MAT,2 REAL,1 ESYS,0TSHAP,QUADE,1,2,6,5E,5,6,10,9E,9,10,14,13NSYM,X,14,ALL ESYM,,14,ALLNUMMRG,ALL,,,,LOW NUMCMP,ALL FINISH/SOLNSEL,S,,,23,24D,ALL,,,,,,UX,UY,UZ,,, NSEL,S,,,13,14D,ALL,,,,,,UY,UZ,,, NSEL,S,,,1,2F,ALL,FY,-100000 ALLSEL,ALL ACEL,0,10,0, ANTYPE,0SOLVEFINISH/POST1PLDISP,2PLNSOL,U,SUM,0,1PLVECT,U,,,,VECT,NODE,ON,0ETABLE,zhou_i,SMISC,1ETABLE,zhou_j,SMISC,7ETABLE,zhou_i,SMISC,2ETABLE,zhou_j,SMISC,8ETABLE,zhou_i,SMISC,6ETABLE,zhou_j,SMISC,12PRETAB,ZHOU_I,ZHOU_J,JIAN_I,JIAN_J,WAN_I,WAN_J PLLS,ZHOU_I,ZHOU_J,1,0PRNSOL,U,COMPFINISH/EXIT。

基于ANSYS?WORKBENCH的桁架结构的分析

基于ANSYS?WORKBENCH的桁架结构的分析

基于ANSYS WORKBENCH的桁架结构的分析有不少朋友经常问到在WB中的桁架分析问题。

例如下面的桁架,有两个端点被固定,而在C处施加一个向下的集中力,如何计算该问题?在ANSYS APDL中,计算该问题非常简单。

但是在WB中,则比较麻烦。

对于线体模型,WB中默认的单元类型是BEAM188,如果直接使用默认单元会带来一些出乎意料的结果。

本文使用LINK180建模,这样就需要插入命令流。

下面说明使用LINK180的建模方法。

1. 创建静力学结构分析系统。

2. 创建几何模型(1)创建草图(2)根据草图生成线体模型创建圆形截面,其半径为10mm(该尺寸随便设置,后面会被覆盖)将截面属性赋予给线体模型3. 设置杆的单元类型在线体模型下添加命令在命令文件编辑窗口输入下列命令、上述命令的含义是:第1行,设置单元类型是LINK180第2-3行,设置截面类型是实心圆,且其横截面积是10mm24. 划分网格在MESH下添加一个单元尺寸控制,设置给所有边划分1等份。

网格划分结果如下图5. 施加边界条件该下面两个关键点施加固定支撑,给上面点施加数值向下的力100N,结果如下图6. 求解并进行后处理进行求解。

然后进行后处理。

可以发现应力,应变,能量等按钮均不可使用。

使用BEAM TOOL。

但是ANSYS表明,该梁工具不能使用。

添加BEAM RESULTS但是ANSYS表明,该梁工具也不能使用。

使用WORKSHEET所提供的自定义数据类型,选择其中的总位移结果、得到位移如下图读者可尝试使用WORKSHEET中的其它用户自定义结果,【评论】1. 通过在几何体模型后面添加命令,并编辑命令文本,可以设定单元为杆单元LINK180.2. 可以在MESH后添加尺寸控制,而对各根杆件设置网格划分份数。

3. 在后处理时,WB所提供的大多数后处理按钮均不可使用,此时只能使用WORKSHEET中提供的用户自定义变量。

【ANSYS算例】3.2.5(4)-四杆桁架结构的有限元分析(GUI)及命令流

【ANSYS算例】3.2.5(4)-四杆桁架结构的有限元分析(GUI)及命令流

四杆桁架结构的有限元分析下面针对【典型例题】(1)的问题,在ANSYS 平台上,完成相应的力学分析。

即如图3-8所示的结构,各杆的弹性模量和横截面积都为4229.510N/mm E,E=29.5X10 2100mm A ,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。

图3-8 四杆桁架结构解答 对该问题进行有限元分析的过程如下。

以下为基于ANSYS 图形界面( graphic user interface ,GUI)的菜单操作流程;注意:符号“→”表示针对菜单中选项的鼠标点击操作。

关于ANSYS 的操作方式见附录B 。

1. 基于图形界面的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): planetruss →Run → OK(2) 设置计算类型ANSYS Main Menu : Preferences… → Structural → OK(3) 选择单元类型ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete… →Add… →Link :2D spar 1 →OK (返回到Element Types 窗口) →Close(4) 定义材料参数ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:2.95e11 (弹性模量),PRXY: 0 (泊松比) → OK → 鼠标点击该窗口右上角的“ ”来关闭该窗口(5) 定义实常数以确定单元的截面积ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1→ OK →Real Constant Set No: 1 (第1号实常数), AREA: 1e-4 (单元的截面积) →OK →Close(6) 生成单元 ANSYS Main Menu: Preprocessor →Modeling →Creat →Nodes → In Active CS →Node number 1 → X:0,Y:0,Z:0 →Apply →Node number 2 → X:0.4,Y:0,Z:0 →Apply →Node number 3 → X:0.4,Y:0.3,Z:0→Apply →Node number 4 → X:0,Y:0.3,Z:0→OKANSYS Main Menu: Preprocessor → Modeling → Create → Elements →Elem Attributes (接受默认值)→Usernumbered→Thru nodes→OK→选择节点1,2→Apply→选择节点2,3→Apply→选择节点1,3→Apply→选择节点3,4→Apply→OK(7)模型施加约束和外载添加位移的约束,分别将节点1 X和Y方向、节点2 Y方向、节点4的X和Y方向位移约束。

ANSYS桁架优化分析实例

ANSYS桁架优化分析实例

ANSYS桁架优化分析实例优化分析的示例(GUI方法)在本例中,用一阶方法进行优化分析。

问题描述一个有三根杆组成的珩架承受纵向和横向载荷。

珩架的重量在最大应力不超过400psi最小化。

(因此重量为目标函数。

)三根梁的横截面面积和基本尺寸B在指定范围内变化。

结构的重量初始设计为109.10磅。

缺省允差(由程序计算)为初始重量的1%(11磅)。

但是,为了便于收敛,一阶方法的优化分析中将目标函数的允差定为2.0。

问题参数分析中使用如下材料特性:E=2.1E6psiRHO=2.85E-4lb/in3(比重)最大许用应力=400psi分析中使用如下几何特性:横截面面积变化范围=1到1000in2(初始值为1000)基本尺寸B变化范围=400到1000in (初始值为1000)问题简图第一步:指定文件名1.选择Utility Menu>File>Change Jobname,打开文件名对话框。

2.输入“truss”为工作文件名。

3.单击OK关闭对话框。

第二步:指定分析题目1.选择Utility Menu>File>Change Title,打开更改分析题目对话框。

2.输入“Optimization of a Three-Bar Truss”作为分析题目。

第三步:定义参数初始值1.选择Utility Menu>Parameters>Scalar Parameters,打开数值参数对话框。

在选择区域中输入下列内容:B=1000 按ENTER键A1=1000 按ENTER键A2=1000 按ENTER键A3=1000 单击OK。

参数将在菜单中显示出来。

2.在数值参数对话框中单击OK。

第四步:定义单元类型1.选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete,打开单元类型对话框。

2.在单元类型库对话框中单击Add。

基于ANSYS的平面桁架有限元分析.

基于ANSYS的平面桁架有限元分析.

PREP7 !* ET,1,LINK180 !* R,1,10, ,0 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.0e6 MPDATA,PRXY,1,,0.3 WPSTYLE,,,,,,,,0 WPSTYLE,,,,,,,,1 WPSTYLE,,,,,,,,0 WPSTYLE,,,,,,,,1 FLST,3,1,8 FITEM,3,0,0,0 N, ,P51X FLST,3,1,8 FITEM,3,30,0,0 N, ,P51X FLST,3,1,8 FITEM,3,0,30,0 N, ,P51X FLST,3,1,8 FITEM,3,30,30,0 N, ,P51X FLST,3,1,8 FITEM,3,60,30,0
5
数值解与解析解的比较与分析
求出了平面桁架的数值解与解析解,现将两 者的结果进行列表对比
数值解与解析解的比较与分析
表2 整体坐标系下各节点的位移(in)
节点 解析解
U1x 0 0
U1y 0 0
U2x -0.0029 -0.002925
U2y -0.0085 -0.0084404
U3x 0 0
U3y 0 0
基于AN限元分析
平面桁架是工程中常见的结构,本文基于ANSYS平台对平面桁架进行有 限元分析。 首先通过有限元法的理论知识求得平面桁架在一定工况下的理论值,然 后利用ANSYS进行分析得到数值解,最后通过比较理论解与数值解得出结论。 利用ANSYS对平面桁架进行有限元分析,可以提取其他分析结果,对深 入研究平面桁架问题提供了强有力手段,也对其他结构问题的有限元分析具 有指导性意义与价值。
数值解与解析解的比较与分析
表4 单元①的内力与正应力(lb)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.在 Type of Data to be Retrieved 菜单左列单击 Results Data,在右列单击 Elem Table Sums。
12.单击 OK 关闭对话框并打开 Get Element Table Sum Results 对话框。 13.在 Name of Parameter to be Defined 域输入 VTOT。 14.单击 OK 关闭对话框。 15 . 选 择 菜 单 Utility Menu>Parameters>Scalar Parameters 打 开 Scalar Parameters 对话框。 16.在 Selection 域输入 RHO=2.85E-4 并按 ENTER 键。本信息应显示在菜 单上。
第五步:定义实参 1. 选择 Main Menu>Preprocessor>Real Constants,打开实参对话框。 2. 单击 Add,打开实参对话框中单元类型。 3. 单击 OK,打开 LINK1 实参对话框。 4. 在实参序列号区域中键入 1。 5. 在横截面区域中键入 A1。 6. 单击 Apply。这将确认 LINK1 的实参并将 1000 输入实参 1 的横截面 区域。 7. 在实参序列号区域键入 2。 8. 在横截面面积区域键入 A2。 9. 单击 Apply。这将确认 LINK1 的实参并将 1000 输入实参 1 的横截面 区域。 10.在实参序列号区域键入 3。 11.在横截面面积区域键入 A3。 12.在 LINK1 实参对话框中单击 OK。 13.在实参对话框中单击 Close。
2. 单击 Add 定义单元表格并打开 Define Additional Elementary Table Items 对话框。
3. 在 User Label 域中输入 EVOL。 4. 在 Item,Comp Results Data Item 菜单的左列单击 Geometry,在右列单 击 Elem Volume VOLU。 5. 单击 OK 关闭对话框。 6. 在 Element Table Data 对话框中单击 Close。 7. 选择菜单 Main Menu>General Postproc>Element Table>Sum of Each Item 打开 Tabular Sum of Each Element Table Item 对话框。 8. 单击 OK 计算总和。SSUM 命令窗口将显示总和为 0.382842E+07。 9. 单击菜单条上的 Close 关闭 SSUM 命令窗口。 10.选择菜单 Utility Menu>Parameters>Get Scalar Data 打开 Get Scalar Data 对话框。
18.在坐标位置出选取不显示选项。 19.单击 OK 关闭对话框。
第八步:生成单元
1. 选



Main
Menu>Preprocessor>-Modeling->Create>Elements>-Auto Numbered->Thru Nodes
打开结点对话框的单元项。
2. 在图形窗口,拾取结点 1 和 4(按照该顺序)。在选择的结点周围将
15.将 Force/Mom 方向设为 FX。
16.在 Force/Moment Value 域输入-200000。
17.单击 OK 关闭对话框。在结点 4 上将出现一个垂直箭头表示施加的载
荷。
第十步:求解模型 1. 选择菜单 Main Menu>Solution>-Solve->Current LS 打开 Solve Current Load Step 对话框。求解目标和载荷步选项在出现在状态窗口。
4
2. 3. 4. 框。
查看状态窗口中的目标信息并在菜单条上单击 Close 关闭。 在该对话框中单击 OK。 求解完毕后,将出现信息框告诉用户求解完毕。单击 Close 关闭对话
第十一步: 进入后处理器并读出单元总体积
1. 选择菜单 Main Menu>General Postproc>Element Table>Define Table 打开 Element Table Data 对话框。
出现一个小框。
3. 在该对话框单击 OK 关闭对话框。ANSYS 图形窗口中 1 和 4 结点之
间将出现一个线单元 1。
4. 选择菜单 Main Menu>Preprocessor>-Modeling->Create>Elements>
Elem Attributes 打开单元特性对话框。
5. 在实参序列号中输入 2。
框。
4. 在要约束的自由度菜单上单击 ALL DOF 选项。
5. 单击 OK 关闭对话框。
6. 选



Main
Menu>Solution>-Loads-Apply>-Structural-Force/Moment>On Nodes 打 开 Apply
F/M on Nodes 对话框。
7. 在 ANSYS 图形窗口,拾取结点 4。
第四步:定义单元类型 1. 选择 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,打开 单元类型对话框。 2. 在单元类型库对话框中单击 Add。 3. 在左边列中单击 Structural Link。 4. 在右边列中单击 2D Spar 1。 5. 在单元参考号区域键入 1。 6. 在单元类型库对话框中单击 OK。 7. 在单元类型对话框中单击 Close。
2
5. 单击 OK 并关闭对话框。
第七步:生成结点
1. 选择 Main Menu>Preprocessor>-Modeling->Create>Nodes>In Active CS,打开在活动坐标系中生成结点对话框。
2. 在结点号区域中输入 1。 3. 在活动坐标域,第一个域中输入-B,第二个域中输入 0,第三个输入 0。 4. 单击 Apply。结点 1 将出现在 ANSYS 图形窗口。 5. 在结点号码域中输入 2。 6. 在活动坐标域,第一个域中输入 0,第二个域中输入 0,第三个输入 0。 7. 单击 Apply。结点 2 将出现在 ANSYS 图形窗口。 8. 在结点号码域中输入 3。 9. 在活动坐标域,第一个域中输入 B,第二个域中输入 0,第三个输入 0。 10.单击 Apply。结点 2 将出现在 ANSYS 图形窗口。 11.在结点号码域中输入 3。 12.在活动坐标域,第一个域中输入 0,第二个域中输入-1000,第三个输 入 0。 13.单击 OK 关闭在活动坐标系生成结点对话框。结点 4 将出现在 ANSYS 图形窗口中。所有 4 个结点都出现在 ANSYS 图形窗口中。 14 . 打 开 结 点 号 码 。 选 择 菜 单 Utility Menu>PlotCtrls>Window Controls>Window Options 打开窗口选项对话框。 15.在结点号码框上单击 OFF(将切换为 ON)。 16.单击 OK 关闭对话框。 17.选择菜单 Utility Menu>PlotCtrls>Window Controls>Windows Options 打 开窗口对话框。
第六步:定义材料特性 1. 选择 Main Menu>Preprocessor>Material Props>-Constant->Isotropic, 打开各项同性材料特性对话框。 2. 在材料号区域中输入 1。 3. 单击 OK 打开第二个各项同性材料特性对话框。 4. 在杨氏模量对话框输入 2.1E6。
8. 在对话框中单击 OK 关闭并打开第二个 Apply F/M on Nodes 对话框。
9. 将 Force/Mom 方向设为 FX。
10.在 Force/Moment Value 域输入 200结点 4 上将出现一个横向箭头表示施加的载
荷。
12





6. 在单元特性对话框中单击 OK。
7. 选



Main
Menu>Preprocessor>-Modeling->Create>Elements>-Auto Numbered->Thru Nodes
3
打开结点对话框的单元项。
8. 在图形窗口,拾取结点 2 和 4(按照该顺序)。 9. 在该对话框单击 OK 关闭对话框。ANSYS 图形窗口中 3 和 4 结点之 间将出现一个线单元 2。 10.选择菜单 Main Menu>Preprocessor>-Modeling->Create>Elements>Elem Attributes 打开单元特性对话框。 11.在实参序列号中输入 2。 12.在单元特性对话框中单击 OK。 13.选择菜单 Main Menu>Preprocessor>-Modeling->Create>Elements>-Auto Numbered->Thru Nodes 打开结点对话框的单元项。 14.在图形窗口,拾取结点 2 和 4(按照该顺序)。 15.在该对话框单击 OK 关闭对话框。ANSYS 图形窗口中 3 和 4 结点之间 将出现一个线单元 3。
问题参数 分析中使用如下材料特性:
E=2.1E6psi RHO=2.85E-4lb/in3 (比重) 最大许用应力=400psi 分析中使用如下几何特性: 横截面面积变化范围=1 到 1000in2 (初始值为 1000) 基本尺寸 B 变化范围=400 到 1000in (初始值为 1000)
相关文档
最新文档