20142015研究生考试试卷

合集下载

2014年全国硕士研究生入学统一考试 经济类专业学位联考综合能力试题

2014年全国硕士研究生入学统一考试 经济类专业学位联考综合能力试题

法抵抗辐射,微力学有望开发一种芯片,它可以免受辐射损害。 因为它仅使用精微机械开关,但 这种开关比电子开关的开关速度慢,而且一个芯片只包含 12000 个开关。 基于上述关于微力学
E.污染仍存在,但其性质发生改变,鲑鱼能忍受这种改变后的污染。 5.由微小硅片构成的电脑芯片通常包含数百万的电子开关,电子开关是如此小以至于它无
销售量。 但是,酒是个例外,一种酒的价格上涨常常导致其销量增加,即使酒本身并没有任何 改变。 B.许多顾客在决定买哪种酒时是基于书或期刊中关于酒的评论。 C.顾客在商场里选购酒时常常以酒的价格作为评判酒的质量的主要参考依据。 以下哪项如果为真,最有助于解释上述所说的例外? A.零售市场上存在极具竞争力的多个品牌的酒。
里创作的要少。
的皮肤癌病例每年都保持相对稳定的数量,即使与 20 年前盛行晒太阳相比,现在特意将自己 暴晒于太阳下的成年人要少得多。 B.继续特意在太阳底下暴晒的人比过去太阳浴者吸收更大剂量的有害放射物。 C.来自于太阳以外的紫外线辐射量逐年增加。 D.尽管现在更少的女性特意在太阳下暴晒,但这样做的男性人数显著增长。 E.大多数皮肤癌同患者病症发作前 30 年经常暴露于紫外线下相关。 以下每项如果为真都可解释上述统计数字上的差异,除了: A.因为大气层顶层臭氧含量减少,现在更多的人都将无意识地暴露在过量的太阳紫外线下。
统,物理学论文报导这种实验结果时,每个实验室的参与人员也通常是论文作者。 如果上述为真,下面哪一项一定为真? A.涉及多个医院病人的临床实验绝不是仅由一个医院的医生实施。 B.涉及多个医院病人的临床实验报告,大多数有多位作者。 C.如果一篇科技论文有多位作者,他们通常来自不同的科研机构。 D.多个实验室的研究人员共同署名的物理学论文,通常报导使用了每个实验室开展的子 系统的实验结果。 E.大多数科技论文的作者仅是那些做了论文所报导的实验的科研人员。 2.对一群以前从不吸烟的青少年进行追踪研究,以确定他们是否吸烟及其精神健康状态的 变化。 一年后,开始吸烟的人患忧郁症的人数是那些不吸烟的人患忧郁症的四倍。 因为香烟中 的尼古丁令大脑发生化学变化,可能因而影响情绪。 所以,吸烟很可能促使青少年患忧郁症。 下面哪项如果为真,最能加强上述论证? A. 研究开始时就已患忧郁症的实验参与者与那时候那些没有患忧郁症的实验参与者,一 年后吸烟者的比例一样。 B.这项研究没有在参与者中区分偶尔吸烟与烟瘾很大者。 C.研究中没有或者极少的参与者是朋友亲戚关系。 D.在研究进行的一年里,一些参与者开始出现忧郁症而后又恢复正常了。 E.研究人员没有追踪这些青少年的酒精摄入量。 3.康和制药公司主任认为, 卫生部要求 开 发 的疫苗 的开 发 费用 该 由政府资助 , 因 为疫苗 市场比任何其他药品公司市场利润都小。 为支持 上述主张 ,主任给出下 列理由: 疫苗的 销量 小,因为疫苗的使用是一个人一次,而治疗疾病尤其是慢性疾病的药物,对每位病人的使用是 多次的。 下列哪项如果为真,将最严重地削弱该主任提出的针对疫苗市场的主张的理由? A.疫苗的使用对象比大多数其他药品的使用对象多。 B.疫苗所预防的许多疾病都可以由药物成功治愈。 C.药物公司偶尔销售既非医学药品也非疫苗的产品。 D.除了康和制药公司外,其他制药公司也生产疫苗。 E.疫苗的使用费不是由生产疫苗的制药公司承担。 — 1 —

2014年全国硕士研究生入学统一考试数学一试题及解析(完整精准版).doc

2014年全国硕士研究生入学统一考试数学一试题及解析(完整精准版).doc
小学数学
96
福清市元载小学
小学数学
97
福清市龙山中心小学
小学数学
98
福清市宏路中心小学
小学数学
99
福清市海口中心小学
小学数学
100
福清市海口中心小学
小学数学
101
福清市海口中心小学
小学数学
102
福清市岑兜中心小学
小学数学
103
福清市城头中心小学
小学数学
104
福清市南岭中心小学
小学数学
105
福清市龙田中心小学
小学英语
182
福清市镜洋中心小学
小学英语
183
福清市镜洋中心小学
小学英语
184
福清市石门小学
小学体育
185
福清市龙田中心小学
小学体育
186
福清市江镜中心小学
小学体育
187
福清市港头中心小学
小学体育
188
福清市高山中心小学
小学体育
189
福清市实验小学
小学音乐
190
福清市海口中心小学
小学音乐
191
福清市东瀚中心小学
小学语文
76
福清市东瀚中心小学
小学语文
77
福清市渔溪中心小学
小学语文
78
福清市渔溪中心小学
小学语文
79
福清市渔溪中心小学
小学语文
80
福清市渔溪中心小学
小学语文
81
福清市上迳中心小学
小学语文
82
福清市上迳中心小学
小学语文
83
福清市占泽中心小学
小学语文
84
福清市占泽中心小学

智能仪器设计基础 试卷(仪器仪表工程硕士)

智能仪器设计基础 试卷(仪器仪表工程硕士)
南昌大学研究生 2014~2015 学年第一学期期末考试试卷
课程名称: 姓名: 考试占用时间:
题号 题分 得分 一 50 二 30
智能仪器设计基础 学号: 120 分钟
三 20 四 五
适用专业、班级: 学院:
仪器仪表工程
资源环境与化工学院 开卷
十 总分 100 累分人 签名
考试形式(开卷或闭卷) :
得分
评阅人
2、简述限幅滤波的基本原理,并给出相关程序。
第 3 页 共 4 页
三、综合题(共 20 分)
利用 80C51 单片机和 AD574 设计一个多路数据采集系统,给 出相关硬件电路与巡回数据采集程序。 (硬件电路给出 80C51 与 AD574 的连接即可)
位 TCON IE IP TMOD D7 TF1 EA — GATE D6 TR1 — — C/T D5 TF0 — — M1 D4 TR0 ES PS M0 D3 IE1 ET1 PT1 GATE D2 IT1 EX1 PX1 C/T D1 IE0 ET0 PT0 M1 D0 IT0 EX0 PX0 M0
第 1 页 共 4 页
3、键盘有哪几种组成方式?各有何特点?
4、与硬件滤波器相比,数字滤波器有何值是如何进行的。
第 2 页 共 4 页
二、设计题(每题 15 分,共 30 分) 1、设计一个由 8031 单片机控制的程控增益放大器的接口电路,给出 硬件电路和放大倍数计算过程。
六 七 八 九
考生注意事项: 1、 本试卷共 4 页, 请查看试卷中是否有缺页或破损。 如有立即举手报告以便更换。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、 简答题(每题 10 分,共 50 分)
1、简述数据采集系统基本结构形式,并比较其特点。

2014下学期研究生试卷

2014下学期研究生试卷

硕士研究生《知识产权》课程考试试卷专业:全校年级:2014 考试方式:开卷学分:1 考试时间:110分钟一、长江公司委托黄河大学设计了一项锅炉自动检测系统,但在委托合同中没有明确约定该研究成果专利申请权的归属,黄河大学指派罗教授承担这一委托项目,研究生张某参加了该项目的研究工作,撰写了研究报告,大学科研部的赵老师参加了该项目的评审和验收,并提出了一些改进建议。

项目结束后,罗教授就该项目所产生的技术成果申请了专利,发明人署名为罗教授和研究生张某,但是长江公司和黄河大学对此有异议。

长江公司认为其提供了资金和研究需求,专利申请权应当属于自己独有;黄河大学认为是其提供了研究条件、组建项目团队并最后完成该发明创造,这些发明创造应当属于黄河大学的职务发明,发明人应当为罗教授和研究生张某;科研部的赵老师认为其提出了改进建议应当作为发明人署名。

请回答:1.这一发明创造的专利申请权应当属于谁?为什么?(10分)2.谁是发明人?为什么?(10分)二、2010年1月A石油公司的高级工程师王某研制出一种节油装置,完成了该公司的技术攻坚课题,并达到国际领先水平。

2010年3月,王某未经单位同意,在向某国外杂志的投稿论文中透露了该装置的核心技术,该杂志将论文全文刊载,引起A石油公司不满。

同年6月,丙公司依照该杂志的报道很快研制了样品,并作好了批量生产的必要准备。

A石油公司于2010年7月向我国专利局递交专利申请书。

2010年12月丁公司也根据该杂志开始生产该节油装置。

2012年2月A的申请被公布,2013年5月7日国务院专利行政部门授予A石油公司发明专利,2013年7月A石油公司向法院提起诉讼,分别要求丙公司和丁公司停止侵害并赔偿损失。

问:1. 2010年7月A石油公司申请专利时,该项发明还是否具有新颖性?为什么?(15分)2.高级工程师王某享有哪些权利?为什么?(10分)3.如果A石油公司的专利申请文件于2012年2月被专利局在其官方刊物《专利公告》中公布,自2010年12月开始直到2013年7月丁公司一直在生产销售节油装置,丁公司的这一期间的生产销售行为是否都构成侵权?如果并非都构成侵权,那么哪一期间的生产销售行为构成侵权?为什么?(20分)三、甲公司为了研制新产品,成立了由王某、李某、丁某、朱某组成的课题组。

2014年全国硕士研究生入学统一考试数学一试题及解析.doc

2014年全国硕士研究生入学统一考试数学一试题及解析.doc

2014年全国硕士研究生入学统一考试数学一试题及解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。

(1)下列曲线中有渐近线的是 (A )sin y x x =+.(B)2sin y x x =+.(C)1sin y x x =+.(D)21sin y x x=+.【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]limsin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线【答案】C(2)设函数()f x 具有2阶导数,()()()()011g x f x f x =-+,则在区间[0,1]上( ) (A)当0f x '≥()时,()()f x g x ≥. (B)当0f x '≥()时,()()f x g x ≤ (C)当0f x '≥()时,()()f x g x ≥.(D)当0f '≥时,()()f x g x ≤【解析】当() 0f x "≥时,()f x 是凹函数而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()() f x g x ≤ 【答案】D(3)设(),f x y是连续函数,则110(,)ydy f x y -=⎰⎰(A)11110(,)(,)x dx f x y dy dx f x y dy --+⎰⎰⎰.(B)1101(,)(,)xdx f x y dy dx f x y dy --+⎰⎰⎰⎰.(C )112cos sin 02(cos ,sin )(cos ,sin ).d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin ).d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰【解析】积分区域如图 0≤y ≤1.1x y ≤≤-用极坐标表示,即:D 1:,012r πθπ≤≤≤≤ D 2: 10,02cos sin r πθθθ≤≤≤≤+【答案】D (4)若{}2211,(cos sin )(cos sin )mina b Rx a x b x dx x a x b x dxππππ--∈--=--⎰⎰,则11cos sin a x b x +=(A )2sin x π.(B)2cos x .(C) 2sin x π. (D)2cos x π. 【解析】令2(,)(cos sin )Z a b x a x b x dx ππ-=--⎰2(cos sin )(cos )0(1)2(cos sin )(sin )0(2)a b Z x a x b x x dx Z x a x b x x dx ππππ--⎧'=---=⎪⎨'=---=⎪⎩⎰⎰由(1)得 202cos 0axdx π=⎰故10,0a a ==由(2)得 0120sin 22sin x xdx b b xdxππ===⎰⎰【答案】A(5)行列式00000000a b abc d c d= (A )(ad-bc )2(B )-(ad-bc )2。

2014年全国硕士研究生入学统一考试数学一试题

2014年全国硕士研究生入学统一考试数学一试题

2014年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)下列曲线中有渐近线的是( )(A )sin y x x =+ (B )2sin y x x =+ (C )1siny x x =+ (D )21sin y x x=+ (2)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x ''≥时,()()f x g x ≥ (D )当()0f x ''≥时,()()f x g x ≤ (3)设(,)f x y 是连续函数,则21101(,)yy dy f x y dx ---=⎰⎰( )(A )21110010(,)(,)x x dx f x y dy dx f x y dy ---+⎰⎰⎰⎰(B )211011(,)(,)xx dx f x y dy dx f x y dy ----+⎰⎰⎰⎰(C )112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰(4)若{}2211,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ππππ--∈--=--⎰⎰,则11cos sin a x b x +=( )(A )2sin x (B )2cos x (C )2sin x π (D )2cos x π(5)行列式00000000a b abc d c d=( )(A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d -(6)设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的( )(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且3.0)(,5.0)(=-=B A P B P ,则=-)(A B P ( ) (A )0.1 (B)0.2 (C)0.3 (D)0.4(8)设连续型随机变量1X 与2X 相互独立且方差均存在,1X 与2X 的概率密度分别为1()f x 与2()f x ,随机变量1Y 的概率密度为)]()([21)(211y f y f y f Y +=,随机变量)(21212X X Y +=,则 (A )2121,DY DY EY EY >> (B )2121,DY DY EY EY == (C )2121,DY DY EY EY <= (B )2121,DY DY EY EY >=二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)曲面)sin 1()sin 1(22x y y x z -+-=在点)1,0,1(处的切平面方程为 . (10)设)(x f 是周期为4的可导奇函数,且()2(1)f x x '=-,[0,2]x ∈,则(7)f = .(11)微分方程0)ln (ln =-+'y x y y x 满足条件3)1(e y =的解为y = . (12)设L 是柱面122=+y x 与平面0=+z y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分Lzdx ydz +=⎰ .(13)设二次型3231222132142),,(x x x ax x x x x x f ++-=的负惯性指数为1,则a 的取值范围是 .(14)设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其他,02,32),(2θθθθx xx f ,其中θ是未知参数,n X X X ,,,21 为来自总体X 的简单随机样本,若∑=ni i X c 12为2θ的无偏估计,则c = .三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限)11ln(])1([lim2112xx dtt e t xtx +--⎰+∞→(16)(本题满分10分)设函数)(x f y =是由方程32260y xy x y +++=确定,求)(x f 的极值. (17)(本题满分10分)设函数)(u f 具有2阶连续导数,)cos (y e f z x=满足22222(4cos )x x z zz e y e x y∂∂+=+∂∂,若0)0(,0)0(='=f f ,求)(u f 的表达式. (18)(本题满分10分)设∑为曲面)1(22≤+=z y x z 的上侧,计算曲面积分dxdy z dzdx y dydz x I )1()1()1(33-+-+-=⎰⎰∑(19)(本题满分10分) 设数列}{},{n n b a 满足n n n n n b a a b a cos cos ,20,20=-<<<<ππ,且级数1n n b ∞=∑收敛.(I )证明:;0lim =∞→n n a(II )证明:级数∑∞=1n nnb a 收敛. (20)(本题满分11分)设E A ,302111104321⎪⎪⎪⎭⎫ ⎝⎛----=为3阶单位矩阵.(I )求方程组0=Ax 的一个基础解系; (II )求满足E AB =的所有矩阵B . (21)(本题满分11分)证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似 (22)(本题满分11分)设随机变量X 的概率分布为21}2{}1{====X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布)2,1)(,0(=i i U ,(I )求Y 的分布函数)(y F Y ; (II )求EY(23)(本题满分11分)设总体X 的分布函数21,0(;)0,0x e x F x x θθ-⎧⎪-≥=⎨⎪<⎩,其中θ是未知参数且大于零,12,,,n X X X 为来自总体X 的简单随机样本.(1)求EX 与2EX ;(2)求θ的最大似然估计量ˆnθ; (3)是否存在实数a ,使得对任何0ε>,都有{}ˆlim 0nn P a θε→∞-≥=?2017考研新大纲权威解析听3小时直播解析,横扫60+增&改考点。

(完整word版)2014-2015年考研数学二真题及答案解析,推荐文档

(完整word版)2014-2015年考研数学二真题及答案解析,推荐文档

2014年全国硕士研究生入学统一考试数学二试题一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(A)50(B)100(C)(D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ ( )(A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000ab a bcd c d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a dbc -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组123,,ααα线性无关的 ( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. (11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y ∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.(19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明: (I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,L 1()(()),n n f x f f x -=L ,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.(21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积. (22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫⎪⎪ ⎪⎪⎝⎭L LM M M M L与00100200n ⎛⎫⎪⎪⎪ ⎪⎝⎭LL M M M M L 相似.2014年全国硕士研究生入学统一考试数学二试题答案一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2xx -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C 【解析】1112'21122432212t t t t t dy t dxtd y dy tdx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ ( )(A)1 (B)23(C)12(D)13【答案】D【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ 22222200011()arctan 11limlimlim lim ()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得 【答案】A【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数 则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7) 行列式0000000ab a bcd c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a d b c - (D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列000000000000a b a b a b a b a cd c b c d dcdc d=--()()ad ad bc bc ad bc =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)12125dx x x -∞=++⎰__________.【答案】38π【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. 【答案】1【解析】()()[]'210,2f x x x =-∈,且为偶函数 则()()[]'212,0f x x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x Q 的周期为4,()()711f f ∴=-= (11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z = 故1111(,)(,)222211,22z z x y∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________. 【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xtx t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)lim lim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………①此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'><所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y xy x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=⎰⎰12D D I dxdy ∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰π 2201211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.【解析】由()cos ,xz f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x xz f e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x x z zz e y e x y∂∂=+∂∂,代入得, ()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =- 则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则 ()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤Q ,()()()0g x a x a ∴≤-≤-ξ()()0xa g t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0u ag t dt u a ≤≤-⎰ ()uaa a g t dt u ∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立. (20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===L L ,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.【解析】123(),(),(),,(),112131n x x x xf x f x f x f x x x x nx====++++L 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数. 又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdxx xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭,(I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTTe e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫⎪⎪ ⎪⎪⎝⎭L LM M M M L 与00100200n ⎛⎫⎪⎪⎪ ⎪⎝⎭LL M M M M L 相似. 【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M L L M ,()12001B n ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭LM =,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T L ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵=0n ⎛⎫⎪⎪Λ ⎪ ⎪⎝⎭O .B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .2015年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:(1~8小题,每小题4分,共32分。

2014考研数学(一)真题

2014考研数学(一)真题

2014年全国硕士研究生招生考试数学(一)真题一、选择题(1—8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求)1.下列曲线有渐近线的是( )。

(A)(B)sin y x x =+2sin y x x =+ (C)1siny x x =+(D)21siny x x =+2.设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0上( )。

,1](A)当时,()0f x '≥()()f x g x ≥ (B)当()0f x '≥时,()()f x g x ≤ (C)当时,()0f x ''≥()()f x g x ≥(D)当()0f x ''≥时,()()f x g x ≤3.设是连续函数,则110(,)ydy f x y dx -=⎰⎰( )。

(A)110010(,)(,)x dx f x y dy dx f x y dy--+⎰⎰⎰(B)11001(,)(,)xdx f x y dy dx f x y dy--+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r ++⎰⎰⎰⎰ππθθπθθθθθdrθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r ++⎰⎰⎰⎰ππθθπθθθθθrdrθ4.若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=( )。

(A)2sin x(B)2cos x(C)2sin x π(D)2cos x π5.行列式0000000aba bc d c d =( )。

(A)(B)(C)(D)2(ad bc -))2(ad bc --2222a dbc -2222b c a d -6.设123,,ααα均为三维向量,则对任意常数,向量组l k ,132,k 3l αααα++线性无关是向量组123,,ααα线性无关的( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(勤奋、求是、创新、奉献)
2014~2015学年第二学期考查试卷
学院__________ 班级_ _ 姓名__________ 学号____________
《分布式控制系统》课程试卷A
主考老师:雷菊阳
(本卷考试时间90 分钟)

一二三四五总得分


20 14 16 30 20 100



一、填空题(本题每空1分,共20分)
1.采用现场总线控制方式具有如下优点
①消除mA
4—模拟仪表通讯的瓶颈现象;,
20
②降低现场安装费用和减少相应的设备;电缆和输入输山卡可以大幅度减少;
③增强了系统的自治性;采用现场总线标准智能仪表后,操作人员可以方便地在控制室刑现场设备进行监控;
④系统组态简单、安装、运行和维修方便。

1.分布式控制系统的特点有集中管理,分散控制。

2.分布式控制系统的组态包括系统组态、画面组态和控制组态。

3.开关量输出单元可分为继电器输出单元、晶体管输出单元、晶闸管输出单元三类。

4.S7程序数据块可分为共享数据块(2)背景数据块(3)用户定义数据块三类
6.PLC工作工程实际上周而复始地执行①读输入扫描过程②执行程序③与网络通讯的扫描过程④自诊断扫描过程⑤写输出扫描
二、论述题(本题共2小题,每小题7分,共14分)
1、最少拍无纹波设计的要求:在典型输入作用下,经过尽可能少的采样周期以后,输出跟随输入,而且在非采样点上也没有纹波。

试分析一下纹波产生的原因并归纳最少拍无纹波设计要点(要说明理由)
2、试描述在分布式控制系统中为什么要采用前馈控制与反馈控制相结合的控制模式?
前馈控制实质是一种按扰动进行调节的开环控制系统,其作用是使被控制变量不受主要扰动作用而产生偏差,其特点是当扰动产生后,被控制变量还未显示出变化以前,根据扰动大小进行调节,以补偿扰动对被控对象的影响。

而反馈控制是误差控制,其作用是克服其余扰动以及前馈补偿不完全的部分。

要实现完全补偿并非易事,因为要得到工业过程的精确数学模型是十分困难的;同时扰动也不是特定的一种。

为保证系统有更大的适应性,工业过程的许多场合把前馈控制和反馈控制结合起来,实现前馈控制与反馈控制相结合的控制模式。

反馈、前馈取长补短,形成前馈—反馈控制方案(FFC—FBC)
对主要干扰进行前馈控制——校正及时
对其它干扰进行反馈控制——反馈校正,多干扰控制
三、根据要求给出控制原理图和控制电路图(本题共2小题,每小题8分,共16分)
1、数字PID闭环系统结构图,各部分特点。

在生产过程计算机控制系统中,采用图2.5所示的PID控制,其算式为
比例调节的功能/缺陷
优点:反应快缺点:不能完全消除静差。

积分器/微分器的作用
积分器:积分器的输出值大小取决于对误差的累积结果,虽然误差不变,但积分器的输出还在增加,直至使误差e=0。

积分器的加入相当于能自动调节控制常量u0,消除静差,使系统趋于稳定。

微分器:减小超调,克服振荡,提高稳定性,改善系统动态特性。

2、试设计延时接通/延时断开电路。

要求有输入信号后,停一段时间输出信号才为ON;而输入信号OFF后,输出信号延时一段时间才OFF,并画出梯形图及波形图。

T37、T38为通电型延时继电器,分辨率为100ms,PT为设定值,其延时时间为:分辨率*设定值。

所以T37延时时间=90*100=9s T38延时时间=60*100=6s。

当输入端为1时,开始计数,到延时时间,输出为高电平。

四、计算题(本题共2小题,每小题15分,共30分)
1、闭环系统对于某种特定的输入下在最少个采样周期内达到无静差的稳态,要求其闭环脉冲传递函数具
有有限多项式的形式 现取 下面实例能验证这一论断吗?请计算以后加以说明
实例:当输入为离散阶跃信号时,试用长除法求系统的响应并画出图形,观察结果有何规律性。

当达到无静差的稳态时, φ(z )的系数应满足什么关系。

当要求系统最快跟踪上输入时,其系数又具有什么形式。

11()N N z m z m z φ--=++ 12345
12345()z m z m z m z m z m z φ-----=++++
2、设计计算机单位反馈控制系统,
T=1秒,单位速度输入时,按最少拍法设计数字控制器D(z)。

在上述系统下,当输入分别改为单位阶跃和单位加速度输入时,其相应的响应具有什么样的特点。

采用长除法求输出相应C(z),并画出输入和输出的响应图。

通过本例的计算,你能得出怎样的结论?
)1(10)(+=s s s G c s e s H Ts
--=1)(0
五、综合题(20分)
搅拌控制系统程序设计
控制说明:
如图所示为一搅拌控制系统,由模拟量液位传感器来检测液位的高、中和低。

现要求对A、B两种液体原料按等比例混合,请编写控制程序并写出设备表及标签表。

要求:按起动按钮后系统自动运行,首先打开进料泵1,开始加入液料A→中液位2时,则关闭进料泵1,打开进料泵2,开始加入液料B→高液位3时,关闭进料
泵2,起动搅拌器→搅拌10s后,关闭搅拌器,开启放料泵→当低液位1后,延
时5s后关闭放料泵。

按停止按钮,系统应立即停止运行。

相关文档
最新文档