2018版高考数学理人教A版全国一轮复习练习 第三章 导
高考数学一轮复习第三章三角函数解三角形课时作业21同角三角函数的基本关系与诱导公式课件理新人教A版

12.已知11+ -ttaannxx=3+2 2,则 sinx(sinx-3cosx)的值为________。
解析 由11+ -ttaannxx=3+2 2得 tanx= 22,所以 sinx(sinx-3cosx)=sin2x -3sinxcosx=sins2ixn-2x+3sicnoxsc2oxsx=tanta2xn-2x+3ta1nx=13- 2。
C.35
D.45
解析 sinα=45,cosα=35,sinα-2 0217π=-cosα=-35。故选 B。 答案 B
4.若 cosπ2-α= 32,则 cos(π-2α)=(
)
A.29
B.59
C.-29
D.-59
解析 由 cosπ2-α= 32,得 sinα= 32。所以 cos(π-2α)=-cos2α= -(1-2sin2α)=2sin2α-1=2×29-1=-59。故选 D。
解析 原式=cosα sin2αco+s2cαos2α+sinα· sin2αsi+n2cαos2α=cosα|co1sα|+ sinα|si1nα|,因为 α 是第二象限角,所以 sinα>0,cosα<0,所以 cosα|co1sα|+ sinα|si1nα|=-1+1=0,即原式等于 0。
答案 0
答案 A
7.已知
α∈23π,2π,且满足
cosα+2
0217π=35,则
sinα+cosα=(
)
A.-75
B.-15
C.15
D.75
解析 因为 cosα+2 0217π=cosα+1 008π+π2=-sinα=35,且 α∈ 23π,2π,所以 sinα=-35,cosα= 1-sin2α=45,则 sinα+cosα=-35+45= 15。故选 C。
高考数学一轮总复习第三章导数及应用1导数的概念及运算课件理

(2)求过点 P 的曲线的切线方程的步骤为: 第一步,设出切点坐标 P′(x1,f(x1)); 第二步,写出过 P′(x1,f(x1))的切线方程为 y-f(x1)=f′ (x1)(x-x1); 第三步,将点 P 的坐标(x0,y0)代入切线方程,求出 x1; 第四步,将 x1 的值代入方程 y-f(x1)=f′(x1)(x-x1)可得过 点 P(x0,y0)的切线方程.
第二十五页,共46页。
(5)y=-lnx+e-2x,∴y′=-1x+e-2x·(-2x)′=-1x-2e-2x. 【答案】 (1)y′=24x3+9x2-16x-4 (2)y′=(ln3+1)·(3e)x-2xln2 (3)y′=x2+x(1-x2+2x12·)l2nx (4)y′=2sin(4x+23π) (5)y′=-1x-2e-2x
第十二页,共46页。
2.计算: (1)(x4-3x3+1)′=________; (2)(ln1x)′=________; (3)(xex)′=______; (4)(sinx·cosx)′=______. 答案 (1)4x3-9x2 (2)-xln12x (3)ex+xex (4)cos2x
第十三页,共46页。
为 k1,k2,则 k1,k2 的大小关系为( )
A.k1>k2
B.k1<k2
C.k1=k2
D.不确定
答案 A
解析 ∵y=sinx,∴y′=(sinx)′=cosx.
π k1=cos0=1,k2=cos 2 =0,∴k1>k2.
第十五页,共46页。
5.(2018·陕西检测)已知直线 y=-x+m 是曲线 y=x2-3lnx
第二十二页,共46页。
题型二 导数的基本运算
求下列函数的导数: (1)y=(3x3-4x)(2x+1); (3)y=x2ln+x1; (5)y=ln1x+e-2x.
2015届高考数学第一轮复习 第三章 导数及其应用章末检测(新人教A版)

第三章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2013·泰安高三二模)如图,函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)等于 ( )A.12B .1C .2D .02.函数f (x )=ax 3-x 在(-∞,+∞)上是减函数,则 ( )A .a <1B .a <13C .a <0D .a ≤03.(2013·洛阳模拟)已知f (x )=(a +1)x +a x +1,且f (x -1)的图象的对称中心是(0,3),则f ′(2)的值为 ( )A .-19 B.19C .-14 D.144.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为 ( )A.π2B .0C .钝角D .锐角 5.(2013·山东)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为 ( ) A .13万件 B .11万件C .9万件D .7万件6.已知f (x )=2x 3-6x 2+a (a 是常数)在[-2,2]上有最大值3,那么在[-2,2]上f (x )的最小值是 ( )A .-5B .-11C .-29D .-377.(2013·江西) 如图,一个正五角形薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为S (t ) (S (0)=0),则导函数y =S ′(t )的图象大致( )8.已知x ≥0,y ≥0,x +3y =9,则x 2y 的最大值为 ( )A .36B .18C .25D .429.(2013·合肥模拟)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为 ( )A .(-∞,-2)∪(1,+∞)B .(-∞,-2)∪(1,2)C .(-∞,-1)∪(-1,0)∪(2,+∞)D .(-∞,-1)∪(-1,1)∪(3,+∞)10.如图所示的曲线是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于 ( )A.89B.109C.169D.5411.(2013·宝鸡高三检测三)已知f ′(x )是f (x )的导函数,在区间[0,+∞)上f ′(x )>0,且偶函数f (x )满足f (2x -1)<f ⎝⎛⎭⎫13,则x 的取值范围是 ( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 12.(2013·唐山月考)已知函数y =f (x )=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p ,q 的值分别为 ( )A .6,9B .9,613.函数f (x )=x ln x 在(0,5)上的单调递增区间是____________.14.(2013·安庆模拟)已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=x +sin x ,则f (1),f (2),f (3)的大小关系为________________________.15.(2013·福建改编)22(1cos )x dx ππ-+⎰=________. 16.下列关于函数f (x )=(2x -x 2)e x 的判断正确的是________(填写所有正确的序号). ①f (x )>0的解集是{x |0<x <2};②f (-2)是极小值,f (2)是极大值;③f (x )没有最小值,也没有最大值.三、解答题(本大题共6小题,共70分)17.(10分)设f (x )=x 3-12x 2-2x +5. (1)求函数f (x )的单调递增、递减区间;(2)当x ∈[-1,2]时,f (x )<m 恒成立,求实数m 的取值范围.18.(12分)(2013·莆田月考)已知函数f (x )=23x 3-2ax 2+3x (x ∈R ). (1)若a =1,点P 为曲线y =f (x )上的一个动点,求以点P 为切点的切线斜率取得最小值时的切线方程;(2)若函数y =f (x )在(0,+∞)上为单调增函数,试求满足条件的最大整数a .19.(12分)(2013·福州高三质检)已知函数f (x )=x ln x .(1)求f (x )的极小值;(2)讨论关于x 的方程f (x )-m =0 (m ∈R )的解的个数.20.(12分)(2013·全国)已知函数f (x )=3ax 4-2(3a +1)x 2+4x .(1)当a =16时,求f (x )的极值; (2)若f (x )在(-1,1)上是增函数,求a 的取值范围.21.(12分)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?22.(12分)(2013·黄山模拟)设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点.(1)求a 和b 的值;(2)讨论f (x )的单调性;(3)设g (x )=23x 3-x 2,试比较f (x )与g (x )的大小.答案 1.C [由题意知f ′(5)=-1,f (5)=-5+8=3,所以f (5)+f ′(5)=3-1=2.]2.D [由题意知,f ′(x )=3ax 2-1≤0在(-∞,+∞)上恒成立,a =0时,f ′(x )≤0在(-∞,+∞)上恒成立;a >0时,1a≥3x 2在(-∞,+∞)上恒成立,这样的a 不存在; a <0时,1a≤3x 2在(-∞,+∞)上恒成立,而3x 2≥0, ∴a <0.综上,a ≤0.]3.B [f (x )=a +1-1x +1,中心为(-1,a +1),由f (x -1)的中心为(0,3)知f (x )的中心为(-1,3),∴a =2.∴f (x )=3-1x +1. ∴f ′(x )=1(x +1)2.∴f ′(2)=19.] 4.C [f ′(x )=e x sin x +e x cos x=e x (sin x +cos x )=2e x sin ⎝⎛⎭⎫x +π4, f ′(4)=2e 4sin ⎝⎛⎭⎫4+π4<0, 则此函数图象在点(4,f (4))处的切线的倾斜角为钝角.]5.C [∵y ′=-x 2+81,令y ′=0得x =9(x =-9舍去).当0<x ≤9时,y ′≥0,f (x )为增函数,当x >9时,y ′<0,f (x )为减函数.∴当x =9时,y 有最大值.]6.D [f ′(x )=6x 2-12x ,若f ′(x )>0,则x <0或x >2,又f (x )在x =0处连续,∴f (x )的增区间为[-2,0).同理f ′(x )<0,得减区间(0,2].∴f (0)=a 最大.∴a =3,即f (x )=2x 3-6x 2+3.比较f (-2),f (2)得f (-2)=-37为最小值.]7.A [利用排除法.∵露出水面的图形面积S (t )逐渐增大,∴S ′(t )≥0,排除B.记露出最上端小三角形的时刻为t 0.则S (t )在t =t 0处不可导.排除C 、D ,故选A.]8.A [由x +3y =9,得y =3-x 3≥0,∴0≤x ≤9. 将y =3-x 3代入u =x 2y , 得u =x 2⎝⎛⎭⎫3-x 3=-x 33+3x 2. u ′=-x 2+6x =-x (x -6).令u ′=0,得x =6或x =0.当0<x <6时,u ′>0;6<x <9时,u ′<0.∴x =6时,u =x 2y 取最大值36.]9.D [由f (x )的图象可知,在(-∞,-1),(1,+∞)上f ′(x )>0,在(-1,1)上f ′(x )<0. 由(x 2-2x -3)f ′(x )>0,得⎩⎪⎨⎪⎧ f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧ f ′(x )<0,x 2-2x -3<0. 即⎩⎪⎨⎪⎧ x >1或x <-1,x >3或x <-1或⎩⎪⎨⎪⎧-1<x <1-1<x <3, 所以不等式的解集为(-∞,-1)∪(-1,1)∪(3,+∞).]10.C [由图象知f (x )=x (x +1)(x -2)=x 3-x 2-2x =x 3+bx 2+cx +d ,∴b =-1,c =-2,d =0.而x 1,x 2是函数f (x )的极值点,故x 1,x 2是f ′(x )=0,即3x 2+2bx +c =0的根,∴x 1+x 2=-2b 3,x 1x 2=c 3, x 21+x 22=(x 1+x 2)2-2x 1x 2=49b 2-2c 3=169.] 11.A [∵x ∈[0,+∞),f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又因f (x )是偶函数,∴f (2x -1)<f ⎝⎛⎭⎫13⇔f (|2x -1|)<f ⎝⎛⎭⎫13⇒|2x -1|<13,∴-13<2x -1<13. 即13<x <23.] 12.A [y ′=3x 2+2px +q ,令切点为(a,0),a ≠0,则f (x )=x (x 2+px +q )=0有两个不相等实根a,0 (a ≠0),∴x 2+px +q =(x -a )2.∴f (x )=x (x -a )2,f ′(x )=(x -a )(3x -a ).令f ′(x )=0,得x =a 或x =a 3. 当x =a 时,f (x )=0≠-4,∴f ⎝⎛⎭⎫a 3=y 极小值=-4,即427a 3=-4,a =-3,∴x 2+px +q =(x +3)2. ∴p =6,q =9.]13.⎝⎛⎭⎫1e ,5解析 ∵f ′(x )=ln x +1,f ′(x )>0,∴ln x +1>0,ln x >-1,∴x >1e.∴递增区间为⎝⎛⎭⎫1e ,5. 14.f (3)<f (1)<f (2)解析 由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称, 又当x ∈⎝⎛⎭⎫-π2,π2时,f ′(x )=1+cos x >0恒成立, 所以f (x )在⎝⎛⎭⎫-π2,π2上为增函数,。
高考数学大复习 第三章 导数及其应用 3.1 导数的概念及运算教师用书 文 苏教版(2021年最新

(江苏专用)2018版高考数学大一轮复习第三章导数及其应用3.1 导数的概念及运算教师用书文苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习第三章导数及其应用3.1 导数的概念及运算教师用书文苏教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习第三章导数及其应用3.1 导数的概念及运算教师用书文苏教版的全部内容。
3.1 导数的概念及运算1。
导数与导函数的概念(1)设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),若Δx无限趋近于0时,比值错误!=错误!无限趋近于一个常数A,则称f(x)在x=x0处可导,并称该常数A为函数f(x)在x=x0处的导数(derivative),记作f′(x0)。
(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数。
记作f′(x)或y′。
2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0)。
3.基本初等函数的导数公式基本初等函数导函数f(x)=C(C为常数)f′(x)=0f(x)=xα(α为常数)f′(x)=αxα-1f(x)=sin x f′(x)=cos xf(x)=cos x f′(x)=-sin xf(x)=e x f′(x)=e xf(x)=a x(a>0,a≠1)f′(x)=a x ln af(x)=ln x f′(x)=错误!f(x)=log a x(a>0,a≠1)f′(x)=错误!4。
2018版高考数学(理)一轮复习文档第三章导数及其应用3-3Word版含解析

1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.函数f(x)在闭区间[-a,a]上连续,则有(1)若f(x)为偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(2)若f(x)为奇函数,则ʃa-a f(x)d x=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( × ) (4)微积分基本定理中的F (x )是唯一的.( × )(5)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × )1.(2017·福州质检)ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1 答案 C解析 ʃ10(e x +2x )d x =(e x +x 2)|10=e +1-1=e.2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8),图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=(2x 2-14x 4)|20=8-14×24=4,故选D.3.(教材改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是( )A.132 m B .6 m C.152 m D .7 m 答案 A解析 s =ʃ21(3t +2)d t =(32t 2+2t )|21=32×4+4-(32+2) =10-72=132(m).4.若ʃT 0x 2d x =9,则常数T 的值为________.答案 3解析 ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 5.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](e 为自然对数的底数),则ʃe 0f (x )d x 的值为________.答案 43解析 ʃe 0f (x )d x =ʃ10x 2d x +ʃe 11xd x =13x 3|10+ln x |e1=13+ln e =43.题型一 定积分的计算例1 (1)(2016·九江模拟)若ʃ10(2x +λ)d x =2(λ∈R ),则λ等于( ) A .0 B .1 C .2 D .-1(2)定积分ʃ2-2|x 2-2x |d x 等于( )A .5B .6C .7D .8 答案 (1)B (2)D解析 (1)ʃ10(2x +λ)d x =(x 2+λx )|10=1+λ=2,所以λ=1.(2)ʃ2-2|x 2-2x |d x=ʃ0-2(x 2-2x )d x +ʃ20(2x -x 2)d x=(x 33-x 2)|0-2+(x 2-x 33)|20 =83+4+4-83=8. 思维升华 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分.(1)若π20(sin cos )d 2x a x x ⎰-=,则实数a 的值为( )A .-1B .1C .- 3 D. 3(2)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( )A.34B.45C.56D.67 答案 (1)A (2)C 解析 ππ220(1)(sin cos )d (cos sin )|x a x x x a x ⎰-=--=0-a -(-1-0)=1-a =2, ∴a =-1.(2)ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=13x 3|10+(2x -12x 2)|21 =13+(4-12×4)-(2-12) =56. 题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例2 (1)计算:ʃ313+2x -x 2d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y =0围成的图形的面积, ∴ʃ313+2x -x 2d x =14×π×4=π.(2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y=0围成的图形的面积, 又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m=-1.命题点2求平面图形的面积例3(2017·青岛月考)由曲线xy=1,直线y=x,y=3所围成的封闭平面图形的面积为______.答案4-ln 3解析 由xy =1,y =3可得交点坐标为(13,3).由xy =1,y =x 可得交点坐标为(1,1), 由y =x ,y =3得交点坐标为(3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1312311113311(3)d (3)d (3ln )|(3)|2x x x x x x x x -+-=-+-⎰⎰ =(3-1-ln 3)+(9-92-3+12)=4-ln 3.思维升华 (1)根据定积分的几何意义可计算定积分; (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.(1)定积分ʃ309-x 2d x 的值为( )A .9πB .3π C.94π D.92π (2)由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________. 答案 (1)C (2)163解析 (1)由定积分的几何意义知ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故ʃ309-x 2d x =π·324=94π,故选C.(2)由⎩⎪⎨⎪⎧y =2x 2,y =-4x -2,解得x =-1,依题意可得,所求的封闭图形的面积为ʃ1-1(2x 2+4x +2)d x =(23x 3+2x 2+2x )|1-1=(23×13+2×12+2×1)-[23×(-1)3+2×(-1)2+2×(-1)]=163. 题型三 定积分在物理中的应用例4 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2答案 C解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40(7-3t +251+t )d t =[7t -32t 2+25ln(1+t )]|40 =28-24+25ln 5=4+25ln 5.思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 J C.433 J D .2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x =⎪⎪⎣⎡⎦⎤⎝⎛⎭⎫5x -13x 3×3221=433, ∴F (x )做的功为433 J.4.利用定积分求面积典例 由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________. 错解展示解析 所求面积S =ʃ20(x 2-1)d x =(13x 3-x )|20=23. 答案 23现场纠错解析 如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0).所以S =ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=(x -x 33)|10+(x 33-x )|21=(1-13)+[83-2-(13-1)]=2.答案 2纠错心得 利用定积分求面积时要搞清楚定积分和面积的关系;定积分可正可负,而面积总为正.1.π220sin d 2xx等于( ) A .0 B.π4-12 C.π4-14D.π2-1答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰π2011π1(sin )|.2242x x =-=- 2.ʃ101-x 2 d x 的值为( )A.14B.π4C.12D.π2 答案 B 解析 ʃ101-x 2 d x 的几何意义为以(0,0)为圆心,以1为半径的圆位于第一象限的部分,圆的面积为π, 所以ʃ101-x 2 d x =π4.3.(2016·南昌模拟)若ʃa 1(2x +1x )d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .6 答案 A解析 由题意知ʃa 1(2x +1x )d x =(x 2+ln x )|a 1=a 2+ln a -1=3+ln 2,解得a =2. 4.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .2 答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x =ʃ10(1-x )d x +ʃ21(x -1)d x=(x -x 22)|10+(x 22-x )|21=(1-12)+(222-2)-(12-1)=1.5.由曲线f (x )=x 与y 轴及直线y =m (m >0)围成的图形的面积为83,则m 的值为( )A .2B .3C .1D .8 答案 A解析 22333200228(()|,333m mS m x mx x m m ==-=-=⎰解得m =2.6.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1答案 B解析 方法一 S 1=13x 3|21=83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.7.π)d 4x x +=________.答案 2解析 依题意得π)d 4x x +ππ220(sin cos )d (sin cos )|x x x x x =+=-⎰=(sin π2-cos π2)-(sin 0-cos 0)=2.8.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.答案3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰=sin π3-(-sin π3)= 3.*9.(2016·湖北省重点中学高三阶段性统一考试)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________. 答案 -4解析 因为f (x )=x 3+x 2f ′(1), 所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故ʃ20f (x )d x =ʃ20(x 3-3x 2)d x =(x 44-x 3)|20=-4. 10.已知f (a )=ʃ10(2ax 2-a 2x )d x ,则函数f (a )的最大值为________.答案 29解析 f (a )=ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10=-12a 2+23a , 由二次函数的性质可得f (a )max =-(23)24×(-12)=29. 11.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积. 解 由⎩⎪⎨⎪⎧ y =x ,y =2-x得交点A (1,1); 由⎩⎪⎨⎪⎧y =2-x ,y =-13x 得交点B (3,-1).故所求面积S =ʃ10⎝⎛⎭⎫x +13x d x +ʃ31⎝⎛⎭⎫2-x +13x d x 32123201211()|(2)|363x x x x =++- =23+16+43=136. 12.(2016·武汉模拟)如图,矩形OABC 的四个顶点依次为O (0,0),A (π2,0),B (π2,1),C (0,1),记线段OC ,CB 以及y =sin x (0≤x ≤π2)的图象围成的区域(图中阴影部分)为Ω,若向矩形OABC 内任意投一点M ,求点M 落在区域Ω内的概率.解 阴影部分的面积为π20π(1sin )d 1,2x x -=-⎰ 矩形的面积是π2×1=π2, 所以点M 落在区域Ω内的概率为π2-1π2=1-2π. *13.已知函数y =F (x )的图象是折线段ABC ,其中A (0,0),B (12,5),C (1,0),求函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积.解 由题意,F (x )=⎩⎨⎧ 10x ,0≤x ≤12,-10x +10,12<x ≤1, 则xF (x )=⎩⎨⎧ 10x 2,0≤x ≤12,-10x 2+10x ,12<x ≤1,所以函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为11122323122101022101010d (1010)d |(5)|33x x x x x x x x +-+=+-⎰⎰ =103×18+(5-103)-(54-103×18)=54.。
2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

1 由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x, 3 5 知f′(1)=-4-a=-2,解得a=4.
x2-4x-5 x 5 3 所以f(x)=4+4x-ln x-2,则f′(x)= , 4x2 令f′(x)=0,解得x=-1或x=5, 因x=-1不在f(x)的定义域(0,+∞)内,故舍去. 当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数; 当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增 函数. 所以函数f(x)的单调递增区间为(5,+∞),单调递减区 间为(0,5).
值对不等式解集的影响进行分类讨论.
求函数的单调区间
[例2] x a 3 已知函数f(x)= 4 + x -ln x- 2 ,其中a∈R,且曲
1 线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x,求函数f(x) 的单调区间.
[解]
1 a 1 对f(x)求导得f′(x)=4-x2-x,
第二节 导数与 函数的 单调性
本节主要包括2个知识点: 1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.
突破点(一)
基础联通
利用导数讨论函数的单调性或求函数的单调区间
抓主干知识的“源”与“流”
1.函数的单调性与导数的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
考点贯通
抓高考命题的“形”与“神”
证明或讨论函数的单调性
判断函数单调性的三种方法
重庆市万州分水中学高考数学一轮复习 第三章第一节 导数的概念、几何意义及运算指导课件 新人教A版

值,m=
的近似代替值f(4.008)≈f(4)+f′(4)(4.008-4)>m.
【答案】 C
类型 导数的几何意义不清致误
【例】 求曲线y=x3+3x2-5过点M(1,-1)的切线方程.
【正解】 ∵y=x3+3x2-5,∴y′=3x2+6x. 设切点为P(x0,y0),则y′|x=x0=3x+6x0,曲线在点P处的切线方程 为y-y0=(3x+6x0)(x-x0). 又切线过点M(1,-1),则-1-y0=(3x+6x0)(1-x0), 整理得y0=3x+3x-6x0-1. ∵点P(x0,y0)在曲线上,∴y0=x+3x-5. ∴x+3x-5=3x+3x-6x0-1, 整理得x-3x0+2=0,即(x0-1)2(x0+2)=0. 解得x0=1,或x0=-2,∴切点为P(1,-1),或P(-2,-1),故 所求的切线方程为9x-y-10=0,或y=-1.
∵y=2x2,∴y′=4x,y′|x=x0=4x0.
令kAD=
=4x0,得x0=1,此时D(1,2),kAD=
=4.
直线AD的方程为y=4x-2. 要实现不被曲线C挡住,则实数a<4×3-2=10.
即实数a的取值范围是(-∞,10).
答案:D
二、填空题 6.曲线f(x)=sinx+ex+2在x=0处的切线方程为_____________.
答案:(n+1)e 5.(文)已知函数f(x)=- sinπx,且f′(1)=2,则a的值为________. 解析:∵f′(x)=-acosπx,∴f′(1)=-acosπ=a=2. 答案:2 (理)(2009年湖北卷)已知函数f(x)=f′( )cosx+sinx,则f( )的值 为________. 解析:∵f(x)=f′( )cosx+sinx,∴f′(x)=-f′( )sinx+cosx
高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

第十一节 导数在函数研究中的应用1.函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.函数的极值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f __′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f __′(x ).(2)在定义域内解不等式f __′(x )>0或f __′(x )<0. (3)根据结果确定f (x )的单调区间. 易误提醒1.在某个区间(a ,b )上,若f ′(x )>0,则f (x )在这个区间上单调递增;若f ′(x )<0,则f (x )在这个区间上单调递减;若f ′(x )=0恒成立,则f (x )在这个区间上为常数函数;若f ′(x )的符号不确定,则f (x )不是单调函数.2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[自测练习]1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).答案:A2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.易误提醒 f ′(x 0)=0是x 0为f (x )的极值点的非充分非必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.[自测练习]3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D考点一 利用导数研究函数的单调性|(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0, 所以f (x )在(0,+∞)单调递增. 若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 单调递增, 在⎝⎛⎭⎫1a ,+∞单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).利用导数研究函数的单调性应注意两点(1)在区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (2)可导函数f (x )在(a ,b )内是增(减)函数的充要条件是:∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.1.已知函数f (x )=m ln x -12x 2(m ∈R ),求函数f (x )的单调区间.解:函数f (x )=m ln x -12x 2的定义域是(0,+∞).f ′(x )=mx -x =m -x 2x .当m ≤0时,f ′(x )≤-x 2x=-x <0,函数f (x )=m ln x -12x 2在(0,+∞)上为减函数.当m >0时,令f ′(x )=0,得:x =m 或-m (舍去). 当x ∈(0,m )时,f ′(x )>0, ∴f (x )在(0,m )上是增函数. 当x ∈(m ,+∞)时,f ′(x )<0, ∴f (x )在(m ,+∞)上是减函数.综上所述,当m ≤0时,f (x )的单调递减区间为(0,+∞),当m >0时,f (x )的单调递增区间为(0,m ),单调递减区间为(m ,+∞).考点二 已知单调性求参数范围|(2015·福州模拟)已知函数f (x )=e x 2-1e x -ax (a ∈R ).(1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在[-1,1]上为单调函数,求实数a 的取值范围. [解] (1)当a =32时,f (x )=e x 2-1e x -32x ,f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2),令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,则0<x <ln 2.∴f (x )在(-∞,0],[ln 2,+∞)上单调递增,在(0,ln 2)上单调递减. (2)f ′(x )=e x 2+1e x -a ,令e x =t ,由于x ∈[-1,1],∴t ∈⎣⎡⎦⎤1e ,e .令h (t )=t 2+1t ⎝⎛⎭⎫t ∈⎣⎡⎦⎤1e ,e , h ′(t )=12-1t 2=t 2-22t2,∴当t ∈⎣⎡⎭⎫1e ,2时,h ′(t )<0,函数h (t )为单调减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数. 故h (t )在⎣⎡⎦⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝⎛⎭⎫1e =12e +e ,∴2≤h (t )≤e +12e.∵函数f (x )在[-1,1]上为单调函数,若函数在[-1,1]上单调递增,则a ≤t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≤2;若函数f (x )在[-1,1]上单调递减,则a ≥t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≥e +12e,综上可得a ≤ 2或a ≥e +12e.已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.提醒:f (x )为增函数的充要条件是对任意的x ∈(a ,b ),都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.2.已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数). (1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解:(1)函数f (x )的定义域为R ,f ′(x )=e x -a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0, ∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x , ∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x -1在(2,+∞)上恒成立,令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立, 即L (x )=e x -x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0, 即h (x )=x e x +1e x -1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.考点三 利用导数研究极值|设函数f (x )=x 2-ax +b .讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值. [解] f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时, 函数f (sin x )单调递减;x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值 f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24.3.(2015·太原一模)已知函数f (x )=(x 2-ax +a )e x -x 2,a ∈R . (1)若函数f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若函数f (x )在x =0处取得极小值,求a 的取值范围. 解:(1)由题意得f ′(x )=x [(x +2-a )e x -2]= x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , ∵f (x )在(0,+∞)上单调递增, ∴f ′(x )≥0在(0,+∞)上恒成立, ∴x +2-2ex ≥a 在(0,+∞)上恒成立,又函数g (x )=x +2-2e x 在(0,+∞)上单调递增,∴a ≤g (0)=0,∴a 的取值范围是(-∞,0].(2)由(1)得f ′(x )=x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , 令f ′(x )=0,则x =0或x +2-2e x -a =0,即x =0或g (x )=a ,∵g (x )=x +2-2e x 在(-∞,+∞)上单调递增,其值域为R ,∴存在唯一x 0∈R ,使得g (x 0)=a ,①若x 0>0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,x 0)时,g (x )<a ,f ′(x )<0,∴f (x )在x =0处取得极大值,这与题设矛盾.②若x 0=0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处不取极值,这与题设矛盾.③若x 0<0,当x ∈(x 0,0)时,g (x )>a ,f ′(x )<0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处取得极小值.综上所述,x 0<0,∴a =g (x 0)<g (0)=0, ∴a 的取值范围是(-∞,0). 8.分类讨论思想在导数中的应用【典例】 (2015·贵阳期末)已知函数f (x )=ax -ae x (a ∈R ,a ≠0).(1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围.[思维点拨] (1)求f ′(x )后判断f (x )在(-∞,+∞)上的单调性,可求极值. (2)分类讨论f (x )在(-∞,+∞)的单调性,利用极值建立所求参数a 的不等式求解. [解] (1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F (x )没有零点,当且仅当F (2)=ae 2+1>0,解得a >-e 2,所以此时-e 2<a <0;②当a >0时,F (x ),F ′(x )的变化情况如下表:因为F (2)>F (1)>0,且F ⎝⎛⎭⎫1-10a =e1-10a -10e1-10a <e -10e1-10a <0, 所以此时函数F (x )总存在零点. (或:当x >2时,F (x )=a (x -1)e x+1>1,当x <2时,令F (x )=a (x -1)e x+1<0,即a (x -1)+e x <0, 由于a (x -1)+e x <a (x -1)+e 2, 令a (x -1)+e 2≤0,得x ≤1-e 2a ,即x ≤1-e 2a时,F (x )<0,即F (x )存在零点)综上所述,所求实数a 的取值范围是(-e 2,0).[思想点评] 分类讨论思想在导数研究函数的应用中运用普遍常见的分类讨论点有: (1)f ′(x )=0是否有根.(2)若f ′(x )=0有根,根是否在定义域内. (3)若f ′(x )=0有两根,两根大小比较问题.A 组 考点能力演练1.(2015·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:A 、B 为单调函数,不存在极值,C 不是奇函数,故选D. 答案:D2.(2016·厦门质检)函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,1]C .(1,+∞)D .(0,2)解析:由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B3.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A.23B.43C.83D.163解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1·x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1·x 2=4-43=83,故选C.答案:C4.已知函数f (x )=x ⎝⎛⎭⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析:因为f (-x )=-x ⎝ ⎛⎭⎪⎫e -x -1e -x =x ⎝⎛⎭⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*).又f ′(x )=e x-1e x +x ⎝⎛⎭⎫e x +1e x =e 2x(x +1)+x -1ex,当x ≥0时,e 2x (x +1)+x -1≥e 0(0+1)+0-1=0,所以f ′(x )≥0,所以f (x )在[0,+∞)上为增函数,由(*)式得|x 1|<|x 2|,即x 21<x 22,故选D.答案:D5.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案:C6.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞7.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎪⎨⎪⎧a >2,a 3<2,∴2<a <6.答案:(2,6)8.(2015·兰州一模)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2.答案:(-∞,2ln 2-2)9.已知函数f (x )=x -2ln x -ax +1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围; (2)求g (x )的最大值.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0). 因为-(x -1)2+1≤1(当x =1时,取等号), 所以a 的取值范围是[1,+∞). (2)g ′(x )=e x ⎝⎛⎭⎫2x -1+2ln x -x , 由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.10.(2015·安徽六校联考)设函数f (x )=(x -1)e x -kx 2(其中k ∈R ). (1)当k =1时,求函数f (x )的单调区间和极值;(2)当k ∈[0,+∞)时,证明函数f (x )在R 上有且只有一个零点.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎡⎦⎤0,e2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增. ∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝⎛⎭⎫e2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增. f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t , g ″(t )=e t -2,∵t >2,∴g ″(t )>0,g ′(t )在(2,+∞)上单调递增. ∴g ′(t )>g ′(2)=e 2-4>0,∴g (t )在(2,+∞)上单调递增. ∴g (t )>g (2)=e 2-4>0. ∴f (k +1)>0.∴f (x )在[1,+∞)上有且只有一个零点.综上,当k ∈[0,+∞)时,f (x )在R 上有且只有一个零点.B 组 高考题型专练1.(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 所以3a ·169+2·⎝⎛⎭⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 2.(2015·高考安徽卷)已知函数f (x )=ax (x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar=400,求f (x )在(0,+∞)内的极值.解:(1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4,所以当x <-r 或x >r 时,f ′(x )<0,当-r <x <r 时,f ′(x )>0,因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞);f (x )的单调递增区间为(-r ,r ). (2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减. 因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)上的极大值为f (r )=ar (2r )2=a 4r =4004=100.3.(2016·宁夏银川一中联考)函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解:(1)∵f ′(x )=2x -2x,令f ′(x )=0,∵x >0,∴x =1.x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减1单调递增∴f (x )的极小值为1,无极大值.(2)∵k (x )=f (x )-h (x )=-2ln x +x -a ,k ′(x )=-2x +1.若k ′(x )=0,则x =2.当x ∈[1,2)时,k ′(x )<0;当x ∈(2,3]时,k ′(x )>0. 故k (x )在x ∈[1,2)上单调递减,在x ∈(2,3]上单调递增.∴{ k (1)≥0,k (2)<0,k (3)≥0,∴{a ≤1,a >2-2ln 2,a ≤3-2ln 3, ∴实数a 的取值范围是(2-2ln 2,3-2ln 3].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础巩固题组 (建议用时:40分钟)一、选择题1.方程x 3-6x 2+9x -10=0的实根个数是( ) A.3B.2C.1D.0解析 设f (x )=x 3-6x 2+9x -10,f ′(x )=3x 2-12x +9=3(x -1)(x -3),由此可知函数的极大值为f (1)=-6<0,极小值为f (3)=-10<0,所以方程x 3-6x 2+9x -10=0的实根个数为1. 答案 C2.若存在正数x 使2x (x -a )<1成立,则实数a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞)D.(-1,+∞)解析 ∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1,∴实数a 的取值范围为(-1,+∞). 答案 D3.(2017·山东省实验中学诊断)若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A.3f (1)<f (3) B.3f (1)>f (3) C.3f (1)=f (3)D.f (1)=f (3)解析 由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2<0恒成立,因此f (x )x在R 上是单调递减函数,∴f (3)3<f (1)1,即3f (1)>f (3).答案 B4.(2017·德阳模拟)方程f (x )=f ′(x )的实数根x 0叫作函数f (x )的“新驻点”,如果函数g (x )=ln x 的“新驻点”为a ,那么a 满足( ) A.a =1B.0<a <1C.2<a<3D.1<a<2解析∵g′(x)=1x,∴ln x=1x.设h(x)=ln x-1 x,则h(x)在(0,+∞)上为增函数.又∵h(1)=-1<0,h(2)=ln 2-12=ln 2-ln e>0,∴h(x)在(1,2)上有零点,∴1<a<2.答案 D5.(2017·贵阳联考)已知函数f(x)的定义域为[-1,4],部分对应值如下表:f(x)的导函数y=f′(x)f(x)-a的零点的个数为()A.1B.2C.3D.4解析根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.由于f(0)=f(3)=2,1<a<2,所以y=f(x)-a的零点个数为4.答案 D二、填空题6.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=________.解析设f(x)=x3-3x+c,对f(x)求导可得,f′(x)=3x2-3,令f′(x)=0,可得x =±1,易知f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2. 答案 -2或27.若函数f (x )=ax -ln x 在⎝ ⎛⎭⎪⎫12,+∞上单调递增,则实数a 的取值范围为________.解析 由已知得f ′(x )=a -1x ≥0对∀x ∈⎝ ⎛⎭⎪⎫12,+∞恒成立,∴a ≥1x 对∀x ∈⎝ ⎛⎭⎪⎫12,+∞恒成立,∵1x <112=2,∴a ≥2.答案 [2,+∞)8.(2017·安徽江南名校联考)已知x ∈(0,2),若关于x 的不等式x e x <1k +2x -x 2恒成立,则实数k 的取值范围为________. 解析 依题意,知k +2x -x 2>0.即k >x 2-2x 对任意x ∈(0,2)恒成立,从而k ≥0, 因此由原不等式,得k <e x x +x 2-2x 恒成立.令f (x )=e x x +x 2-2x ,则f ′(x )=(x -1)⎝ ⎛⎭⎪⎫e xx 2+2.令f ′(x )=0,得x =1,当x ∈(1,2)时,f ′(x )>0,函数f (x )在(1,2)上单调递增,当x ∈(0,1)时,f ′(x )<0,函数f (x )在(0,1)上单调递减,所以k <f (x )min =f (1)=e -1,故实数k 的取值范围是[0,e -1). 答案 [0,e -1) 三、解答题9.设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.解 令g (x )=(x +1)ln(x +1)-ax ,则g ′(x )=ln(x +1)+1-a . (1)当a ≤1时,1-a ≥0,∵x ≥0,∴ln(x +1)≥0, ∴g ′(x )≥0,∴g (x )在[0,+∞)上是增函数, ∴g (x )≥g (0)=0,∴当a ≤1时,(x +1)ln(x +1)≥ax 对x ≥0都成立. (2)当a >1时,令g ′(x )=0解得x =e a -1-1.当0<x <e a -1-1时,g ′(x )<0;当x >e a -1-1时,g ′(x )>0, ∴g (x )在(0,e a -1-1)上递减,在(e a -1-1,+∞)上递增, ∴g (e a -1-1)<g (0)=0,∴当a >1时,不是对所有的x ≥0,都有f (x )≥ax 成立. 综上,由(1)(2)可知,实数a 的取值范围是(-∞,1]. 10.(2017·武汉调研)已知函数f (x )=ln x -a (x -1)x(a ∈R ). (1)求函数f (x )的单调区间;(2)求证:不等式(x +1)ln x >2(x -1)对∀x ∈(1,2)恒成立. (1)解 定义域为(0,+∞),f ′(x )=x -a x 2.①a ≤0时,f ′(x )>0,f (x )在(0,+∞)上为增函数;②a >0时,f (x )在(a ,+∞)上为增函数,在(0,a ) 上为减函数. (2)证明 法一 ∵x ∈(1,2),∴x +1>0, ∴要证原不等式成立,即证ln x >2(x -1)x +1对∀x ∈(1,2)恒成立,令g (x )=ln x-2(x -1)x +1,g ′(x )=(x -1)2(x +1)2≥0,∴g (x )在(0,+∞)上为增函数,∴当x ∈(1,2)时,g (x )>g (1)=ln 1-2(1-1)1+1=0,∴ln x >2(x -1)x +1对∀x ∈(1,2)恒成立,∴(x +1)ln x >2(x -1)对∀x ∈(1,2)恒成立. 法二 令F (x )=(x +1)ln x -2(x -1), F ′(x )=ln x +x +1x -2, =ln x -x -1x .令φ(x )=ln x -x -1x ,由(1)知a =1时,φ(x )在(0,1)上为减函数,在(1,+∞)上为增函数.∵x ∈(1,2),则φ(x )在(1,2)为增函数,φ(x )>φ(1)=0, 即x ∈(1,2),F ′(x )>0,∴F (x )在(1,2)上为增函数, ∴F (x )>F (1)=0,∴(x +1)ln x >2(x -1)对∀x ∈(1,2)恒成立.能力提升题组 (建议用时:25分钟)11.函数f (x )=3x 2+ln x -2x 的极值点的个数是( ) A.0B.1C.2D.无数个解析 函数定义域为(0,+∞), 且f ′(x )=6x +1x -2=6x 2-2x +1x,由于x >0,g (x )=6x 2-2x +1中Δ=-20<0, 所以g (x )>0恒成立,故f ′(x )>0恒成立, 即f (x )在定义域上单调递增,无极值点. 答案 A12.(2014·全国Ⅰ卷)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A.(2,+∞) B.(-∞,-2) C.(1,+∞)D.(-∞,-1)解析 法一 由题意a ≠0,由f ′(x )=3ax 2-6x =0得x =0或x =2a . 当a >0时,f (x )在(-∞,0)和⎝ ⎛⎭⎪⎫2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,2a 上单调递减. 且f (0)=1>0,故f (x )有小于0的零点,不符合题意,排除A ,C. 当a <0时,要使x 0>0且唯一,只需f ⎝ ⎛⎭⎪⎫2a >0,即a 2>4,∴a <-2,故选B.法二 f (x )有唯一正零点x 0,等价于方程ax 3-3x 2+1=0有唯一正根x 0,即a =3x -1x 3有唯一正根x 0.令g (x )=3x -1x 3,g ′(x )=3(1-x )(1+x )x 4,∴g (x )在(-∞,-1)上递减,(-1,0)上递增,(0,1)上递增,(1,+∞)上递减.又g(-1)=-2,g(1)=2,且当x<-1时,g(x)<0,当x>1时,g(x)>0,∴g(x)的大致图象如图:∴直线y=a与y=g(x)有唯一交点,且横坐标x0>0,只需a<g(-1)=-2.答案 B13.(2017·西安模拟)定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)<f′(x),且f(0)=2,则不等式f(x)<2e x的解集为()A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)解析设g(x)=f(x)e x,则g′(x)=f′(x)-f(x)e x,∵f(x)<f′(x),∴g′(x)<0,∴g(x)在R上为减函数,∵f(0)=2,∴g(0)=f(0)=2,∵f(x)<2e x,∴f(x)e x<2,即g(x)<g(0),∴x>0,∴不等式的解集为(0,+∞).答案 C14.(2017·广州调研)已知函数f(x)=e x-m-x,其中m为常数.(1)若对任意x∈R有f(x)≥0恒成立,求m的取值范围;(2)当m>1时,判断f(x)在[0,2m]上零点的个数,并说明理由. 解(1)依题意,可知f′(x)=e x-m-1,令f′(x)=0,得x=m.故当x∈(-∞,m)时,e x-m<1,f′(x)<0,f(x)单调递减;当x∈(m,+∞)时,e x-m>1,f′(x)>0,f(x)单调递增.故当x=m时,f(m)为极小值也是最小值.令f(m)=1-m≥0,得m≤1,即对任意x∈R,f(x)≥0恒成立时,m的取值范围是(-∞,1].(2)f(x)在[0,2m]上有两个零点,理由如下:当m>1时,f(m)=1-m<0.∵f(0)=e-m>0,f(0)·f(m)<0,且f(x)在(0,m)上单调递减.∴f(x)在(0,m)上有一个零点.又f(2m)=e m-2m,令g(m)=e m-2m,则g′(m)=e m-2,∵当m>1时,g′(m)=e m-2>0,∴g(m)在(1,+∞)上单调递增.∴g(m)>g(1)=e-2>0,即f(2m)>0.∴f(m)·f(2m)<0,∴f(x)在(m,2m)上有一个零点.故f(x)在[0,2m]上有两个零点.。