2022届嘉兴市名校初一下期末监测数学试题含解析
嘉兴市人教版七年级下册数学期末试卷及答案

嘉兴市人教版七年级下册数学期末试卷及答案一、选择题1.下列各式从左到右的变形中,是因式分解的是( ). A .x (a-b )=ax-bx B .x 2-1+y 2=(x-1)(x+1)+y 2 C .y 2-1=(y+1)(y-1) D .ax+bx+c=x (a+b )+c 2.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 3.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x-4.若一个多边形的每个内角都为108°,则它的边数为( ) A .5 B .8 C .6 D .10 5.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( ) A .8 B .-8 C .0 D .8或-8 6.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 7.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±88.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82° 9.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .7 10.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )A .12B .12±C .6D .6±二、填空题11.已知等腰三角形的两边长分别为4和8,则它的周长是_______. 12.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.13.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______. 14.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____. 15.内角和等于外角和2倍的多边形是__________边形. 16.已知23x y +=,用含x 的代数式表示y =________. 17.计算:(12)﹣2=_____. 18.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.19.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.20.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.三、解答题21.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少? (2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.22.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.23.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠. (1)若80A ∠=︒,则BDC ∠的度数为______; (2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).24.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.25.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?26.计算(1) (-a 3) 2·(-a 2)3(2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭27.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .28.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x-y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A,B两园区的面积之和并化简.(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x,y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C,D两种花投入的费用与吸引游客的收益如下表:求整改后A,B两园区旅游的净收益之和.(净收益=收益-投入)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A错误;B. 没把一个多项式转化成几个整式积,故B错误;C. 把一个多项式转化成几个整式积,故C正确;D. 没把一个多项式转化成几个整式积,故D错误;故选C.2.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C. 【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.3.C解析:C 【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x -4)=2(x+2)(x -2). 考点:因式分解.4.A解析:A 【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.5.B解析:B 【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++-由于不含一次项,m+8=0,得m=-8.6.A解析:A 【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解. 【详解】A 、a 4÷a 3=a ,故本选项正确;B 、a 4和a 3不能合并,故本选项错误;C 、 (-a 3)2=a 6,故本选项错误;D 、a 4⋅a 3=a 7,故本选项错误. 故选:A . 【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.7.D解析:D 【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵216x kx ++是完全平方式, ∴8k =±, 故选:D . 【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.8.C解析:C 【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数. 【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①; 根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ; 在△CBD 中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②; ①-②,得:23∠B=52°, 解得∠B=78°. 故选:C . 【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.9.C解析:C 【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解.. 【详解】设第三边为x ,由三角形三条边的关系得 4-2<x <4+2, ∴2<x <6,∴第三边的长可能是4. 故选C . 【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.10.B解析:B 【解析】【分析】利用完全平方公式的结构特征判断即可确定出a的值.【详解】解:∵x2-ax+36是一个完全平方式,∴a=±12,故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题11.20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8解析:20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=20.故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.13.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.14.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法15.六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:1解析:六【解析】【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).16.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x.解析:y=3-2x【解析】+=23x y移项得:y=3-2x.故答案是:y=3-2x.17.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:(12)﹣2=2112⎛⎫⎪⎝⎭=114=4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.18.【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120×400+(120-x)×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.20.1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b的值,代入计算即可.【详解】解:∵是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b 的值,代入计算即可.【详解】解:∵2a b-1x+y=3是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,b-1=1,解得a=12,b=2,则ab=122=1,故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.三、解答题21.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩ 【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩解得:120160x y =⎧⎨=⎩答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+ 可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =, ∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数,∴42 ab=⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.22.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=12∠ABD=40°,进而得出答案.【详解】解:∵AC//BD,∠BAC=100°,∴∠ABD=180°﹣∠BAC=180°-100°=80°,∵BC平分∠ABD,∴∠CBD=12∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.23.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.24.(1)见解析;(2)(2,6);(3)19 2【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A1B1C1如下图;;(2)如上图建立平面直角坐标系,使得点A 的坐标为(-4,3),由图可知:点A 1的坐标为(2,6);(3)由(2)中的图可知:A (-4,3),B (5,-1),C (0,0),∴S △ABC =11119(45)434512222+⨯-⨯⨯-⨯⨯=. 【点睛】 本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.25.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.26.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+-=22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ =311824+++ =3104; 【点睛】 本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.27.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键. 28.(1)2x 2+6xy+8y 2;(2)①3010x y =⎧⎨=⎩②57600元; 【分析】 (1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;②代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)(x+y )(x ﹣y )+(x+3y )(x+3y ) =x 2﹣y 2+x 2+6xy+9y 2=2x 2+6xy+8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米; (2)(x+y )+(11x ﹣y )=x+y+11x ﹣y=12x (米),(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x+2y=y (米),依题意有:123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩9. 12xy=12×30×10=3600(平方米),(x+3y )(x+3y )=x 2+6xy+9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元. 考点:整式的混合运算.。
浙江省名校2022届初一下期末经典数学试题含解析

浙江省名校2022届初一下期末经典数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个答案正确)1.如果点P(m﹣1,4﹣2m)在第四象限,那么m的取值范围是()A.m>1 B.m>2 C.2>m>1 D.m<2【答案】B【解析】【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣1,4﹣1m)在第四象限,∴10420mm-⎧⎨-⎩>①<②,解不等式①得,m>1,解不等式②得,m>1,所以不等式组的解集是:m>1,所以m的取值范围是:m>1.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在锐角三角形ABC中,∠A=50°,则∠B的范围是()A.0°<∠B<90°B.40°<∠B<130° C.40°≤∠B≤90°D.40°<∠B<90°【答案】D【解析】【分析】根据三角形的内角和即可得到结论.【详解】∵在锐角三角形ABC中,∠A=50°,则∠B的范围是40°<∠B<90°,故选:D.【点睛】本题主要考查了三角形的内角和,正确理解∠B的范围的确定方法是解决本题的关键.3.2018年11月贵阳市教育局对某校七年级学生进行体质监测共收集了200名学生的体重,并绘制成了频数分布直方图,从左往右数每个小长方形的长度之比为2:3:4:1,其中第三组的频数为()A.80人B.60人C.20人D.10人【答案】A【解析】【分析】用200乘以第三组所占的比例即可得.【详解】200×42341+++=80,即第三组的频数为80,故选A.【点睛】本题考查了频数分布直方图,频数等知识点,熟练掌握频数分布直方图中每个小长方形的宽是相同的,各组的频数之比就是每个小长方形的长度之比是解题的关键.4.若关于x的方程mx-1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2 D.m<2【答案】C【解析】由mx-1=1x,(m-1)x=1,得:x=1m2 -.∵方程mx-1=1x的解为正实数,∴1m2->0,解得m>1.故选C.5.化简的结果是()A.x+3 B.x–9 C.x-3 D.x+9 【答案】C【解析】【分析】把分子因式分解即可求解.【详解】=故选C.【点睛】此题主要考查分式的运算,解题的关键是熟知因式分解的运用.6.方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为24xy=⎧⎨=⎩,那么这个方程可以是()A.3x﹣4y=16 B.2(x+y)=6x C.14x+y=0 D.4x﹣y=0【答案】B【解析】【分析】把已知方程与各项方程联立组成方程组,使其解为x=2,y=4即可.【详解】解:A、联立得:34162x yx y-=⎧⎨-=-⎩,解得:2422xy=-⎧⎨=-⎩,不合题意;B、联立得:2()62x y x x y+=⎧⎨-=-⎩,解得:24xy=⎧⎨=⎩,符合题意;C、联立得:10 42x yx y⎧+=⎪⎨⎪-=-⎩,解得:8525xy⎧=-⎪⎪⎨⎪=⎪⎩,不合题意;D、联立得:42yxx y⎧-=⎪⎨⎪-=-⎩,不合题意;故选:B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.在3.14,227,﹣3,π这四个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】无限不循环小数是无理数.据此分析即可.【详解】在3.14,227,﹣3,π这四个数中,无理数是:﹣3,π这两个数.故选:B【点睛】本题考核知识点:无理数.解题关键点:理解无理数的意义.8.如图所示,△ABC中,AB+BC=10,A、C关于直线DE对称,则△BCD的周长是()A.6 B.8 C.10 D.无法确定【答案】C【解析】【分析】【详解】∵A、C关于直线DE对称,∴DE垂直平分AC,∴AD=CD,∵AB+BC=10,∴△BCD的周长为:BC+BD+CD=BC+BD+AD=BC+AB=10故选C.9.小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1 00个成年人,结果其中有15个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有85个成年人不吸烟C.样本是15个吸烟的成年人D.本地区约有15%的成年人吸烟【答案】D【解析】根据题意,随机调查100个成年人,是属于抽样调查,这100个人中85人不吸烟不代表本地区只有85个成年人不吸烟,样本是100个成年人,所以本地区约有15%的成年人吸烟是对的.故选D .10.下列选项中1∠与2∠不是同位角的是( )A .B .C .D .【答案】B【解析】【分析】同位角是指当两条直线被第三条直线所截时,位于截线的同一侧,被截线的同一旁的两个角,以此概念与四个选项一一对比即可判定.【详解】根据同位角的定义,是同位角的两角必须是两条直线被第三条直线截出来的角,它们都在截线的同一侧,被截线的同一旁,所以利用排除法可得A 、C 、D 是同位角,B 不是同位角.故选:B【点睛】本题考查的是同位角的定义,明确这个定义的前提是“三线八角”,掌握这个定义的要点是解题的关键.二、填空题11.数学中,判断一个命题是假命题,只需举出一个_____.【答案】反例【解析】【分析】根据假命题的概念解答.【详解】解:数学中,判断一个命题是假命题,只需举出一个反例,故答案为:反例.【点睛】本题考查的是命题,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.将两张长方形纸片按如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=______°.【答案】90°【解析】分析:根据两直线平行,内错角相等和平角的定义即可解决.详解:∵长方形两边平行,∴∠1=∠3,由题意可知∠4=90°,∴∠2+∠3=90°,∴∠1+∠2=90°.故答案为90.点睛:本题主要考查了平行线的性质,根据平行线的性质得出∠1=∠3是解决本题的关键.13.“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084可以用科学记数法表示为________.【答案】8.4×10﹣1【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000084=8.4×10﹣1.故答案为8.4×10﹣1.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.若一个角的余角和这个角的补角也互为补角,则这个角的度数等于__________________ 【答案】【解析】【分析】【详解】解:设这个角为x°则它的余角为90-x ,补角为180-x90-x+180-x=180270-2x=1802x=90x=45 15.若21x y =-⎧⎨=⎩是方程ax +3y =6的解,则a 的值为_____. 【答案】32-【解析】【分析】 把21x y =-⎧⎨=⎩代入方程,可得关于a 的方程,解方程即可得. 【详解】把21x y =-⎧⎨=⎩代入方程ax+3y=6,得 -2a+3=6,解得:a=32-, 故答案为:32-. 【点睛】本题考查了二元一次方程的解,熟练掌握二元一次方程的解的概念是解题的关键.16.化简:(x +y)2-3(x 2-2y 2)=_____.【答案】22-22x +7y x y +【解析】【分析】根据完全平方公式和单项式乘多项式法则计算,去括号、合并同类项即可得.【详解】解:原式=22222x +y -3x +6y x y +=22-22x +7y x y +【点睛】熟练掌握完全平方公式和单项式乘多项式法则,去括号、合并同类项是解题的关键.17.若523m x y +与8n x y 的和是单项式,则mn =______.【答案】6【解析】【分析】是单项式说明两式可以合并,从而可以判断两式为同类项,根据同类项的相同字母的指数相等可得出m 、n 的值.【详解】由题意得:523m x y +与8n x y 是同类项,∴m+5=8,n=2,解得m=3,n=2,∴mn=3×2=6.故答案为:6.【点睛】此题考查同类项,解题关键在于掌握掌握其性质.三、解答题18.阅读下面文字内容:对于形如222x ax a ++的二次三项式,可以直接用完全平方公式把它分解成2()x a +的形式.但对于二次三项式245x x +-,就不能直接用完全平方公式分解了.对此,我们可以添上一项4,使它与x²+4x 构成一个完全平方式,然后再减去4,这样整个多项式的值不变,即x2+4x-5=()222454445(2)9(23)(23)x x x x x x x +-=++--=+-=+++-=(5)(1)x x +-.像这样,把一个二次三项式变成含有完全平方式的方法,叫做配方法.请用配方法来解下列问题:(1)请用上述方法把267x x --分解因式.(2)已知:2246130x y x y ++-+=,求x y 的值.【答案】(1)()()71x x -+;(2)19【解析】【分析】(1)应用配方法,把267x x --分解因式即可.(2)首先把2246130x y x y ++-+=用配方法变形为平方和的形式,然后根据偶次方的非负性质,求出x 、y 的值是多少即可解答.【详解】解:(1)2 67x x -- ()26997x x =-+--()2316x =-- ()()3434 x x =---+()()71x x =-+(2)∵2246130x y x y ++-+=∴()()2244690x x y y +++-+=∴()()22230x y ++-= ∴20x +=,30y -=∴2x =-,3y = ∴2139x y -== 【点睛】此题主要考查了因式分解的方法和应用,要熟练掌握,注意配方法、分组分解法等的应用.19.已知直线//AB CD ,(1)如图1,点E 在直线BD 上的左侧,直接写出ABE ∠,CDE ∠和BED ∠之间的数量关系是 . (2)如图2,点E 在直线BD 的左侧,BF ,DF 分别平分ABE ∠,CDE ∠,直接写出BFD ∠和BED ∠的数量关系是 .(3)如图3,点E 在直线BD 的右侧BF ,DF 仍平分ABE ∠,CDE ∠,那么BFD ∠和BED ∠有怎样的数量关系?请说明理由.【答案】 (1) ABE CDE BED ∠+∠=∠;(2)12BFD BED ∠=∠; (3)12BFD BED ∠=∠.理由见解析【解析】【分析】(1)首先作EF ∥AB ,根据直线AB ∥CD ,可得EF ∥CD ,所以∠ABE=∠1,∠CDE=∠2,据此推得∠ABE+∠CDE=∠BED 即可.(2)首先根据BF ,DF 分别平分∠ABE ,∠CDE ,推得∠ABF+∠CFD=12(∠ABE+∠CDE );然后由(1),可得∠BFD=∠ABF+∠CFD ,∠BED=∠ABE+∠CDE ,据此推得∠BFD=12∠BED . (3)首先过点E 作EG ∥CD ,再根据AB ∥CD ,EG ∥CD ,推得AB ∥CD ∥EG ,所以∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,据此推得∠ABE+∠CDE+∠BED=360°;然后根据∠BFD=∠ABF+∠CDF ,以及BF ,DF 分别平分∠ABE ,∠CDE ,推得2∠BFD+∠BED=360°即可. 【详解】 解:(1)如图1,作//EF AB ,,直线//AB CD ,//EF CD ∴, 1ABE ∴∠=∠,2CDE ∠=∠,12ABE CDE BED ∴∠+∠=∠+∠=∠,即ABE CDE BED ∠+∠=∠.(2)如图2,,BF ,DF 分别平分ABE ∠,CDE ∠,12ABF ABE ∴∠=∠,12CDF CDE ∠=∠, 111()222ABF CDF ABE CDE ABE CDE ∴∠+∠=∠+∠=∠+∠ 由(1),可得1()2BFD ABF CDF ABE CDE ∠=∠+∠=∠+∠ BED ABE CDE ∠=∠+∠,12BFD BED ∴∠=∠. (3)如图3,过点E 作//EG CD ,,//AB CD ,//EG CD ,////AB CD EG ∴,180ABE BEG ∴∠+∠=︒,180CDE DEG ∠+∠=︒,360ABE CDE BED ∴∠+∠+∠=︒,由(1)知,BFD ABF CDF ∠=∠+∠,又BF ,DF 分别平分ABE ∠,CDE ∠, 12ABF ABE ∴∠=∠,12CDF CDE ∠=∠, 1()2BFD ABE CDE ∴∠=∠+∠, 2360BFD BED ∴∠+∠=︒.故答案为:ABE CDE BED ∠+∠=∠、12BFD BED ∠=∠. 【点睛】本题考查平行线,熟练掌握平行线的性质及定义是解题关键.20.如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,(1)已知∠BOD =36°,求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?说明理由.【答案】(1)54°;(2)详见解析.【解析】试题分析:(1)根据对顶角的性质,可得∠AOC 的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC 与∠COE 的关系,由垂直得到o AOC AOG 90∠+=,由平角的定义,得COE GOF 90∠∠+=︒,由等量代换得AOG GOF ∠∠=,可得答案. 试题解析:(1)AB CD 、相交于点O ,AOC BOD ∠∠∴=(对顶角相等)BOD ∠= 36o (已知)AOC BOD ∠∠∴== 36oOG CD ⊥(已知)∴ o COG 90∠=(垂直的定义)即o AOC AOG 90∠+=∴ o o o o AOG 90AOC=9036=54∠∠=--(2)OC 平分AOE ∠∴ AOC COE ∠∠=(角平分线定义)o COG 90∠=(已证)即o AOC AOG 90∠+=o COE AOC AOG GOF 180∠∠∠∠+++= (平角定义)∴ o COE GOF 90∠∠+=(等式性质)∴ AOG=GOF ∠∠(等角的余角相等)∴OG 是∠AOF 的角平分线(角平分线定义)点睛:本题考查了角平分线的定义、对顶角的性质、邻补角的性质,掌握对顶角相等、垂直的定义是解题的关键.21.如图,要测量河两岸相对的两点A ,B 的距离,可以在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得的DE 的长就是AB 的长,为什么?【答案】详见解析【解析】【分析】本题是测量两点之间的距离方法中的一种,符合全等三角形全等的条件,方案的操作性强,只要测量的线段和角度在陆地一侧即可实【详解】解:∵AB ⊥BF ,DE ⊥BF ,∴∠ABC =∠EDC =90°,又∵直线BF 与AE 交于点C ,∴∠ACB =∠ECD (对顶角相等),∵CD =BC ,∴△ABC≌△EDC,∴AB=ED,即测得DE的长就是A,B两点间的距离.【点睛】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,做题时要注意寻找所求线段与已知线段之间的等量关系.22.(1)如图,△ABC, ∠ABC、∠ACB 的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A 的度数.(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数.【答案】(1)∠A=60°,(2)∠A=60°【解析】【分析】(1)由三角形内角和及三等角平分线的定义可得到方程组,则可求得∠ABC+∠ACB,再利用三角形内角和可求得∠A.(2)由三角形外角可得∠DBC=20°由三等角平分线的定义可得∠ABC=60°,三角形内角和可得∠ECB=30°,角平分线的定义可得∠ACB=60°,由三角形内角和可得∠A=60°.【详解】解:(1)∵∠ABC、∠ACB 的三等分线交于点E、D设∴∠=∠=∠=∠=∠=∠=;ABE EBD DBC x ACE ECD DCB y22EBC x ECB y ∴∠=∠=, , ∠ABC=3x,∠ACB=3y1+180,2180EBC DCB ECB DBC ∠∠+∠=∠+∠+∠=130+2x+y=180110+2y+x=180⎧∴⎨⎩①② ①+②得:240°+3x+3y=360°即3x+3y=120°∴∠ABC+∠ACB=120°∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°(2)∵∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E;ABD DBE EBC x ACE DCB y ∴∠=∠=∠=∠=∠=设32ABC x ACB y ∴∠=∠=,710879=1209÷ 【点睛】掌握三角形内角和和外角和以及角的三等分线及角平分线是解题的关键.23.湖州奥体中心是一座多功能的体育场,目前体育场内有一块长80m ,宽60m 的长方形空地,体育局希望将其改建成花园小广场,设计方案如图,阴影区域是面积为192平方米的绿化区(四块相同的直角三角形),空白区域为活动区,且四周出口宽度一样..........(1)体育局先对四个绿化区域进行绿化,在完成工作量的13后,施工方进行了技术改进,每天的绿化面积是原计划的两倍,结果提前四天完成四个绿化区域的改造,问原计划每天绿化多少平方米? (2)老师提出了一个问题:你能不能求出活动区的出口宽度是多少呢?请你根据小丽的方法求出活动区的出口宽度,并把过程写下来.【答案】(1)16平方米;(2)48米【解析】【分析】(1)设原计划每天修x 平方米,根据“结果提前4天完成任务”列出方程.(2)设直角三角形较长边为x 米,较短边为y 米,根据出口宽度相同,阴影部分面积为192平方米可列出方程组求解即可.【详解】(1)设原计划每天x 平方米;则:121921921923342x x x ⎛⎫⨯⨯ ⎪-+= ⎪ ⎪⎝⎭, 解得:x=16经检验,x=16是原方程的解,所以,原计划每天修16平方米;(2)由题可得:60-28021119224y x xy =-⎧⎪⎨=⨯⎪⎩,1096x y xy -=⎧⎨=⎩ ()()224100384484x y x y xy +=-+=+= ∴x+y=221022x y x y -=⎧⎨+=⎩解得:166x y =⎧⎨=⎩则出口宽度:80-2x=48(米)【点睛】考查了由实际问题抽象出分式方程和二元一次方程组,找到关键描述语,找到合适的等量关系是解决问题的关键.24.在我县中小学读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查情况进行了统计,并绘制了不完整条形统计图和扇形统计图.请你结合图中的信息,解答下列问题(其中(1)、(2)直接填答案即可);(1)本次调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数被调查人数的%.(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校约有学生1800人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【答案】(1)200;(2)15;40;(3)女生和男生分别有1人,144人.【解析】【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.【详解】解:(1)共调查的学生数:40÷20%=200(人),故答案为200;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为15;40.(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1800×20%,解得:x=144,当x=144时,1.5x=1.答:该校最喜爱丙类图书的女生和男生分别有1人,144人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.已知:如图,//AD BE ,12∠=∠,求证:A E ∠=∠.【答案】详见解析.【解析】【分析】根据平行线的性质,得到3A ∠=∠.根据12∠=∠,得到DE AC ,再根据平行线的性质,得到3E ∠=∠,根据等量代换即可证明.【详解】因为AD //BE ,所以3A ∠=∠.因为12∠=∠,所以DE //AC ,所以3E ∠=∠,所以A E ∠=∠.。
嘉兴市数学七年级下学期期末数学试题

嘉兴市数学七年级下学期期末数学试题一、选择题1.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭2.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +3.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 4.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--5.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 6.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)27.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .68.如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC=35°,则∠1的度数为( )A .65°B .55°C .45°D .35°9.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠210.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.计算:m 2•m 5=_____.12.计算()()12x x --的结果为_____;13.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.14.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 15.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______. 16.如果9-mx +x 2是一个完全平方式,则m 的值为__________. 17.因式分解:224x x -=_________. 18.()7(y x -+________ 22)49y x =-.19.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.20.分解因式:m 2﹣9=_____.三、解答题21.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?22.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ; (2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.23.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.24.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ; (2)若BD ⊥BC ,试解决下面两个问题: ①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.25.计算: (1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3). 26.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩;(2)解不等式组29 421333x xx x<-⎧⎪⎨+≥-⎪⎩.27.如图,在边长为1个单位长度的小正方形网格中,ΔABC经过平移后得到ΔA B C''',图中标出了点B的对应点B',点A'、C'分别是A、C的对应点.(1)画出平移后的ΔA B C''';(2)连接BB'、CC',那么线段BB'与CC'的关系是_________;(3)四边形BCC B''的面积为_______.28.(1)已知2(1)()2x x x y---=,求222x yxy+-的值.(2)已知等腰△ABC的三边长为,,a b c,其中,a b满足:a2+b2=6a+12b-45,求△ABC的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.2.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选D.3.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.4.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式. 故选D. 【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.5.C解析:C 【分析】直接利用图形面积求法得出等式,进而得出答案. 【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2, 故a 2-b 2=(a +b )(a -b ). 故选:C . 【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.6.D解析:D 【解析】 【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解. 【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确. 故选D . 【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.7.B解析:B 【解析】分析:推出DF ∥CE ,推出∠FDB=∠ECB ,∠EDF=∠CED ,根据DE ∥AC 推出∠ACE=∠DEC ,根据角平分线得出∠ACE=∠ECB ,即可推出答案. 详解:∵CE ⊥AB ,DF ⊥AB , ∴DF ∥CE ,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.8.B解析:B【解析】试题分析:由DA⊥AC,∠ADC=35°,可得∠ACD=55°,根据两线平行,同位角相等即可得∵AB∥CD,∠1=∠ACD=55°,故答案选B.考点:平行线的性质.9.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,故选:B.【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m 7. 【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.12.【分析】原式利用多项式乘多项式法则计算即可得到结果. 【详解】原式=x²−2x −x +2=x²−3x +2, 故答案为:x²−3x +2. 【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则 解析:2-32x x +【分析】原式利用多项式乘多项式法则计算即可得到结果. 【详解】原式=x ²−2x−x +2=x ²−3x +2, 故答案为:x ²−3x +2. 【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可. 【详解】 = 故答案为. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可. 【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯⎪⎝⎭=12019故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.14.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.15.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.16.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.17.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.x x-解析:2(2)【分析】直接提取公因式即可.【详解】2-=-.x x x x242(2)x x-.故答案为:2(2)【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.18.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,解析:7y x--【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,掌握平方差公式的特征是解题的关键.19.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.20.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.三、解答题21.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.22.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2 ∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.23.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.24.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C =∠D ,∴∠C =∠D =∠DBF ,又∵BD ⊥BC ,∴∠DBC =90°,又∵∠D+∠DBA+∠BAD =180°,∠C+∠CBA+∠BAC =180°.∠BAC =∠BAD ,∴∠DBA =∠CBA =45°,又∵∠EFB =7∠DBF ,∠EFB =∠FBC+∠C ,∴7∠DBF =2∠DBF+∠DBC ,解得:∠DBF =18°,∴∠BAD =180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.25.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.26.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.27.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A 、C 平移后的对应点A '、C '即可画出平移后的△A B C '''; (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C '''即为所求;(2)根据平移的性质可得:BB '与CC '的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.28.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.。
嘉兴市七年级下册数学期末试卷(含答案)

嘉兴市七年级下册数学期末试卷(含答案)一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角3.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 4.下列运算结果正确的是( ) A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a =5.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种 B .5种C .6种D .7种6.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭7.如图所示的四个图形中,∠1和∠2不是同位角的是( ) A .B .C .D .8.下列四个等式从左到右的变形是因式分解的是 ( ) A .22()()a b a b a b +-=- B .2()ab a a b a -=- C .25(1)5x x x x +-=+-D .21()x x x x x+=+9.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩10.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140°二、填空题11.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____. 12.已知关于x 的不等式组521{x x a -≥-->无解,则a 的取值范围是________.13.计算:32(2)xy -=___________.14.如果9-mx +x 2是一个完全平方式,则m 的值为__________. 15.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.17.已知23x y +=,用含x 的代数式表示y =________.18.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.19.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)三、解答题21.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?22.四边形ABCD 中,∠A=140°,∠D=80°. (1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数; (3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.23.计算: (1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2; (3)(x+5)2﹣(x ﹣2)(x ﹣3); (4)(2x+y ﹣2)(2x+y+2). 24.阅读理解并解答:为了求1+2+22+23+24+…+22009的值. 可令S =1+2+22+23+24+…+22009 则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1 所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1 请依照此法,求:1+5+52+53+54+…+52020的值. 25.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值. 26.计算: (1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3). 27.计算: (1)2a (a ﹣2a 2); (2)a 7+a ﹣(a 2)3; (3)(3a +2b )(2b ﹣3a ); (4)(m ﹣n )2﹣2m (m ﹣n ). 28.计算: (1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案. 【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确; B 、a 2+a 2=2a 2,故此选项错误; C 、a 2•a 3=a 5,故此选项错误; D 、a 6÷a 3=a 3,故此选项错误; 故选:A. 【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.C解析:C 【分析】根据同旁内角的定义可判断. 【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内 ∴∠1和∠2是同旁内角的关系 故选:C . 【点睛】本题考查同旁内角的理解,紧抓定义来判断.3.C解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=,∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.4.A解析:A 【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可. 【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误,235a a a =,C 错误,()3328a a =,D 错误,故选:A . 【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.5.B解析:B 【分析】设1元和5元的纸币分别有x 、y 张,得到方程x+5y=20,然后根据x 、y 都是正整数即可确定x 、y 的值. 【详解】解:设1元和5元的纸币分别有x 、y 张, 则x+5y=20, ∴x=20-5y ,而x≥0,y≥0,且x 、y 是整数, ∴y=0,x=20; y=1,x=15; y=2,x=10; y=3,x=5; y=4,x=0, 共有5种换法. 故选:B . 【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.6.B解析:B 【分析】根据因式分解的意义求解即可. 【详解】A 、从左边到右边的变形不属于因式分解,故A 不符合题意;B 、把一个多项式转化成几个整式积的形式,故B 符合题意;C 、从左边到右边的变形不属于因式分解,故C 不符合题意;D 、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D 不符合题意. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7.C解析:C 【分析】根据同位角的定义,逐一判断选项,即可得到答案. 【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意. 故选C . 【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.8.B解析:B 【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解. 【详解】解:根据因式分解的概念, A 选项属于整式的乘法,错误; B 选项符合因式分解的概念,正确; C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误. 故选B .本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.9.B解析:B 【分析】本题有2个相等关系:购进A 种商品件数+购进B 种商品件数=50,购进A 种商品x 件的费用+购进B 种商品y 件的费用=1440元,据此解答即可. 【详解】解:设购进A 种商品x 件、B 种商品y 件,依题意可列方程组5024361440x y x y +=⎧⎨+=⎩.故选:B . 【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.10.C解析:C 【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题. 【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒, 346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒, 故选:C . 【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.二、填空题11.2×10﹣7绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.13.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 解析:264x y【分析】根据积的乘方进行计算即可. 【详解】解:3226(2)4xy x y -=, 故答案为:264x y . 【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.14.±6 【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m 的方程,即可求解. 【详解】解:∵9-mx+x2是一个完全平方式, ∴方程9-mx解析:±6 【分析】如果9-mx+x 2是一个完全平方式,则方程9-mx+x 2=0对应的判别式△=0,即可得到一个关于m 的方程,即可求解. 【详解】解:∵9-mx+x 2是一个完全平方式, ∴方程9-mx+x 2=0对应的判别式△=0, 因此得到:m 2-36=0, 解得:m=±6, 故答案为:±6. 【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.15.4×10-5 【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n 的相反数就是几. 考点:科学计数法 解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法16.14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.17.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x.解析:y=3-2x【解析】23x y+=移项得:y=3-2x.故答案是:y=3-2x .18.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.19.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可. 【详解】解:∵π0=1,2-1=12,1>12, ∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键. 三、解答题21.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==,解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.22.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°. 23.(1)2;(2)7a 4+4a 6+a 2;(3)15x+19;(4)4x 2+4xy+y 2﹣4【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、绝对值的性质进行计算,再算加减即可;(2)首先利用积的乘方的计算法则、单项式乘以单项式计算法则计算,再合并同类项即可;(3)首先利用完全平方公式、多项式乘以多项式计算法则计算,再合并同类项即可; (4)首先利用平方差计算,再利用完全平方公式进行计算即可.【详解】解:(1)原式=8﹣1﹣5=2;(2)原式=9a 4﹣2a 4+4a 6+a 2,=7a 4+4a 6+a 2;(3)原式=x 2+10x+25﹣(x 2﹣3x ﹣2x+6),=x 2+10x+25﹣x 2+3x+2x ﹣6,=15x+19;(4)原式=(2x+y )2﹣4,=4x 2+4xy+y 2﹣4.【点睛】本题考查的是实数的运算,幂的运算及合并同类项,整式的混合运算,掌握以上知识点是解题的关键.24.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键. 25.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.26.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.27.(1)2a 2﹣4a 3;(2)a 7+a ﹣a 6;(3)4b 2﹣9a 2;(4)n 2﹣m 2【分析】(1)由题意根据单项式乘以多项式法则求出即可;(2)根据题意先算乘方,再合并同类项即可;(3)由题意直接根据平方差公式求出即可;(4)由题意先根据完全平方公式和单项式乘以多项式进行计算,再合并同类项即可.【详解】解:(1)2a (a ﹣2a 2)=2a 2﹣4a 3;(2)a 7+a ﹣(a 2)3=a 7+a ﹣a 6;(3)(3a +2b )(2b ﹣3a )=4b 2﹣9a 2;(4)(m ﹣n )2﹣2m (m ﹣n )=m 2﹣2mn +n 2﹣2m 2+2mn=n 2﹣m 2.【点睛】本题考查整式的混合运算,乘法公式等知识点,能正确根据整式的运算法则进行化简是解此题的关键.28.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652aa a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.。
嘉兴市名校2019-2020学年七年级第二学期期末复习检测数学试题含解析

嘉兴市名校2019-2020学年七年级第二学期期末复习检测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.下列调查中,适合用普查的是()A.调查我国中学生的近视率B.调查某品牌电视机的使用寿命C.调查我校每一位学生的体重D.调查长江中现有鱼的种类【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、调查我国中学生的近视率调查范围广适合抽样调查,故A不符合题意;B、调查某品牌电视机的使用寿命调查具有破坏性适合抽样调查,故B不符合题意;C、调查我校每一位学生的体重适合普查,故C符合题意;D、调查长江中现有鱼的种类无法普查,故D不符合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,若∠1=25°,则∠2的度数是()A.35°B.30°C.25°D.20°【答案】D【解析】【分析】过点B作BE平行于m,运用平行线性质,得到∠ABE+ ∠CBE=∠ABC=∠1+ ∠2,【详解】过点B作BE平行于m,又因为m∥n,所以BE∥m∥n,所以,∠ABE=∠1, ∠CBE=∠2,所以,∠ABE+ ∠CBE=∠ABC=∠1+ ∠2,所以,45°=25°+∠2,所以,∠2=20°故选:D【点睛】本题考核知识点:平行线性质.添加平行线,由平行线性质得到角相等,从等量关系推出所求的角.3.若分式||1(2)(1)xx x--+的值为0,则x等于()A.﹣l B.﹣1或2 C.﹣1或1 D.1 【答案】D【解析】【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式||1(2)(1)xx x--+的值为0,∴|x|﹣1=0,x﹣2≠0,x+1≠0,解得:x=1.故选D.【点睛】此题主要考查了分式有意义的条件,正确把握定义是解题关键.4.如果关于x的不等式(1﹣k)x>2可化为x<﹣1,则k的值是()A.1 B.﹣1 C.﹣3 D.3 【答案】D【解析】【分析】【详解】解:∵不等式(1-k )x >2可化为x <-1,∴1-k=-2解得:k=1.故选:D.【点睛】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.5.下列运算正确的是( )A .3a +2a =5a 2B .2a 2b ﹣a 2b =a 2bC .3a +3b =3abD .a 5﹣a 2=a 3【答案】B【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断即可.【详解】A 、325a a a += ,故本选项错误;B 、222 2a b a b a b ﹣= ,故本选项正确;C 、3a 与3b 不是同类项,不能合并,故本选项错误;D 、a 5与a 2不是同类项,不能合并,故本选项错误.故选B .【点睛】本题考查了合并同类项,正确理解同类项的意义是解题的关键.6.已知一个三角形的两边长分别为8cm 和3cm ,则此三角形第三边的长可能是( )A .2cmB .3cmC .5cmD .9cm 【答案】D【解析】【分析】设第三边的长为x ,再根据三角形的三边关系进行解答即可.【详解】解:设第三边的长为x ,则8﹣3<x <8+3,即5cm <x <11cm .故选:D .【点睛】7.16的算术平方根是( )A .4B .﹣4C .±4D .2 【答案】A【解析】【分析】根据算术平方根的定义解答即可.【详解】解:16的算术平方根是4,故选A .【点睛】本题考查了算术平方根,熟记概念是解题的关键.8.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .0 【答案】D【解析】试题解析:∵a 、b 、c 为△ABC 的三条边长,∴a+b-c >1,c-a-b <1,∴原式=a+b-c+(c-a-b )=1.故选D .考点:三角形三边关系.9.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有( )A .152块B .153块C .154块D .155块 【答案】C【解析】【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【详解】解:设这批手表有x 块,()20080x 8015027000⨯+-⨯> 解得,1x 1533> ∴这批手表至少有154块,【点睛】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.10.不等式2x ﹣7<5﹣2x 的正整数解有( )A .4个B .3个C .2个D .1个【答案】C【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【详解】解:不等式的解集是x <3,故不等式2x ﹣7<5﹣2x 的正整数解为1,2,一共2个.故选C .二、填空题11.《九章算术》中记载:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;今有上禾一秉,中禾二秉,下禾三秉,实二十六斗,问上、中、下禾实一秉各几何?”译文:“今有上禾3束,中禾2束,下禾1束,得实39斗;上禾2束,中禾3束,下禾1束,得实34斗;上禾1束,中禾2束,下禾3束,得实26斗,问上、中、下每一束得实各是多少斗?”设上禾、中禾、下禾每一束得实各为x 、y 、z 斗,可列方程为__________________________; 【答案】323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩【解析】【分析】根据题中数量关系列出三元一次方程组即可.【详解】解:设上禾每束得实x 斗、中禾每束得实y 斗、下禾每束得实z 斗,依题意有:323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩【点睛】考查了三元一次方程组的应用,解答此题的关键是正确理解题意,找出数量关系列出方程组。
2022届浙江省名校初一下期末质量检测数学试题含解析

2022届浙江省名校初一下期末质量检测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC【答案】D【解析】【分析】【详解】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以13x y,即∠ADE=13∠ADC.故答案选D.考点:三角形的内角和定理;四边形内角和定理.2.已知不等式2x−a<0的正整数解恰是1,2,3,则a的取值范围是()A.6<a<8B.6⩽a⩽8C.6⩽a<8D.6<a⩽8【答案】D【解析】【分析】根据题目中的不等式可以求得x的取值范围,再根据不等式2x-a<0的正整数解恰是1,2,3,从而可以求得a的取值范围.【详解】由2x−a<0得,x<0.5a,∴不等式2x−a<0的正整数解恰是1,2,3,∴0.5a>3且0.5a⩽4,解得,6<a⩽8,故选D.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则.3.如图所示,BE平分∠ABC,DE//BC,图中相等的角共有( )A.3对B.4对C.5对D.6对【答案】C【解析】【分析】由DE∥BC可得∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB,再由角平分线知∠ABE=∠EBC,进行等量代换,即可得到所有相等的角.【详解】∵ DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB,又∵ BE平分∠ABC,∴∠ABE=∠EBC,即∠ABE=∠DEB,所以图中相等的角共有5对,故选C.【点睛】主要考查了平行线的性质及角平分线的定义.4.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元试题分析:利润率=(售价-进价)÷进价×100%,标价=售价÷折扣.进价:500÷20%=2500元 售价:(2500+500)÷80%=3750元 3750×90%-2500=875元.考点:商品销售问题5.如图,BD 是△ABC 的高,EF ∥AC ,EF 交BD 于G ,下列说法正确的有( )①BG 是△EBF 的高;②CD 是△BGC 的高;③DG 是△AGC 的高;④AD 是△ABG 的高.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据高线的定义,是三角形的顶点到对边所在直线的垂线段,即可解答.【详解】解:∵BD 是△ABC 的高,∴BD ⊥AC ,∴∠BDC=∠BDA=90º,∴DG 是△AGC 的高,CD 是△BGC 的高,AD 是△ABG 的高;∵EF ∥AC ,∴BG ⊥EF ,∴BG 是△EBF 的高,∴正确的有①②③④.故选D.【点睛】本题考查了三角形高的定义.6.如果35,310a b ==,那么3a b -的值为( )A .12B .-5C .9D .19【答案】A根据同底数幂的乘法法则:同底数幂相除,底数不变,指数相减,求出算式的值是多少即可.【详解】∵35,310a b== ∴3a b -=33a b ÷=5÷10=12故选A.【点睛】 此题考查同底数幂的乘法、幂的乘方与积的乘方,解题关键在于掌握运算法则.7.把一根长20米的钢管截成2米长和3米长两种规格的钢管,在不造成浪费的情况下,共有几种截法( )A .4种B .3种C .2种D .1种 【答案】B【解析】【分析】截下来的符合条件的钢管长度之和刚好等于总长20米时,不造成浪费,设截成2米长的钢管a 根,3米长的b 根,由题意得到关于a 与b 的方程,求出方程的正整数解即可得到结果.【详解】解:设2米长的a 根,3米长的b 根,∵a 、b 均为正整数,根据题意,得:2320a b +=.∴72a b =⎧⎨=⎩,44a b =⎧⎨=⎩,16a b =⎧⎨=⎩, 共有3种可能,故选:B .【点睛】此题考查了二元一次方程的应用,读懂题意,找出题目中的等量关系,得出a ,b 的值是解本题的关键,注意a ,b 只能取正整数.8.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,⋯,则第2018次输出的结果为( )A .0B .3C .5D .6【答案】B【解析】【分析】根据题意找出规律即可求出答案.【详解】第一次输出为24,第二次输出为12,第三次输出为6,第四次输出为1,第五次输出为6,第六次输出为1,……从第三次起开始循环,∴(2018﹣2)÷2=1008故第2018次输出的结果为:1.故选B .【点睛】本题考查了数字规律,解题的关键是正确理解程序图找出规律,本题属于基础题型.9.以下四种沿AB 折叠的方法中,由相应条件不一定能判定纸带两条边线a 、b 互相平行的是()A .展开后测得12∠=∠B .展开后测得12∠=∠且34∠=∠C .测得12∠=∠D .测得12∠=∠【答案】C【解析】【分析】根据平行线的判定定理,进行分析,即可解答.【详解】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、测得∠1=∠2, 根据内错角相等,两直线平行进行判定,故正确;,故选C.【点睛】本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.10.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.二、填空题11.已21xy=⎧⎨=-⎩是关于x、y的二次元方程39ax y+=的解,则a的值为___________【答案】6 【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.12.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有_____块.【答案】105【解析】设这批手表有x块,550×60+500(x−60)>55000,解得x>104.故这批电话手表至少有105块,故答案为105.13.用不等式表示:a与3的差不小于2:________________【答案】32a-≥【解析】【分析】根据题中描述的数量关系列出对应的不等式即可.【详解】由题意可得:32a-≥.【点睛】“读懂题意,知道‘不小于’的意思是‘大于或等于’”是解答本题的关键.14.己知三角形的三边长分别为2,x﹣1,3,则三角形周长y的取值范围是__.【答案】6<y<1【解析】【分析】【详解】根据三角形的三边关系,得3-2<x-1<2+3,解得:1<x-1<5,所以三角形周长y 的取值范围:1+2+3<y <2+3+5,即6<y <1,故答案为6<y <1.【点睛】本题考查三角形三边的关系,解决此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.15.分解因式:2a 2-2=__________.【答案】2(1)(1)a a +-.【解析】试题分析:原式=22(1)a -=2(1)(1)a a +-.考点:分解因式.16.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.17====,…,则第8个等式是__________.= 【解析】【分析】通过观察类比总结出通用规律,两个根式相等,第一个根式里面是整数加分数,第二个根式里面是分数,根式外面为整数,发现等式两边的整数和分数之间的关系,即可求解.【详解】=边整式大1,且等式左边整数在根式里面与分数相加,等式右边整式在根式外面与根式相乘.=个等式则整数就是几,且分数的分子都为1,分母比整数大2.==,其特点跟第一个等式和第二个等式一样,进一步验证了这个特点.则第n (+1n =所以第8(8+1=== 【点睛】本题考查了观察类比总结,关键在于充分理解题干给出的信息,找到各式的公共特点,得到通用公式.三、解答题18.对于一个图形,通过两种不同的方法计算它们的面积,可以得到一个数学等式,例如图1可以得到(1)类似图1的数学等式,写出图2表示的数学等式;(2)若10a b c ++=, 35ab ac bc ++=,用上面得到的数学等式乘222a b c ++的值;(3)小明同学用图3中的x 张边长为a 的正方形,y 张边长为b 的正方形,z 张边长为a 、b 的长方形拼出一个面积为()()7 94a b a b ++的长方形,求()x y z ++的值.【答案】(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)30;(3)1.【解析】【分析】(1)整体计算正方形的面积和分部分求和,二者相等;(2)依据a 2+b 2+c 2=(a+b+c )2-2ab-2ac-2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(a+7b )(9a+4b )=9a 2+67ab+28b 2,可得x ,y ,z 的值,从而得解.【详解】解:(1)∵图2中正方形的面积有两种算法:①(a+b+c )2;②a 2+b 2+c 2+2ab+2ac+2bc .∴(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc .∴图2表示的数学等式:(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc .(2)∵(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,∴a 2+b 2+c 2=(a+b+c )2-2ab-2ac-2bc=102-2×35=30;(3)由题可知,所拼图形的面积为:xa 2+yb 2+zab ,∵(a+7b )(9a+4b )=9a 2+4ab+63ab+28b 2=9a 2+67ab+28b 2,∴x=9,y=28,z=67,∴x+y+z=9+28+67=1.【点睛】本题属于整式乘法公式的几何表示及其相关应用,属于基础题目,难度不大.解题的关键是熟练掌握图形的面积计算方法.19.小辰想用一块面积为2100cm 的正方形纸片,沿着边的方向裁出一块面积为290cm 的长方形纸片,使它的长宽之比为5:3. 小辰能否用这张正方形纸片裁出符合要求的纸片?若能请写出具体栽法;若不能,请说明理由.【答案】无法裁出符合要求的纸片,理由详见解析.【解析】【分析】根据长方形面积为90,和长宽比例为5:3即可求得长方形的长,即可解题.【详解】解:设长方形纸片的长为5xcm ,宽为3xcm依题意,得5390x x ⋅=21590x =26x =∵0x >∴x =∴长方形纸片的长为.∴面积为2100cm 的正方形的边长为10cm ,2>∴10>.答:无法裁出符合要求的纸片.【点睛】本题考查了一元二次方程的应用以及算术平方根,解题的关键是先求出所裁出的长方形纸片的长. 20.分解因式:(1)269ax ax a -+;(2)(1)(9)8m m m +-+;(3)4234a a +-【答案】 (1) a(x-3)²; (2) (m-3)(m+3); (3) (a ²+4)(a-1)(a+1).【解析】【分析】(1)首先提取公因式a,进而利用完全平方公式分解因式得出即可;(2)首先化简原式,进而利用平方差公式分解因式得出即可;(3)利用十字相乘法进行分解即可.【详解】(1) 269ax ax a -+=a(x-3)²;(2) (1)(9)8m m m +-+=m²-8m-9+8m=m²-9=(m-3)(m+3);(3) 4234a a +-=(a²+4)(a²-1)=(a²+4)(a-1)(a+1).本题考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.21.如果一个多边形的所有内角都相等,我们称这个多边形为“等角多边形”,现有两个等角多边形,它们的边数之比为1:2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.【答案】十二边形和二十四边形【解析】【分析】设一个多边形的边数是n,则另一个多边形的边数是2n,因而这两个多边形的外角是360n︒和3602n︒,根据第二个多边形的内角比第一个多边形的内角大15°,得到关于n的方程,解方程即可.【详解】设一个多边形的边数是n,则另一个多边形的边数是2n,则这两个多边形的外角是360n︒和3602n︒,∵第二个多边形的内角比第一个多边形的内角大15°,∴360360152n n︒︒︒-=解得:n=12,∴这两个多边形的边数分别为12,1.【点睛】考查了多边形的内角与外角,根据条件可以转化为方程问题.22.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.【答案】(1)详见解析;(2)70°.【解析】【分析】(1)求出DF∥AB,推出∠3=∠AEF,求出∠B=∠AEF,得出FE∥BC,根据平行线性质求出即可;(2)求出∠FED=80°-45°=35°,根据平行线性质求出∠BCE=∠FED=35°,求出∠ACB=2∠BCE=70°,根据平行线性质求出即可.解:(1)因为∠1+∠FDE =180°,∠1,∠2互为补角,所以∠2=∠FDE ,所以DF ∥AB ,所以∠3=∠AEF.因为∠3=∠B ,所以∠B =∠AEF ,所以FE ∥BC ,所以∠AFE =∠ACB.(2)因为∠1=80°,所以∠FDE =180°-∠1=100°.因为∠3+∠FDE +∠FED =180°,所以∠FED =180°-∠FDE -∠3=35°.因为EF ∥BC ,所以∠BCE =∠FED =35°.因为CE 平分∠ACB ,所以∠ACB =2∠BCE =70°,所以∠AFE =∠ACB =70°.【点睛】本题考查的知识点是平行线的判定与性质,解题的关键是熟练的掌握平行线的判定与性质.23.已知:在ABC ∆中,90ABC ACB ∠-∠=︒,点D 在BC 上,连接AD ,45ADB ∠=︒. (1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 为BC 的中点,过点E 作AD 的垂线分别交AD 的延长线,AB 的延长线,AC 于点F G H ,,,求证:BG CH =;(3)如图3,在(2)的条件下,过点E 分别作EM AG ⊥于点M EN AC ⊥,于点N ,若26AB AC +=,1203EM EN +=,求AFG ∆的面积.【答案】 (1)见解析;(2)见解析;(3)30【解析】【分析】(1)设ACB α∠=,根据条件90ABC ACB ∠-∠=︒以及外角性质可得∠ADB=∠C+∠CAD=45°,所以9090ABC ACB a ∠=∠+︒=+︒,45CAD ADB C α∠=∠-∠=︒-,由三角形内角和定理可得()18090902BAC ααα∠=︒-+︒-=︒-,从而求解;(2)过点B 作BT GH ⊥于点T ,过点C 作CR GH ⊥的延长线于点R ,可证G AHG CHR ==∠∠∠,利用AAS 证明BET CER ∆∆≌,得出BT CR =,再利用AAS 证明BGT CHR ∆∆≌即可证明; (3)连接AE ,由ASA 易证AFG AFH ∆∆≌ ,所以AG AH =,26AB AC += ,因为()()26AG BG AH CH -++= ,所以13AG AH ==,又因为AGHAEG AEH S S S ∆∆∆=+ 所以()111313120131360222213AGH S EM EN EM EN ∆=⨯⨯+⨯⨯=⨯+=⨯=,因为111222AGH AFG FG GH S GH AF S FG AF ∆∆==⨯⨯=⨯⨯,所以1302AFG AGH S S ∆∆== 【详解】(1)证明:如图1 令ACB α∠=,∵90ABC ACB ∠-∠=︒,∠ADB=∠C+∠CAD=45°, ∴9090ABC ACB a ∠=∠+︒=+︒,45CAD ADB C α∠=∠-∠=︒-在ABC ∆中 ∵180BAC ABC ACB ∠+∠+∠=︒∴()18090902BAC ααα∠=︒-+︒-=︒-=2(45°-α )∴45BAD BAC CAD CAD α∠=∠-∠=︒-=∠(2)如图2 过点B 作BT GH ⊥于点T ,过点C 作CR GH ⊥的延长线于点R∵AF GH ⊥∴90AFG AFH ∠=∠=︒∴9090G FAG AHF FAH ∠+∠=∠+∠=︒︒∴G AHG CHR ==∠∠∠在BET ∆和CER ∆中 90BET CER BTE CRE BE CE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴BET CER ∆∆≌∴BT CR =由(1)得BAD CAD ∠=∠,∵HG ⊥AF ,∴∠BGT=∠AHG=∠CHR ,在BGT ∆和CHR ∆中 90BGT CHR BTG CRH BT CR ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴BGT CHR ∆∆≌∴BG CH =(3)如图3 连接AE在AFG ∆和AFH ∆中 FAG FAH AF AFAFG AFH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AFG AFH ∆∆≌∴AG AH =∵26AB AC +=∴()()26AG BG AH CH -++=∴13AG AH ==∵AGH AEG AEH S S S ∆∆∆=+ ∴()111313120131360222213AGH S EM EN EM EN ∆=⨯⨯+⨯⨯=⨯+=⨯= ∵111222AGH AFG FG GH S GH AF S FG AF ∆∆==⨯⨯=⨯⨯ ∴1302AFG AGH S S ∆∆==【点睛】本题考查角平分线的判定、全等三角形的证明与性质,三角形面积的计算,解题关键是恰当做出辅助线.24.解不等式组,并将解集在数轴上表示出来 ()121532122x x x ⎧--≤⎪⎨-<+⎪⎩ 【答案】13x -≤<.【解析】【分析】先求出两个不等式的解集,再求其公共解,然后在数轴上表示出来即可.【详解】()121532122x x x ⎧--≤⎪⎨-<+⎪⎩①② 解不等式①,得1x ≥-.解不等式②,得3x <.不等式①、②的解集在数轴上表示如下:∴原不等式组的解集为13x -≤<.【点睛】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25.如图,在正方形网络中,每个小方格的的边长为1个单位长度,ABC ∆的顶点A ,B 的坐标分别为(0,5),(-2,2).(1)请在图中建立平面直角坐标系,并写出点C 的坐标:________.(2)平移ABC ∆,使点C 移动到点()7,4F -,画出平移后的DEF ∆,其中点D 与点A 对应,点E 与点B 对应.(3)求ABC ∆的面积.(4)在坐标轴上是否存在点P ,使POC ∆的面积与ABC ∆的面积相等,若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】 (1)(2,3)(2)见解析;(3)5;(4)(0,5)或(0,-5)或(103,0)或(-103,0) 【解析】【分析】 ()1直接利用已知点建立平面直角坐标系进而得出答案;()2利用平移的性质得出对应点位置进而得出答案;()3利用三角形面积求法得出答案;()4利用已知ABC 的面积得出P 点位置即可.【详解】()1如图所示:点C 的坐标为:()2,3;故答案为()2,3;()2∵点F 的坐标为(7,-4)对应点为点C∴三角形ABC 向右平移5个单位,向下平移7个单位 如图所示:DEF 即为所求;()ABC 1113S 432341225222=⨯-⨯⨯-⨯⨯-⨯⨯=; ()4存在,当点P 在x 轴上时,12OP ⨯3=5 ∴OP=103∴P 点的坐标为:10,03⎛⎫⎪⎝⎭或10,03⎛⎫- ⎪⎝⎭ 当点P 在y 轴上时,12OP ⨯2=5;∴OP=5 ∴P 点的坐标为:()0,5或()0,5-综上所述P 点的坐标为:()0,5或()0,5-或10,03⎛⎫⎪⎝⎭或10,03⎛⎫- ⎪⎝⎭. 【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点是解题关键.。
浙江嘉兴2022-2023学年七年级下学期期末数学试题(原卷版)

七年级(下)学科期末检测数学试题卷(2023.06)【考生须知】1.本卷为试题卷,请将答案做在答题卷上,做在试题卷上无效.2.本次检测不使用计算器.一、选择题(每小题有4个选项,其中有且只有一个正确,请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)1. 计算:2m m ⋅,结果正确的是( )A. 22mB. 3mC. 32mD. 2m2. 观察下列五幅图案,在②③④⑤的图案中可以通过平移图案①得到的是( )A. ②B. ③C. ④D. ⑤3. 红细胞是血液中最多一类血细胞,它的平均直径是0.0000072米,数据0.0000072用科学记数法表示为( )A. 77.210−×B. 67.210−×C. 57.210−×D. 47.210−× 4. 如图,直线a ,b 被直线c 所截,1∠的内错角是( )A. 2∠B. 3∠C. 4∠D. 5∠5. 下列由左边到右边的变形中,属于因式分解的是( )A. 221(2)1x x x x −+=−+B. 2()x y x y y +=++的C. 22(2)44x x x +=++D. 21(1)(1)x x x −+−6. 某校学生喜爱的体育中考项目人数的扇形统计图如图,已知喜爱排球的人数为440人,则喜爱游泳的人数为( )A. 56人B. 120人C. 184人D. 800人 7. 方程()12210k k x y−−++=是关于x ,y 的二元一次方程,则k 的值为( ) A. 0 B. 2 C. 0或2 D. 38. 某工程队需要铺设一条长为2400米公路,铺设时“…”,设原计划每天铺设a 米,可得方程24002400620a a −=+,根据此情景,题中用“…”表示的缺失条件应补为( ) A 实际每天铺设比原计划多铺设20米,结果提前6天完成B. 实际每天铺设比原计划少铺设20米,结果提前6天完成C. 实际每天铺设比原计划多铺设20米,结果延期6天完成D. 实际每天铺设比原计划少铺设20米,结果延期6天完成9. 若关于x ,y 的方程组252x y a x y a +=−= 的解为x m y n = = ,则33m n m n +−的值为( ) A. 3− B. 13 C. 23 D. 110. 已知矩形ABCD ,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1与图2中阴影部分的周长差为l ,若要知道l 的值,只需测量( )的.A. aB. bC. BCD. AB二、填空题(本题有6小题,每小题3分,共18分)11. 若分式14−x 有意义,则x 取值范围是___________. 12. 已知某组数据的频率为0.4,样本容量为820,则这组数据的频数为__________.13. 计算:()23x =____________.14. 如图,将直角三角板ABO 的顶点O 放于直尺边CD 上,90A ∠=°,20AOC ∠=°,要使AB CD ,至少将直角三角板绕点O 顺时针旋转__________°.15. 若22162a b ab ×==,,则()2a b −=_________. 16. 现有A ,B 两袋糖果,其中A 袋中水果糖的重量占%a ,其余都为奶糖,B 袋中奶糖的重量占%b ,其余都为水果糖.将两袋糖果混合在一起,发现水果糖的重量占总重量的20%.(1)当10a b ==时,原来A 袋的重量占混合后糖果总重量的百分比为__________.(2)当4b a =(020a <<)时,原来A 袋的重量占混合后糖果总重量的百分比为__________. 三、解答题(本题有8小题,第17~22题每题6分,第23、24题每题8分,共52分) 17. 计算:(1)()0121π−+−.(2)32(622)4a a a a −+÷.18. 分解因式:(1)294x −.(2)2288x x −+.19. 先化简,再求值:244244a a a a ÷−−+,其中3a =.的20. 已知关于x ,y 的二元一次方程组23,1x y y ax −= =−其中a 是实数. (1)当3a =时,求该二元一次方程组的解.(2)若x 是y 的2倍,求a 的值.21. 为了解某中学学生对“生命安全知识”知晓情况,现从中随机抽取部分学生进行问卷调查.其结果根据分数段划分为五个等级,结果绘制如下统计图表: 分数段 等级频数 频率 60x < 不清楚9 0.03 6070x ≤< 不太清楚n 0.07 7080x ≤< 基本清楚75 m 8090x ≤< 比较清楚 13590100x ≤≤ 非常清楚60(1)参与本次调查的学生有多少人?(2)求表中m ,n 的数值,并补全频数分布直方图.(3)若该校有1200名学生,请估计这些学生中“比较清楚”生命安全知识的人数.22. 已知:如图,DE BC ∥,12180∠+∠=°.(1)判断FH 与CD 的位置关系,并说明理由.(2)若30ACB ∠=°,12ECD BCD ∠∠=∶∶,求2∠度数. 23. 关于任意实数a ,b 存在一种新运算“*”,*a b 有如下结果: 3*19110=+=;3*2927()−=−=;4*216218()−=+=;3()5*2222)(5−−=−=.按你发现的规律探索:(1)*a b = __________.(用a ,b 的代数式表示).(2)当)*(*a b b a a b =≠成立时,求a ,b 满足的关系式. 24. 甲、乙两小区准备安装A B 、两款智能快递柜,每个B 款能满足快递需求人数比A 款多20人.已知甲、乙两小区有快递需求居民分别有280人、420人.如果甲小区全部安装A 款智能快递柜,乙小区全部安装B 款智能快递柜,那么刚好满足两小区所有居民的快递需求且安装个数相同.(1)设每个A 款能满足快递需求人数为m 人,求m 的值. (2)如果甲小区安装A 款和B 款智能快递柜共7个,其中安装A 款的个数比安装B 款的2倍还多1个,分别求甲小区A 款和B 款的安装个数,并说明这样安装能否满足甲小区所有居民的快递需求. (3)已知购买A 款需6000元/个,购买B 款需6800元/个,请你帮助乙小区设计一个购买方案,既刚好满足乙小区所有居民的快递需求,又费用最省,并说明理由.的。
嘉兴市七年级下册末数学试卷及答案

一、填空题1.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A,则点B在点A的______边(填“左”或“右”).点表示的数是_____.若点B表示 3.14答案:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.2.一副三角板按如图所示(共定点A)叠放在一起,若固定三角板ABC,改变三角板ADE 的位置(其中A点位置始终不变),当∠BAD=___°时,DE∥AB.答案:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D解析:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D=∠BAD=180°,∵∠D=30°∴∠BAD=180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.3.如图所示一个质点在第一象限内及x轴、y轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x轴,y轴平行的方向运动,且每秒移动一个单位长度,那么质点运动到点(n,n)(n为正整数)的位置时,用代数式表示所用的时间为_________秒.答案:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向解析:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n,n)处,走过的长度单位是2+4+6+…+2n=n(n+1),点睛:本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.其中需知道2+4+6+…+2n=n(n+1)即可.4.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.答案:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n +1到5n +5次运动横坐标分别为:4n +1,4n +2,4n +2,4n +4,4n +4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n +1到5n +5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.5.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________. 答案:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵解析:(0,﹣1)或(﹣1.5,0)【分析】分点N 在x 轴的负半轴上或y 轴的负半轴上两种情况讨论即可.【详解】∵|a ﹣2|+(b ﹣3)2=0.∴a =2,b =3,∴A (0,2),B (3,0),∵点M 的坐标为(32-,1), ∴四边形ABOM 的面积=S △AMO +S △ABO 12=⨯23122⨯+⨯2×392=, 当点N 在y 轴的负半轴上时,12•AN •OB 92=, ∴AN =3,ON =AN ﹣OA =1,∴点N 的坐标为(0,﹣1),当点N 在x 轴负半轴上时,12•BN •AO 92=, ∴BN =4.5,ON =BN ﹣OB =1.5,∴点N 的坐标为(﹣1.5,0), 综上所述,满足条件的点N 的坐标为(0,﹣1)或(﹣1.5,0).故答案为:(0,﹣1)或(﹣1.5,0).【点睛】本题考查了坐标与图形的性质,非负数的性质,多边形面积等知识,关键是学会利用分割法求四边形的面积,用分类讨论思想思考问题.6.如图,动点P 在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0)A ,第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P 的坐标是________.答案:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:(4042,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),⋯,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P 的横坐标为4042, 纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,202145051÷=⋅⋅⋅,故动点P 的纵坐标为2,∴经过第2021次运动后,动点P 的坐标是(4042,2).故答案为:(4042,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.7.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 答案:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.8.观察下列各式:_____. 答案:n .【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】解:=n .故答案为:n .【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析: 【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】故答案为: 【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键. 9.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.答案:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.答案:﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x-<<时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01x<<时,[x]=0,(x)=1,[x)=0或1,∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!11.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________.答案:6174【分析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234,4321- 1234= 3087,8730-378= 8352 ,8532一2358= 617解析:6174【分析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234,4321- 1234= 3087,8730-378= 8352 ,8532一2358= 6174,6174是符合条件的4位数中唯一会产生循环的(7641-1467= 6174) 这个在数学上被称之为卡普耶卡(Kaprekar)猜想.【详解】任选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数,用所得的结果的四位数重复上述的过程,最多七步必得6174,如1234,4321-1234 =3087,8730 -378 = 8352,8532-2358= 6174,这一现象在数学上被称之为卡普耶卡(Kaprekar)猜想,故答案为:6174.【点睛】此题考查数字的规律运算,正确理解题意通过计算发现规律并运用解题是关键.12.对于实数x,y,定义一种运算“×”如下,x×y=ax-by2,已知2×3=10,4×(-3)=6,那么(-2=________;答案:130【解析】【分析】已知等式利用题中的新定义化简,求出a与b的值,即可确定出原式的值.【详解】根据题中的新定义得:解得 ,所以,==130故答案为:130【点睛】本解析:130【解析】【分析】已知等式利用题中的新定义化简,求出a 与b 的值,即可确定出原式的值.【详解】根据题中的新定义得:2910496a b a b -=⎧⎨-=⎩ 解得2149a b =-⎧⎪⎨=-⎪⎩, 所以,()()22222a b ⎡⎤-⨯=--⎣⎦ =()22142(2)()9⎡⎤-⨯---⨯⎣⎦ =130故答案为:130 【点睛】本题考核知识点:实数运算. 解题关键点:理解新定义运算规则,根据法则列出方程组,解出a,b 的值,再次应用规则,求出式子的值.13.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1;③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解;④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2.其中正确的结论有 ___(写出所有正确结论的序号).答案:②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】代根据若[]x表示不超过x的最大整数,①取 2.5x验证;②根据定义分析;③直接将 2.75入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x]与﹣[x]两者不相等,故①不符合题意;②若[x]=n,∵[x]表示不超过x的最大整数,∴x的取值范围是n≤x<n+1,故②符合题意;③将x=﹣2.75代入4x﹣[x]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.答案:(﹣5,13)【解析】【分析】设纵坐标为n的点有个(n为正整数),观察图形每行点的个数即可得出=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐解析:(﹣5,13)【解析】【分析】设纵坐标为n的点有n a个(n为正整数),观察图形每行点的个数即可得出n a=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n 的点有n a 个(n 为正整数),观察图形可得,1a =1,2a =2,3a =3,…,∴n a =n ,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.答案:【分析】将,转化为2ax=x 来解答.【详解】解:∵可转化为:2ax=x ,即,∵不论x 取何值,都成立,∴,解得:,故答案为:.【点睛】本题考查实数的运算,正确理解题目中的新运算是 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =,故答案为:12.【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.答案:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0)解析:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是是一道比较容易出错的题目.17.对任意两个实数a,b定义新运算:a⊕b=()()a a bb a b≥⎧⎨⎩若若<,并且定义新运算程序仍然是先52)⊕3=___.答案:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,=2,[﹣2.56]=﹣3,[=﹣2.按这个规定,[1]=_____.答案:-5【详解】∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 解析:-5【详解】∵,∴,∴,∴故答案为−5.. 19.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.答案:【分析】过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,做平行于,如下图:,,则,解析:153︒【分析】过点,,E F G ,做,,EH FK GJ 平行于AB ,根据平行线的传递性及性质得MEN BME DNE ∠=∠+∠,同理得出∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,通过等量关系先计算出18+=︒a b ,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,,E F G ,做,,EH FK GJ 平行于AB ,如下图://,//AB EH AB CD ,//EH CD ,则,∠=∠∠=∠BME HEM DNE HEN ,∴∠=∠+∠=∠+∠MEN HEM HEN BME DNE ,同理可得:∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,则5590∠=∠+∠=+=︒MEN BME DNE a b ,18∴+=︒a b ,1801803∠=︒-∠=︒-AMF BMF a ,1801803∠=︒-∠=︒-CNF DNF b , MG 平分AMF ∠,NG 平分CNF ∠, 131390,902222AMG AMF a CNG CNF b ∴∠=∠=︒-∠=∠=︒-, 3180()1532∴∠=∠+=︒-+=︒MGN AMG CNG a b , 故答案是:153︒.【点睛】本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.20.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.答案:4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.21.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.答案:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题. 22.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.答案:【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.23.如图,直线MN ∥PQ ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .∠ABM 的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD ⊥PQ 交PQ 于点D ,作AF ⊥AB 交PQ 于点F ,AE 平分∠DAF 交PQ 于点E ,若∠CAE=45°,∠ACB=52∠DAE ,则∠ACD 的度数是_____.答案:27°.【分析】延长FA 与直线MN 交于点K ,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA 与直线MN 交于点K ,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD解析:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=12∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=12∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.24.如图,已知AB∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________答案:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.25.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.答案:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.26.如图,四边形ABCD 的长条形纸带,AB //CD ,将长方形沿 EF 折叠,A 、D 分别于A ’、D '对应,若 ∠CFE =2∠CFD ',则∠AEF 的度数是___.答案:72゜【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠D′FE ,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB ∥CD ,解析:72゜【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠D ′FE ,由平角的性质可求得∠CFD ′的度数,即可得出答案.【详解】解:∵AB ∥CD ,∴∠CFE =∠AEF ,又∵∠DFE =∠D ′FE ,∠CFE =2∠CFD ′,∴∠DFE =∠D ′FE =3∠CFD ′,∴∠DFE +∠CFE =3∠CFD ′+2∠CFD ′=180°,∴∠CFD ′=36°,∴∠AEF =∠CFE =2∠CFD ′=72°.故答案为:72°.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.27.如图,已知//AB CD ,13EAF EAB ∠=∠,13ECF ECD ∠=∠,86AFC ∠=︒,则AEC ∠的度数是__________.答案:【分析】连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2解析:129【分析】连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2(x+y),∠AFC═2(x+y),即可得出答案.【详解】解:连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y)∴∠AEC=180°−(∠CAE+∠ACE)=180°−[180°−(3x+3y)]=3x+3y=3(x+y),∠AFC=180°−(∠FAC+∠FCA)=180°−[180°−(2x+2y)]=2x+2y=2(x+y),∠AFC=129°.∴∠AEC=32故答案为:129°.【点睛】本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.∠=︒则∠4的度数是___度.28.如图,a∥b,∠2=∠3,140,答案:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a∥c,a∥d,则a∥b∥解析:40【分析】∠+∠=∠+∠根据平行线的性质得出分别作a∥c,a∥d,则a∥b∥c∥d,由题可知5678,∠=∠再根据平行线的性质由a∥c,b∥d,得出∠=∠再用等式的性质得出58,67,∠=∠∠=∠即可得出144015,48,∠=∠=︒.【详解】如图,作a∥c,a∥d,则a∥b∥c∥d,∵∠2=∠3,∠+∠=∠+∠∴5678,又∵c∥d,∠=∠∴67,∠=∠∴58,∵a∥c,b∥d,∠=∠∠=∠∴15,48,∠=∠=︒∴1440,故答案为:40.【点睛】本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 29.如图,//AB DE ,AD AB ⊥,AE 平分BAC ∠交BC 于点F .如果24CAD ∠=︒,则=E ∠__︒.答案:33【分析】根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵,,∴∠解析:33【分析】根据//AB DE 求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵//AB DE ,AD AB ⊥,∴∠180BAD D ∠+∠=︒,且90BAD ∠=︒∴90D ∠=︒∵∠CAD =24°∴∠BAC =90°-∠CAD =90°-24°=66°,∵AE 是∠BAC 的平分线∴∠EAB =11663322BAC ∠=⨯︒=︒ ∵//AB DE ,∴33E EAB ∠=∠=︒故答案为:33【点睛】此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.30.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.答案:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π, 故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键. 31.用[]a 表示不大于a 的最大整数,例如:[]2.52=,[]33=,[]2.53-=-;用a <>表示大于a 的最小整数,例如: 2.53<>=,45<>=, 1.51<->=-.已知x ,y 满足方程组3[]233[]6x y x y ⎧+=⎪⎨-=-⎪⎩,则x 的取值范围是________. 答案:-1≤x <0【分析】先解二元一次方程组求出,然后根据表示不大于的最大整数进行求解即可.【详解】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022届嘉兴市名校初一下期末监测数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个答案正确)1.点M(m+3,m+1)在x轴上,则点M坐标为()A.(0,﹣4)B.(2,0)C.(﹣2,0)D.(0,﹣2)【答案】B【解析】【分析】直接利用x轴上点的坐标特点得出m的值,进而得出答案.【详解】∵点M(m+3,m+1)在x轴上,∴m+1=0,解得:m=-1,故m+3=2,则点M坐标为:(2,0).故选B.【点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.2.如图所示,直线AB∥CD,∠1=64°,FG平分∠EFD,则∠2的度数是A.32°B.30°C.31°D.35°【答案】A【解析】【分析】根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义求出∠DFG,然后根据两直线平行,内错角相等可得∠2=∠DFG.【详解】解:∵AB∥CD,∴∠EFD=∠1=64°,∵FG 平分∠EFD ,∴∠DFG=∠EFD=×64°=32°,∵AB ∥CD ,∴∠2=∠DFG=32°.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.3.下列四大手机品牌图标中,是轴对称的是( )A .B .C .D . 【答案】A【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、是轴对称图形,故此选项正确;B 、不是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项错误;D 、不是轴对称图形,故此选项错误;故选:A .【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.4.如图,AEC ∆≌BED ∆,点D 在AC 边上,12∠=∠,AE 和BD 相交于点O .下列说法: (1)若B A ∠=∠,则//BE AC ;(2)若BE AC =,则//BE AC ;(3)若ECD ∆≌EOD ∆,136∠=,则//BE AC .其中正确的有( )个.A.3个B.2个C.1个D.0个【答案】B【解析】【分析】依据全等三角形的性质,即可得到∠BED=∠EDC,进而得出BE∥AC;依据全等三角形的性质,即可得到∠1=∠DEO=36°,∠1=∠AEB=36°,∠C=72°,即可得出∠C+∠BEC=180°,进而得出BE∥AC.【详解】∵△AEC≌△BED,∴∠BED=∠AEC,∴∠1=∠AEB,由∠B=∠A,∠1=∠AEB,不能得到BE∥AC,故(1)错误;∵△AEC≌△BED,∴BD=AC,∠BDE=∠C,又∵BE=AC,∴BD=BE,∴∠BED=∠BDE,∵ED=EC,∴∠C=∠EDC,∴∠BED=∠EDC,∴BE∥AC,故(2)正确;∵△ECD≌△EOD,∴∠1=∠DEO=36°,又∵∠1=∠AEB=36°,CE=DE,∴∠C=72°,∴∠C+∠BEC=180°,∴BE∥AC,故(3)正确.故选B.【点睛】本题主要考查了全等三角形的性质以及平行线的判定,解题时注意:全等三角形的对应边相等,全等三角形的对应角相等.5.将0.0000019用科学计数法表示为()A.1.9×10-6B.1.9×10-5C.19×10-7D.0.19×10-5【答案】A【解析】【分析】利用科学计数法,表达的形式a×10n,其中0≤|a|<10,n是负整数,其n是原数前面0的个数,包括小数点前面的0.【详解】1.9×10-6【点睛】本题考查:小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.6.方程2x+y=8的正整数解的个数是()A.4 B.3 C.2 D.1【答案】B【解析】先用含x的代数式表示y为:y=8-2x;当x=1时,y=6;当x=2时,y=4;当x=3时,y=2.一共3组.故选B.点睛:取定x的值代入求y的值时,要注意y也为正整数.7.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°【答案】A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒.故选A.8.在探究平行线的判定——基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行时,老师布置了这样的任务:请同学们分组在学案上(如图),用直尺和三角尺画出过点P与直线AB平行的直线PQ;并思考直尺和三角尺在画图过程中所起的作用.小菲和小明所在的小组是这样做的:他们选取直尺和含有45°角的三角尺,用平移三角尺的画图方法画出AB的平行线PQ,并将实际画图过程抽象出平面几何图形(如图).以下是小菲和小明所在小组关于直尺和三角尺作用的讨论:①在画平行线的过程中,三角尺由初始位置靠着直尺平移到终止位置,实际上就是先画∠BMD=45°,再过点P画∠BMD=45°②由初始位置的三角尺和终止位置的三角尺各边所在直线构成一个“三线八角图”,其中QP为截线③初始位置的三角尺和终止位置的三角尺在“三线八角图”中构成一组同位角④在画图过程中,直尺可以由直线CD代替⑤在“三线八角图”中,因为AB和CD是截线,所以,可以下结论“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”其中,正确的是()A.①②⑤B.①③④C.②④⑤D.③④⑤【答案】B【解析】【分析】这种画法就是画同位角∠DMB和∠DEP相等,从而判断PQ∥AB,从而根据平行线的判定定理对各小题进行判断.【详解】在画平行线的过程中,三角尺由初始位置靠着直尺平移到终止位置,实际上就是先画∠BMD=45°,再过点P画∠BMD=45°,所以①正确;由初始位置的三角尺和终止位置的三角尺各边所在直线构成一个“三线八角图”,其中CD为截线,所以②错误;初始位置的三角尺和终止位置的三角尺在“三线八角图”中构成一组同位角,所以③正确;在画图过程中,直尺可以由直线CD 代替,所以④正确;⑤在“三线八角图”中,因为AB 和PQ 是一组平行线,CD 为截线,所以,可以下结论“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”,所以⑤错误.故选:B .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的判定.9.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大1.设∠BAE 和∠BAD 的度数分别为x 、y ,那么x 、y 所适合的一个方程组是( )A .482y x y x -=⎧⎨=⎩, B .48=2y x y x -=⎧⎨⎩, C .48+2=90y x y x -=⎧⎨⎩, D .48+2=90x y y x -=⎧⎨⎩, 【答案】C【解析】【分析】【详解】本题考查的是根据实际问题列方程组由折叠可得∠BAD 2+∠BAE 90=︒,再由∠BAD 比∠BAE 大1,即可列出方程组.根据折叠可得∠BAD 2+∠BAE 90=︒,得方程290y x +=,根据∠BAD 比∠BAE 大1,得方程48y x -=,则可列方程组为48+2=90y x y x -=⎧⎨⎩,, 故选C .10.在平面直角坐标系中,点P (x+1,x-2)在x 轴上,则点P 的坐标是( )A .(3,0)B .(0,-3)C .(0,-1)D .(-1,0) 【答案】A【解析】【分析】根据x轴上点的纵坐标为零,可得点的坐标.【详解】解:∵点P(x+1,x-2)在x轴上,∴x-2=0,∴x=2,∴x+1=3,∴点P的坐标为(3,0),故选:A.【点睛】本题考查了点的坐标,利用了x轴上点的纵坐标为零.二、填空题11.关于x的不等式组211x ax-≥⎧⎨-≤⎩只有4个整数解,则a的取值范围是_____.【答案】-3<a≤-2 【解析】【分析】先求不等式组211x ax-≥⎧⎨-≤⎩得解集,然后根据整数解的情况,确定a的范围.【详解】解:解不等式组211x ax-≥⎧⎨-≤⎩得:a≤x≤1组4个整数解为:1,0,-1,-2,所以-3<a≤-2故答案为:-3<a≤-2【点睛】本题考查了不等式组的解法和根据整数解确定参数,其中解不等式组是解答本题的关键.12.如图,将周长为223+的ABC沿BC方向平移2个单位得到,DEF则四边形ABFD的周长为___.【答案】7【解析】【分析】先利用的性质得到2,AD CF DF AC ===,然后利用等线段代换得到四边形ABFD 的周长AB BC AC CF AD =++++.【详解】∵ABC 沿BC 方向平移2个单位得到,DEF∴2,AD CF DF AC ===∵ABC 的周长为3+∴3AB BC AC ++=∴四边形ABFD 的周长AB BC CF DF AD =++++AB BC AC CF AD =++++322=++7=故答案为:7.【点睛】本题考查了三角形平移的问题,掌握平移的性质、三角形周长公式是解题的关键.13. “十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x 元,男装部购买了原价为y 元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为________________.【答案】7000.80.85580x y x y +=⎧⎨+=⎩. 【解析】试题解析:根据优惠前需付700元,得x+y=700;打折后需付580元,得0.8x+0.85y=500.列方程组为7000.80.85580.x y x y +=⎧⎨+=⎩ 故答案为:7000.80.85580.x y x y +=⎧⎨+=⎩14.暑假里,小明爸爸开车带小明去青岛游玩,一路上匀速前行,小明记下了如下数据:路牌内容青岛80km 青岛70km 青岛50km 80km)从8点开始,记汽车行驶的时间为t(min),汽车离青岛的距离为s(km),则s与t的关系式为________________________.【答案】5 =80-t3 S【解析】【分析】由汽车每6min行驶10km可知汽车的速度为80-70105==663(km/min),根据距离=80−行驶的路程,可得函数解析式.【详解】由表知,汽车每6min行驶10km,∴汽车的速度为80-70105==663(km/min),则s=80−53t,故答案为:s=80−53t.【点睛】本题考查了函数的表示方法,读懂表格,获取信息是解题的关键.15.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需要棋子枚.【答案】3n+1【解析】分析图形中黑色棋子数量与序号间的关系可知:第1个图形中,黑色棋子的个数=1+3=4;第2个图形中,黑色棋子的个数=1+3×2=7;第3个图形中,黑色棋子的个数=1+3×3=10;由此可知,在第n个图形中,黑色棋子的个数=1+3×n=3n+1.16.如图,四边形ABCD中,∠A=∠B=∠C,点E在AB边上,且13ADE EDC∠=∠,∠BED=110°,则∠A=__.【答案】80【解析】【分析】设∠A=x °,∠ADE=y °,则∠B=∠C=x °,∠EDC=3y °,根据四边形内角和定理以及三角形外角的性质列出方程组,求解即可.【详解】设∠A=x °,∠ADE=y °,则∠B=∠C=x °,∠EDC=3y °,根据题意,得34360110x y x y +=⎧⎨+=⎩, 解得8030x y =⎧⎨=⎩, 所以∠A=80°,故答案为80°.【点睛】本题考查了多边形的内角与外角以及四边形的内角和定理,二元一次方程组的应用,熟练掌握和灵活运用相关知识是解题的关键.17.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°,在OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,此时∠ODE =∠ADC ,且反射光线DC 恰好与OB 平行,则∠DEB 的度数是___.【答案】74°【解析】【分析】过点D 作DF ⊥AO 交OB 于点F .根据题意知,DF 是∠CDE 的角平分线,故∠1=∠3;然后又由两直线CD ∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB 的度数.【详解】过点D 作DF ⊥AO 交OB 于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°,∴∠2=90°−37°=53°;∴在△DEF中,∠DEB=180°−2∠2=74°.故答案为74°【点睛】此题考查平行线的性质,解题关键在于作辅助线.三、解答题18.解二元一次方程组:((1)用代入消元(2)用加减消元)(1)3523x yx y+=⎧⎨-=⎩(2)7311237x yx y+=⎧⎨-=⎩【答案】(1)21xy=⎧⎨=⎩,(2)21xy=⎧⎨=-⎩.【解析】【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)3523x yx y+=⎧⎨-=⎩①②,由②得:y=2x−3③,把③代入①得:x+6x−9=5,解得:x=2,把x=2代入③得:y=1,则方程组的解为:21 xy=⎧⎨=⎩;(2)7311 237x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,解得:x=2,把x=2代入①得:y=−1,则方程组的解为:21x y =⎧⎨=-⎩. 【点睛】 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有代入消元法和加减消元法.19.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整数的三角形为整点三角形如图,已知整点()2,3A ,()4,4B 请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个..PAB ∆,使点P 的横、纵坐标之和等于点B 的纵坐标.(2)在图2中画一个..PAB ∆,使点PAB ∆的面积为3.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)设P (x ,y ),由题意x+y=4,求出整数解即可解决问题;(2)可根据三角形的面积=底⨯高12⨯来解答即可. 【详解】 (1)如图就是所求的图形.(2)如图就是所求的图形.【点睛】本题考查作图-应用与设计,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.口袋里有红,黄,绿,三种颜色的球,这些球除颜色外完全相同,其中有红球4个,绿球5个,从中任意摸出一个球是绿色的概率是14.求:(1)口袋里黄球的个数;(2)任意摸出一个球是黄球的概率.【答案】(1)口袋中黄球有11个;(2)11 20.【解析】【分析】(1)设有x个黄球,用绿球的个数除总数等于14,即可解答(2)用黄球个数除总数即可解答【详解】(1)设有x个黄球,根据题意,得:51 544x=++,解得:x=11,即口袋中黄球有11个;(2)∵袋子中共有11+4+5=20个小球,其中黄球有11个,∴任意摸出一个球是黄球的概率为1120.【点睛】此题考查概率公式,难度不大21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A、C的坐标分别为(﹣4,4),(﹣1,2).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)将△ABC向右平移2个单位长度,然后再向下平移3个单位长度,得到△A′B′C′,画出平移后的△A′B′C′.(3)求S△A′B′C′的面积.【答案】(1)见解析;(2)见解析;(3)S△A′B′C′=1.【解析】【分析】(1)根据点A 、点C 的坐标确定出坐标原点,然后建立平面直角坐标系即可;(2)根据网格结构找出平移后的点A ′、B ′、C ′的位置,然后顺次连接即可;(3)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】解:(1)如图,建立平面直角坐标系;(2)如图,△A′B′C′为所作;(3)S △A′B′C′=3×1﹣12×2×1﹣12×2×3﹣12×2×1 =1.【点睛】本题考查了根据已知点的坐标确定平面直角坐标系、图形的平移变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键,(3)利用三角形所在的矩形的面积减去四周直角三角形的面积求解是常用的方法. 221x +2y -()2x y -的平方根 【答案】3±【解析】【分析】根据相反数的性质和二次根式的非负性求出x ,y 的值,再根据平方根的性质求解即可.【详解】 ∵1x +2y -∴10,20x y +=-=解得1,2x y =-=将1,2x y =-=代入()2x y -中原式()2129=--=∴()2x y -的平方根是3±.【点睛】本题考查了代数式的运算问题,掌握相反数的性质、二次根式的非负性、平方根的性质是解题的关键.23.已知关于 x , y 的二元一次方程组325x y a x y a -=-⎧⎨+=⎩(a 为实数). (1)若方程组的解始终满足1y a =+,求a 的值.(2)已知方程组的解也是方程31bx y +=(b 为实数,0b ≠ 且6b ≠-)的解.①探究实数a ,b 满足的关系式.②若a ,b 都是整数,求b 的最大值和最小值.【答案】(1)2a =;(2)①624ab a b ++=;②b 有最大值10,b 有最小值22-.【解析】【分析】(1)用加减消元法进行求解,即可得到答案;(2)①将21y a =-代入方程①,得到方程组的解为221x a y a =+⎧⎨=-⎩,由题意方程组的解也是方程31bx y +=的解,计算即可得到答案.②由624ab a b ++=可得462a b a -=+,因为a ,b 都是整数,进行计算即可得到答案. 【详解】(1)将方程组②-①,得363y a =- ∴21y a =-1y a =+∴211a a -=+∴2a =(2)①将21y a =-代入方程①,可得2x a =+∴方程组的解为221x a y a =+⎧⎨=-⎩方程组的解也是方程31bx y +=的解∴()()23211b a a ++-=∴624ab a b ++= ②由624ab a b ++=可得462a b a -=+ ∴()()46221662166222a ab a a a -+--+===-+++a ,b 都是整数∴21a +=±,2±,4±,8±,16±∴当21a +=时,b 有最大值10当21a +=-时,b 有最小值22-.【点睛】本题考查二元一次方程组和分式,解题的关键是掌握加减消元法求解.24.有两个AOB ∠与EDC ∠,EDC ∠保持不动,且EDC ∠的一边CD//AO ,另一边DE 与直线OB 相交于点F .()1若AOB 40∠=,EDC 55∠=,解答下列问题:①如图,当点E 、O 、D 在同一条直线上,即点O 与点F 重合,则BOE ∠=______;②当点E 、O 、D 不在同一条直线上,画出图形并求BFE ∠的度数;()2在()1②的前提下,若AOB α∠=,EDC β∠=,且αβ<,请直接写出BFE ∠的度数(用含α、β的式子表示).【答案】()115①;②画图见解析,BFE 15∠=或BFE 105∠=;()2BFE βα∠=-或βα+.【解析】【分析】()1①根据平行线的性质,即可得到60AOE D ∠=∠=,再根据45AOB ∠=,即可得出BOE ∠的度数;②当点E 、O 、D 不在同一条直线上时,过F 作//GF AO ,根据平行线的性质,即可得到60GFE D ∠=∠=,45GFB AOB ∠=∠=,再根据BFE GFE BFG ∠=∠-∠进行计算即可; ()2由()1②可得,BFE EDC AOB ∠=∠-∠,再根据BOA α∠=,EDC β∠=,即可得到BFE βα∠=-或βα+.【详解】()1//CD AO ①,60AOE D ∠∠∴==,又45AOB ∠=,604515BOE AOE AOB ∠∠∠∴=-=-=,故答案为:15;②如图,当点E 、O 、D 不在同一条直线上时,过F 作//GF AO ,//CD AO ,//GF CD ∴,60GFE D ∠∠∴==,45GFB AOB ∠∠==,604515BFE GFE BFG ∠∠∠∴=-=-=;如图,当点E 、O 、D 不在同一条直线上时,过F 作//GF AO ,//CD AO ,//GF CD ∴,60GFE D ∠∠∴==,45GFB AOB ∠∠==,6045105BFE GFE BFG ∠∠∠∴=+=+=;()2由()1②可得,若αBOA ∠=,βEDC ∠=,则βαBFE ∠=-或βα+.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,同位角相等.25.如图,点D ,E ,F 在ABC ∆的三边上,DE BC ∥,180A ADF ∠+∠=︒,求证B EDF ∠=∠.【答案】见解析【解析】【分析】由DE BC ∥平行线的性质得到AED B ∠=∠,由180A ADF ∠+∠=︒可得AB DF ,进而可得,AED EDF ∠=∠等量代换即可得出B EDF ∠=∠.【详解】证明:∵180A ADF ∠+∠=︒,∴AB DF .∴AED EDF ∠=∠.∵DE BC ∥,∴AED B ∠=∠.∴B EDF ∠=∠.【点睛】本题主要考查了平行线的性质的运用,解题时注意运用:两直线平行,内错角相等;两直线平行,同位角相等.。