六年级下册(第五章基本平面图形)测试题(最新整理)
2022年最新鲁教版(五四)六年级数学下册第五章基本平面图形专题测试练习题(精选)

六年级数学下册第五章基本平面图形专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点C 、D 在线段AB 上,且AC :CD :DB =2:3:4,如果AB =18,那么线段AD 的长是( )A .4B .5C .10D .142、已知α∠与β∠满足23180βα∠∠+=︒,下列式子表示的角:①90β︒-∠;②3302α︒+∠;③12αβ∠+∠;④2αβ∠+∠中,其中是β∠的余角的是( ) A .①② B .①③ C .②④ D .③④3、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点B ,若45ABE ∠=︒,30GBH ∠=︒,那么FBC ∠的度数为( )A .10︒B .15︒C .25︒D .304、如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是( )A .两点确定一条直线B .经过一点有无数条直线C .两点之间,线段最短D .一条线段等于已知线段5、如图,点C ,D 为线段AB 上两点,12AC BD +=,且65AD BC AB +=,设CD t =,则关于x 的方程37(1)2(3)x x t x --=-+的解是( )A .2x =B .3x =C .4x =D .5x =6、如图,已知点C 为线段AB 的中点,D 为CB 上一点,下列关系表示错误的是( )A .CD =AC ﹣DBB .BD +AC =2BC ﹣CD C .2CD =2AD ﹣AB D .AB ﹣CD =AC ﹣BD7、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是( )A .∠α=∠βB .∠α=12∠βC .∠α+∠β=90°D .∠α+∠β=180°8、如图,C 为线段AB 上一点,点D 为BC 的中点,且30cm AB =,4AC CD =.则AC 的长为( )cm .A.18 B.18.5 C.20 D.20.59、在9:30这一时刻,时钟上的时针和分针之间的夹角为()A.105︒B.100︒C.90︒D.85︒10、如图,射线OA所表示的方向是()A.西偏南30°B.西偏南60°C.南偏西30°D.南偏西60°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=__________时,AB所在直线与CD所在直线互相垂直.2、已知∠1的余角等于4520'︒,那么∠1的补角等于______.3、一个锐角的补角比它的余角的3倍少10°,则这个锐角度数为______°.4、若一个角的补角是其余角的3倍,则这个角的度数为___.5、如图,从O 点引出6条射线OA OB OC OD OE OF 、、、、、,且85AOB ∠=︒,155EOF ∠=︒,OE OF 、分别是AOD BOC ∠∠、的平分线.则COD ∠的度数为___________度.三、解答题(5小题,每小题10分,共计50分)1、如图,O 是直线AB 上一点,COD ∠是直角,OE 平分BOC ∠.(1)若30BOD ∠=︒,则COE ∠=__________;(2)若AOC α∠=,求DOE ∠=__________(用含α的式子表示);(3)在AOC ∠的内部有一条射线OF ,满足1()23AOC AOF AOF BOE ∠-∠=∠+∠,试确定AOF ∠与DOE ∠的度数之间的关系,并说明理由. 2、如图,直线AB 、CD 相交于点O ,AB CD ⊥,90EOF ∠=︒.(1)若30COE ∠=︒,则BOF ∠= __________.(2)从(1)的时刻开始,若将EOF ∠绕O 以每秒15的速度逆时针旋转一周,求运动多少秒时,直线AB 平分EOF ∠.(3)从(1)的时刻开始,若将EOF ∠绕O 点逆时针旋转一周,如果射线OP 是COE ∠的角平分线,请直接写出此过程中AOP ∠与BOF ∠的数量关系.(不考虑OE 与AB 、CD 重合的情况)3、已知线段a 、b (如图),用直尺和圆规在方框内按以下步骤作图:(保留作图痕迹,不要求写出作法和结论)①画射线OP ;②在射线OP 上顺次截取OA =a ,AB =a ;③在线段OB 上截取BC =b ;④作出线段OC 的中点D .(1)根据以上作图可知线段OC = ;(用含有a 、b 的式子表示)(2)如果OD =2厘米,CD =2AC ,那么线段BC = 厘米.4、如图,将两块三角板的直角顶点重合.(1)写出以C为顶点相等的角;(2)若∠ACB=150°,求∠DCE的度数.5、如图,在同一直线上,有A、B、C、D四点.已知DB=23AD,AC=54CD,CD=4cm,求线段AB的长.-参考答案-一、单选题1、C【解析】【分析】设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.【详解】∵AC:CD:DB=2:3:4,∴设AC=2x,CD=3x,DB=4x,∴AB=9x,∵AB=18,∴x =2,∴AD =2x +3x =5x =10,故选:C .【点睛】本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.2、B【解析】【分析】将每项加上β∠判断结果是否等于90°即可.【详解】解:①∵90β︒-∠+β∠=90°,故该项是β∠的余角;②∵23180βα∠∠+=︒, ∴2036βα∠︒-=∠, ∴3302α︒+∠+β∠=90°+56α∠,故该项不是β∠的余角; ③∵2036βα∠︒-=∠, ∴12αβ∠+∠+β∠=90°,故该项是β∠的余角; ④∵2036βα∠︒-=∠,∴2αβ∠+∠+β∠=120°+23∠α,故该项不是β∠的余角;故选:B .【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.3、B【解析】【分析】根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.【详解】解:∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG-∠CBG=60°-45°=15°.故选B.【点睛】此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.4、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.5、D【解析】【分析】先根据线段的和差运算求出t 的值,再代入,解一元一次方程即可得.【详解】解:12,AC BD CD t +==,12122,AD BC AC CD BD CD t AB t ∴=+=+++=++,65AD BC AB +=, 6122(12)5t t ∴+=+, 解得3t =,则关于x 的方程37(1)2(3)x x t x --=-+为37(1)32(3)x x x --=-+,解得5x =,故选:D .【点睛】本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.6、D【解析】【分析】根据图形可以明确线段之间的关系,对线段CD 、BD 、AD 进行和、差转化,即可发现错误选项.解:∵C是线段AB的中点,∴AC=BC,AB=2BC=2AC,AB﹣BD=AC﹣BD;∴CD=BC﹣BD=12∵BD+AC=AB﹣CD=2BC﹣CD;∵CD=AD﹣AC,∴2CD=2AD﹣2AC=2AD﹣AB;∴选项A、B、C均正确.而答案D中,AB﹣CD=AC+BD;∴答案D错误符合题意.故选:D.【点睛】本题考查线段的和差,是基础考点,掌握相关知识是解题关键.7、C【解析】【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C.【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.8、C【解析】【分析】根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.【详解】解:由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=30,解得CD=5,AC=4CD=4×5=20cm,故选:C;【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.9、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.10、D【解析】【详解】︒-︒=︒,解:903060根据方位角的概念,射线OA表示的方向是南偏西60度.故选:D.【点睛】本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.二、填空题1、105°或75°【解析】【分析】分两种情况:①AB⊥CD,交DC延长线于E,OB交DC延长线于F,②AB⊥CD于G,OA交DC于H求出答案.【详解】解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,∵∠B=45°,∠BEF=90°,∴∠CFO=∠BFE=45°,∵∠DCO=60°,∴∠COF=15°∴∠AOC=90°+15°=105°;②如图2,AB⊥CD于G,OA交DC于H,∵∠A=45°,∠AGH=90°,∴∠CHO=∠AHG=45°,∵∠DCO=60°,∴∠AOC=180°-60°-45°=75°;故答案为:105°或75°.【点睛】此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.2、135°20′【解析】求出∠1的度数,再求∠1的补角即可.【详解】解:∵∠1的余角等于4520'︒,∴∠1=90°-45°20′=44°40′,∴∠1的补角为180°-∠1=180°-44°40′=135°20′,故答案为:135°20′.【点睛】本题考查互为余角,互为补角的意义,正确理解互余、互补的意义和度分秒的计算方法是解题的前提.3、40【解析】【分析】设这个锐角为x度,进而得到补角为(180-x)度,余角为(90-x)度,再根据题中等量关系即可求解.【详解】解:设锐角为x度,则它的补角为(180-x)度,余角为(90-x)度,由题意可知:180-x=3(90-x)-10,解出:x=40,故答案为:40.【点睛】本题考查了补角及余角的定义,一元一次方程的解法,熟练掌握补角及余角的定义是解决本题的关键.4、45°##45度【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x ,则180°-x =3(90°-x ),解得x =45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法. 5、35【解析】【分析】根据OE OF 、分别是AOD BOC ∠∠、的平分线.得出∠AOE =∠DOE ,∠BOF =∠COF ,可得∠AOE +∠BOF =∠DOE +∠COF =∠EOF -∠COD =155°-∠COD ,根据周角∠AOB +∠AOE +∠BOF +∠EOF =360°,得出85°+155°-∠COD +155°=360°,解方程即可.【详解】解:∵OE OF 、分别是AOD BOC ∠∠、的平分线.∴∠AOE =∠DOE ,∠BOF =∠COF ,∴∠AOE +∠BOF =∠DOE +∠COF =∠EOF -∠COD =155°-∠COD ,∵∠AOB +∠AOE +∠BOF +∠EOF =360°,∴85°+155°-∠COD+155°=360°,解得∠COD=35°.故答案为35.【点睛】本题考查角平分线有关的计算,角的和差,周角性质,一元一次方程,掌握角平分线有关的计算,角的和差,周角性质,一元一次方程是解题关键.三、解答题1、(1)30°(2)1 2α(3)5∠DOE-7∠AOF=270°【解析】【分析】(1)先根据∠DOB与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE;(2)先根据∠AOC与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE,再根据∠DOE与∠COE的互余关系即可得出答案;(3)结合(2)把所给等式整理为只含所求角的关系式即可.(1)解:∵∠COD是直角,∠BOD=30°,∴∠BOC=90°-∠BOD=60°,∵OE平分∠BOC,∴∠COE12BOC=∠=30°,(2)∵AOC α∠=,∴180BOC α∠=-,∵OE 平分∠BOC ,∴∠COE =∠BOE 119022BOC α=∠=-,∵∠COD 是直角,∴∠DOE =90°-∠COE =12α,(3)∵()123AOC AOF AOF BOE ∠-∠=∠+∠ ∴6∠AOF +3∠BOE =∠AOC -∠AOF ,∴7∠AOF +3∠BOE =∠AOC ,∵∠COD 是直角,OE 平分∠BOC ,∴∠BOE =90°-∠DOE ,由(2)可知,∠AOC =2∠DOE∴7∠AOF +3(90°-∠DOE )=2∠DOE∴7∠AOF +270°=5∠DOE ,∴5∠DOE -7∠AOF =270°.【点睛】本题考查角的计算;根据所求角的组成进行分析是解决本题的关键;应用相应的桥梁进行求解是常用的解题方法;注意应用题中已求得的条件.2、 (1)30°(2)11或23秒(3)1902AOP BOF ∠=︒+∠或1902AOP BOF ∠=︒-∠ 【解析】【分析】(1)根据AB CD ⊥,30COE ∠=︒,利用余角性质得出∠EOB =90°-∠COE =90°-30°=60°,根据90EOF ∠=︒,利用余角性质得出∠BOF =90°-∠EOB =90°-60°=30°即可;(2)解分两种情形,OA 平分EOF ∠,得出1452EOA EOF ∠=∠=︒,904545FOC ∠=︒-︒=︒,设运动t秒时 根据运动转过的角度列方程15304590t =++,OB 平分EOF ∠,1452EOB EOF ∠=∠=︒,根据运动转过的角度列方程153027045t =++,解方程即可;(3)分四种情况OE 在∠COB 内,OE 在∠AOC 内,OE 在∠AOD 内,OE 在∠DOB 内,根据射线OP 是COE ∠的角平分线∠COP =∠EOP ,利用角的和差计算即可.(1)解:∵AB CD ⊥,30COE ∠=︒,∴∠EOB =90°-∠COE =90°-30°=60°,∵90EOF ∠=︒,∴∠BOF =90°-∠EOB =90°-60°=30°,故答案是:30°;(2)解分两种情形,情况一∵OA 平分EOF ∠, ∴1452EOA EOF ∠=∠=︒,∴904545FOC ∠=︒-︒=︒,设运动t秒时,OA平分EOF∠,根据题意得:15304590t=++,解得:11t=;情况二∵OB平分EOF∠,∴1452EOB EOF∠=∠=︒,设运动t秒时,OB平分EOF∠,根据题意得:153027045t=++,解得:23t=;综上:运动11或23秒时,直线AB平分EOF∠;(3)解:∵射线OP是COE∠的角平分线∴∠COP=∠EOP,∠AOC=∠EOF=90°,∴∠AOP=90°+∠COP=90°+∠POE,∵∠COE=∠BOF,∴∠POE=11=22COE BOF∠∠,∴1902AOP BOF∠=︒+∠,∵∠COE=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°-∠COP=90°-11=9022COE BOF∠︒-∠,∴1902AOP BOF∠=︒-∠,∵∠COE=90°+∠COF=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°-∠COP=90°-11=9022COE BOF∠︒-∠,∴1902AOP BOF∠=︒-∠,∵∠COE=90°+∠BOE=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°+∠COP=90°+11=9022COE BOF∠︒+∠,∴1902AOP BOF∠=︒+∠;综上:1902AOP BOF∠=︒+∠或1902AOP BOF∠=︒-∠.【点睛】本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.3、 (1)作图见解答,2a b-(2)6【解析】【分析】利用基本作图画出对应的几何图形,(1)根据线段的和差得到OC OA AB BC=+-;(2)先利用D点为OC的中点得到2DC OD==厘米,则1CA=厘米,然后利用BC CA AB CA OC CA=+=++进行计算.(1)解:如图,2OC OA AB BC a a b a b=+-=+-=-;故答案为:2a b-;(2)解:D点为OC的中点,2DC OD∴==厘米,2CD CA=,1∴=厘米,CA∴=+=+=++=++=(厘米);1416BC CA AB CA OA CA OC CA故答案为:6.【点睛】本题考查了作图-复杂作图,两点间的距离,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.4、(1)∠ACE=∠BCD,∠ACD=∠ECB(2)30°【解析】【分析】(1)根据余角的性质即可得到结论;(2)根据角的和差即可得到结论.(1)∵∠ACD=∠BCE=90°,∴∠ACE+∠DCE=∠BCD+∠DCE=90°,∴∠ACE=∠BCD;∠ACD=∠ECB=90°(2)∵∠ACB=150°,∠BCE=90°,∴∠ACE=150°-90°=60°.∴∠DCE=90°-∠ACE=90°-60°=30°【点睛】本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.5、3cm【解析】【分析】 根据23DB AD =,54AC CD =求出AD 、AC 的长度,再根据AB AD DB =-即可求解.【详解】 解:54AC CD =,4CD cm =,5AC cm ∴=, 459AD AC CD cm ∴=+=+=,263DB AD cm ∴==, 963AB AD DB cm ∴=-=-=.【点睛】本题考查两点间的距离,解题的关键是根据条件先利用线段之间的关系得出线段AD 、AC .。
(完整版)鲁教版六年级数学下册第五章基本平面图形测试题

六年级数学第五章《基本平面图形》测试题一、选择题1、手电筒射出去的光线,给我们的形象是( ) A.直线 B.射线 C.线段 D.折线2、下列各直线的表示法中,正确的是( )A .直线AB .直线ABC .直线abD .直线Ab 3、下列说法正确的是( )A.画射线OA=3cm;B.线段AB 和线段BA 不是同一条线段C.点A 和直线L 的位置关系有两种;D.三条直线相交有3个交点 4、如图,A,B 在直线l 上,下列说法错误的是 ( )A.线段AB 和线段BA 同一条线段 B.直线AB 和直线BA 同一条直线 C.射线AB 和射线BA 同一条射线 D.图中以点A 为端点的射线有两条。
5、如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( ) A. 9cm B.1cm C.1cm 或9cm D.以上答案都不对6、角是指( )A.由两条线段组成的图形;B.由两条射线组成的图形C.由两条直线组成的图形;D.有公共端点的两条射线组成的图形 7、如图,下列表示角的方法,错误的是( )A.∠1与∠AOB 表示同一个角;B.∠AOC 也可用∠O 来表示C.图中共有三个角:∠AOB 、∠AOC 、∠BOC;D.∠β表示的是∠BOC 8、如图,四条表示方向的射线中,表示北偏东60°的是( )(3)1OCABCA DB9、一个人从A 点出发向北偏东60°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 的度数是( )A 、75°B 、105°C 、45°D 、135° 10.如图3,已知一个圆,任意画出它的三条半径,能得到( )个扇形. A 、4 B 、5 C 、6 D 、8二、填空题1、平面上有A 、B 、C 三点,过其中的每两点画直线,最多可以画_____条线段, 最少可以画_______条直线.2、要把木条固定在墙上至少需要钉___颗钉子,根据是________________.3、如图,直线上四点A 、B 、C 、D,看图填空: ①AC=______+BC;②CD=AD-_______;4、1.25°= ′= ″ 6000″= ′= °5、如图,BC=4 cm, BD=7 cm , D 是AC 的中点, 则AC= cm ,AB= cm6、钟表上2时15分时,时针与分针的夹角为 。
综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试卷(精选含答案)

六年级数学下册第五章基本平面图形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠BOC =90°,∠COD =45°,则图中互为补角的角共有( )A .一对B .二对C .三对D .四对2、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )A .两点之间线段最短B .过一点有无数条直线C .两点确定一条直线D .两点之间线段的长度叫做这两点之间的距离3、已知α与β互为余角,若20α=︒,则β的补角的大小为( )A .70︒B .110︒C .140︒D .160︒4、如图,C 为线段AB 上一点,点D 为BC 的中点,且30cm AB =,4AC CD =.则AC 的长为( )cm .A .18B .18.5C .20D .20.55、钟表10点30分时,时针与分针所成的角是( )A .120︒B .135︒C .150︒D .225︒6、如图,点O 在直线AB 上,OD 平分COB ∠,3AOE EOC ∠=∠,50EOD ∠=︒,则BOD ∠=( )A .10°B .20°C .30°D .40°7、下列说法中正确的是( )A .两点之间直线最短B .单项式32πx 2y 的系数是32C .倒数等于本身的数为±1D .射线是直线的一半8、如图,点A ,B 在线段EF 上,点M ,N 分别是线段EA ,BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长为( )cmA .10B .11C .12D .139、如图所示,B 、C 是线段AB 上任意两点,M 是AB 的中点,N 是CD 的中点,若12MN =,4BC =,则线段AD 的长是( )A .15B .17C .19D .2010、下列四个说法:①射线AB 和射线BA 是同一条射线;②两点之间,线段最短;③3815'︒和38.15°相等;④画直线AB =3cm ;⑤已知三条射线OA ,OB ,OC ,若12AOC AOB ∠=∠,则射线OC 是∠AOB 的平分线.其中正确说法的个数为( )A .1个B .2个C .3个D .4个 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、9830'18︒"=_____度,90°﹣3527'︒=___° __'.2、如图,点C 是线段AB 上任意一点(不与端点重合),点M 是AB 中点,点P 是AC 中点,点Q 是BC 中点,则下列说法:①PQ MB =;②1()2PM AM MC =-;③1()2PQ AQ AP =+;④1()2MQ MB MC =+.其中正确的是_______.3、冬至是地球赤道以北地区白昼最短、黑夜最长的一天,在苏州有“冬至大如年”的说法.苏州冬至日正午太阳高度角是3524'︒,3524'︒的余角为__________︒.4、已知点C 是线段AB 的三等分点,点D 是线段AC 的中点.若线段2AD =,则AB =______.5、如图,点C 、D 在线段AB 上,线段AC BD =,若线段15cm AB =,11cm AD =,则线段CD 的长度为______cm .三、解答题(5小题,每小题10分,共计50分)1、如图,点O 为直线AB 上一点,过点O 作射线OC ,使110BOC ∠=°.将一直角三角板的直角顶点放在点O 处()30OMN ∠=︒,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠.求BON ∠的度数.(2)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,则t 的值为多少?(直接写结果,不写步骤)2、如图①,将一副常规直角三角尺的直角顶点叠放在一起,60A ∠=︒,45B ∠=︒.解答下列问题.(1)若∠DCE =35°24',则∠ACB = ;若∠ACB =115°,则∠DCE = ;(2)当∠DCE =α时,求∠ACB 的度数,并直接写出∠DCE 与∠ACB 的关系;(3)在图①的基础上作射线BC ,射线EC ,射线DC ,如图②,则与∠ECB 互补的角有 个.3、如图,已知平面内有四个点A ,B ,C ,D .根据下列语句按要求画图.(1)连接AB ;(2)作射线AD ,并在线段AD 的延长线上用圆规截取DE =AB ;(3)作直线BC 与射线AD 交于点F .观察图形发现,线段AF +BF >AB ,得出这个结论的依据是: .4、(1)计算:-12+(-3)2(2)一个角是它的余角的两倍,求这个角5、将一副三角板放在同一平面内,使直角顶点重合于点O .(1)如图①,若155AOB ∠=︒,则DOC ∠=_______︒,DOC ∠与AOB ∠的关系是_______;(2)如图②,固定三角板BOD 不动,将三角板AOC 绕点O 旋转到如图所示位置.①(1)中你发现的DOC ∠与AOB ∠的关系是否仍然成立,请说明理由;②如图②,若70BOC ∠=︒,在BOC ∠内画射线OP ,设(050)∠=︒<<BOP x x ,探究发现随着x 的值的变化,图中以O 为顶点的角中互余角的对数也变化.请直接写出以O 为顶点的角中互余角的对数有哪几种情况?并写出每一种情况相应的x 的取值或取值范围.-参考答案-一、单选题1、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC=90°,∠COD=45°,∴∠AOC=90°,∠BOD=45°,∠AOD=135°,∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,∴图中互为补角的角共有3对,故选:C.【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.2、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.【详解】结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.3、B【解析】【分析】根据90βα=︒-求得β,根据180β︒-求得β的补角【详解】解:∵α与β互为余角,若20α=︒,∴9070βα=︒-=︒∴180β︒-110=︒故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为90︒,互为补角的两角之和为180︒.4、C【解析】【分析】根据线段中点的性质,可用CD 表示BC ,根据线段的和差,可得关于CD 的方程,根据解方程,可得CD 的长,AC 的长.【详解】解:由点D 为BC 的中点,得BC =2CD =2BD ,由线段的和差,得AB =AC +BC ,即4CD +2CD =30,解得CD =5,AC=4CD=4×5=20cm,故选:C;【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.5、B【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:10点30分时的时针和分针相距的份数是4.5,10点30分时的时针和分针所成的角的度数为30°×4.5=135°,故选:B.【点睛】本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.6、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=14∠AOC=18024x︒-=902x︒-,∵∠EOD=50°,∴90502xx︒-+=︒,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.7、C【解析】【分析】分别对每个选项进行判断:两点之间线段最短;单项式单项式32πx2y的系数是32π;倒数等于本身的数为±1;射线是是直线的一部分.【详解】解:A.两点之间线段最短,故不符合题意;B.单项式32πx2y的系数是32π,不符合题意;C.倒数等于本身的数为±1,故符合题意;D.射线是是直线的一部分,故不符合题意;故选:C.【点睛】本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.8、C【解析】【分析】由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.【详解】解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=12EA=12x,NB=12BF32x,∴MN=MA+AB+BN=12x+2x+32x=4x,∵MN=16cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故选C.【点睛】本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.9、D 【解析】【分析】由M是AB的中点,N是CD的中点,可得11412,22AB CD先求解,AB CD从而可得答案.【详解】解:M是AB的中点,N是CD的中点,11,,22BM AB CN CD12,4,MN BM BC CN BC11412,22AB CD16,AB CD16420,AD AB BC CD故选D【点睛】本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.10、A【解析】【分析】根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.【详解】解:①射线AB和射线BA表示不是同一条射线,故此说法错误;②两点之间,线段最短,故此说法正确;③38°15'≠38.15°,故此说法错误;④直线不能度量,所以“画直线AB =3cm”说法是错误的;⑤已知三条射线OA ,OB ,OC ,若12AOC AOB ∠=∠,则OC 不一定在∠AOB 的内部,故此选项错误; 综上所述,正确的是②,故选:A .【点睛】本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.二、填空题1、 90.505 54 33【解析】【分析】根据角度的和差以及角度值进行化简计算即可【详解】 解:1830.3180.330.3==0.5056060''''==︒, ∴9830'18︒"90.505=︒90°﹣3527'︒896035275433'''=︒-︒=︒故答案为:90.505,54,33【点睛】本题考查了角度的和差以及角度值,掌握角度值单位的转化是解题的关键.2、①②④【解析】【分析】 根据线段中点的定义得到12AM BM AB ==,12==AP CP AC ,12==CQ BQ BC ,然后根据线段之间的和差倍分关系逐个求解即可.【详解】解:∵M 是AB 中点, ∴12AM BM AB ==,∵P 是AC 中点, ∴12==AP CP AC , ∵点Q 是BC 中点, ∴12==CQ BQ BC ,对于①:11()=22=+=+=PQ PC CQ AC BC AB BM ,故①正确; 对于②:11()22=-=-=PM AM AP AB AC BC , 11()22=-=-=PM AM AP AB AC BC ,故②正确; 对于③:11+=(+)22==PQ PC CQ AC BC AB , 而[]111111()=()()()222222+++=+=+=+>AQ AP AP PQ AP AP PQ AC PQ AC BM AB , 故③错误;对于④:111()()222+=+=MB MC MA MC AC , 11111()()22222=+=-+=--+=-=MQ MC CQ AC AM BC AB BC AB BC AB BC AC ,故④正确; 故答案为:①②④.【点睛】此题考查线段之间的和差倍分问题,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3、5436'︒【解析】【分析】两个角的和为直角,则称这两个角互为余角,简称互余,根据余角的概念即可求得结果.【详解】9035245436''︒-︒=︒故答案为:5436'︒【点睛】本题主要考查了余角的计算,掌握余角的概念是关键.4、12或6##6或12【解析】【分析】根据点C 是线段AB 上的三等分点,分两种情况画图进行计算即可.【详解】解:如图,∵点C是线段AB上的三等分点,∴AB=3AC,∵D是线段AC的中点,∴AC=2AD=4,∴AB=3×4=12;如图,∵D是线段AC的中点,∴AC=2AD=4,∵点C是线段AB上的三等分点,AC=2,AB=3BC,∴BC=12∴AB=3AC=6,则AB的长为12或6.故答案为:12或6.【点睛】本题考查了两点间的距离,解决本题的关键是分两种情况画图计算.5、7【解析】【分析】由BD AB AD =-,AC BD =得出AC 的长度, CD AD AC =-,从而得出CD 的长度【详解】15cm AB =,11cm AD =15114BD AB AD cm ∴=-=-=4AC BD cm ==1147CD AD AC cm ∴=-=-=故答案为7【点睛】本题主要考查线段的和与差及线段两点间的距离,熟练运用线段的和与差计算方法进行求解是解决本题的关键.三、解答题1、 (1)35︒(2)直线ON 恰好平分锐角AOC ∠,则t 的值为11s 或67s.【解析】【分析】(1)先利用角平分线的定义求解155,2BOM BOC 再利用90,MON ∠=︒ 从而可得答案; (2)分两种情况讨论:如图,当直线ON 恰好平分锐角AOC ∠,记P 为ON 上的点,求解线段ON 旋转的角度9055,N ON BON 如图,当ON 平分AOC ∠时,求解ON 旋转的角度为:90+9011035235,BOC CON 从而可得答案. (1)解:OM 平分,110,BOC BOC 155,2BOM BOC 90,MONBON BOM9035.(2)∠,记P为ON上的点,解:如图,当直线ON恰好平分锐角AOC1118035AOP COP AOC BOC22BON AOP35,N ON BON9055,55t,115∠时,如图,当ON平分AOCAON CON35,BOC CON此时ON转的角度为:90+9011035235,23567,5t 综上:直线ON 恰好平分锐角AOC ∠,则t 的值为11s 或67s.【点睛】本题考查的是角平分线的定义,角的和差运算,角的动态定义的理解,清晰的分类讨论是解本题的关键.2、 (1)14436︒';65︒(2)180ACB α∠=︒-,DCE ∠与ACB ∠互为补角(3)5【解析】【分析】(1)根据三角板中的特殊角,以及互余的意义可求答案;(2)方法同(1)即可得出结论;(3)利用直角的意义,互补的定义可得出结论.(1)解:3524DCE '∠=︒,∴∠AAA =90°−∠AAA =90°−35°24′=54°36′,5436'9014436'ACB ACE ECB ∴∠=∠+∠=︒+︒=︒;115ACB ∠=︒,90ACD ∠=︒,1159025ACE ∴∠=︒-︒=︒,902565DCE ACD ACE ∴∠=∠-∠=︒-︒=︒,故答案为:14436︒';65︒;(2)∠=,解:DCEα∴∠=︒-∠=︒-,9090ACE DCEαACB ACE ECBαα∴∠=∠+∠=︒-+︒=︒-;9090180∠互补;∴∠+∠=︒,即ACBACB DCE180∠与DCE(3)解:由图可知90∠=∠=︒,ECB ACD∴∠=∠=∠=∠=︒,ECG GCF BCF ACH90∴与ECB∠互补的角有5个;故答案为:5.【点睛】本题考查三角板的特殊内角,补角的定义及余角的定义,解题的关键是掌握互余和互补的定义和三角板的内角度数.3、 (1)见解析(2)见解析(3)见解析,两点之间,线段最短【解析】【分析】(1)根据题意作线段AB即可;(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;(3)作直线BC与射线AD交于点F,进而根据两点之间,线段最短即可求解(1)如图所示,作线段AB,AB即为所求;(2)如图所示,作射线AD,并在线段AD的延长线上用圆规截取DE=AB,射线AD,线段DE即为所求;(3)如图所示,作直线BC与射线AD交于点F,直线BC即为所求;线段AF+BF>AB,得出这个结论的依据是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】本题考查了画射线、线段、直线,两点之间线段最短,掌握线段的性质是解题的关键.4、(1)-3;(2)这个角的度数为60°.【解析】【分析】(1)先计算乘方,再计算加减即可;(2)设这个角的度数为x,然后根据题意列出方程,解方程即可.【详解】解:(1)-12+(-3)2129=-+3=-;(2)设这个角的度数为x ,则它的余角为90°-x ,由题可得:2(90)x x , 解得:x =60°,答:这个角的度数为60°.【点睛】本题考查了余角,有理数的混合运算,熟练掌握余角的意义是解题的关键.5、 (1)25 ,互补(2)①成立 ,理由见解析;②共有3种情况,当x =35时,互余的角有4对;当x =20时,互余的角有6对;当0< x <50且x ≠35和20时,互余的角有3对【解析】【分析】(1)利用周角的定义可得360,AOBBOD COD AOC 再求解,COD 即可得到答案; (2)①利用180,AODCOD BOD 结合角的和差运算即可得到结论;②先利用70,BOC ∠=︒ 90,AOC BOD 求解20,70,COD AOD 再分三种情况讨论:如图,当35BOP x 时,则35,COP 如图,当20BOP x 时,则50,70,COP DOP 如图,当050x 且35,20x x 时,从而可得答案. (1)解:90,90,155,AOC BOD AOB而360,AOB BODCOD AOC 360909015525,COD15525180,AOB COD故答案为:25, 互补(2)解:①成立,理由如下:90,AOC BOD 180,AOC BOD180,AOD COD BOD180.COD AOB②70,BOC 90,AOC BOD907020,902070,COD AOD 如图,当35BOP x 时,则35,COP所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP ;,COP DOP 共4对;如图,当20BOP x 时,则50,70,COP DOP所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP ;,BOP AOD ;,DOC DOP ;,BOP BOC 共6对;如图,当050x 且35,20x x 时,所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP 共3对.【点睛】本题考查的是几何图形中角的和差运算,互余与互补的含义,熟练的运用互余与互补的概念判断余角与补角,清晰的分类讨论是解本题的关键.。
数学六年级下册第五章《基本平面图形》单元检测及答案解析

第四章 《基本平面图形》单元检测一.填空题:(本大题共 10小题,每小题 3分,共 30分)1.探照灯发出的光线可近似看作:_________;两根长长的铁轨可近似看作:_________; 跳远时测量成绩,尺子所在直线与起跳线必须_________ ;2.七(1)班的同学用二个图钉就把刚获得的校田径运动会团体总分第一名的奖状挂在墙上了,请你用本章的一个知识来说明这样做的道理: ;3.如图1,AB 的长为m ,OC 的长为n ,MN 分别是AB ,BC 的中点,则MN=__________________; 4.如图2,用“>”、“<”或“=”连接下列各式,并说明理由.AB +BC_____AC ,AC +BC_____AB ,BC_____AB +AC ,理由是________________________;5.计算:48°39′+67°41′=_________;90°-78°19′40″=___________; 21°17′×5=_______; 176°52′÷3=_________(精确到分);6.如图3中,∠AOB=180°,∠AOC=90°,∠DOE=90°,则图中相等的角有_对,分别为_______________;两个角的和为90°的角有___________对;两个角的和为180°的角有________对;7.平面上两条直线的位置关系只有两种,即__________和_________________;8.平面面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有___条;9.面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.10.在无风的情况下,一重物从高处落入池塘,它的运动路线与水面的位置关系是 , 在阳光下,站在操场上的学生与他影子的位置关系是_________;二.选择题 (每小题4分,共32分)11.已知线段AB = 6厘米,在直线AB 上画线段AC=2厘米,则BC 的长是 ( )(A ) 8厘米 (B ) 4厘米 (C ) 8厘米或4厘米 (D ) 不能确定12.下列推理中,错误的是 ( )(A )在m 、n 、p 三个量中,如果n m =, p n =,那么p m =;(B )∠A 、∠B 、∠C 、∠D 四个角中,如果∠A=∠B ,∠C=∠D ,∠A=∠D ,那么∠B=∠C ;(C )a 、b 、c 是同一平面内的三条直线,如果a ∥b ,b ∥c ,那么a ∥c ;(D )a 、b 、c 是同一平面内的三条直线,如果a 丄b ,b 丄c ,那么a 丄c ;13.甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是 ( ) (A)甲说3点时和3点30分 (B)乙说6点15分和6点45分(C)丙说9时整和12时15分 (D)丁说3时整和9时整14. 如图,四条表示方向的射线中,表示北偏东60°的是 ( )(A ) (B ) (C ) (D )15. 一个人从A 点出发向北偏东60°的方向走到B 点,再从B 点出发向南偏西15°方向走图1CN M BA 图2CB A到C 点,那么∠ABC 的度数是 ( )(A ) 75° (B ) 105° (C ) 45° (D ) 135°16. 同一平面内互不重合的三条直线的公共点的个数是 ( )(A )可能是0个,1个,2个 (B )可能是0个,2个,3个(C )可能是0个,1个,2个或3个 (D )可能是1个可3个17.已知四边形ABCD 中,∠A+∠B=180°,则下列结论中正确的是 ( )(A ) AB ∥CD (B )∠B+∠C=180°(C ) ∠B=∠C (D ) ∠C+∠D=180°18.直线a 外有一定点A ,点A 到a 的距离是cm 5,P 是直线a 上的任意一点,则 ( )(A ) AP >cm 5 (B ) AP≥cm 5 (C ) AP = cm 5 (D ) AP < cm 519.下列说法中正确的是 ( )(A ) 8时45分,时针与分针的夹角是30° (B ) 6时30分,时针与分针重合(C ) 3时30分,时针与分针的夹角是90° (D ) 3时整,时针与分针的夹角是30°20.下列说法正确的是 ( )(A )过一点能作已知直线的一条平行线 (B )过一点能作已知直线的一条垂线(C )射线AB 的端点是A 和B (D )点可以用一个大写字母表示,也可用小写字母表示21.下列4 种说法中,正确的有 ( )(1)一根绳子,不用任何工具,可以找到它的中点,(2)用圆规可把一个圆六等分,(3)用圆规可把一个圆三等分(4)画在透明纸上的一个角,不用任何工具,可以找到它的角平分线,(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个22.如图,与CD 既不平行,又不相交的棱有 ( )(A ) 4条 (B ) 3条 (C ) 2条 (D ) 1条三.解答下列各题23.要注意“几何语言”的学习,如图甲,称作“点A 在直线m 外”,请在图乙标上字母,用“几何语言”说出该图的意义(7分)24.如图,已知∠AOB ,画图并回答:(9分)⑴画∠AOB 的平分线OP ;⑵在OP 上任取两点C 、D ,过C 、D 分别画OA 、OB 的垂线,交OA 于E ,F ,交OB 于G 、H ,⑶量出CE ,CG ,DF ,DH 的长,由此可得到的结论是什么?⑷过C 作MC ∥OB 交OA 于M甲 A · m 乙H G F E D C B A O BA25.如图,用量角器量出图中∠1,∠2,∠3的度数,猜一猜它们之间有何关系?(8分)26.如图所示,OA 丄OB ,OC 丄OD ,OE 为∠BOD 的平分线,∠BOE=17°18′,求 ∠AOC 的度数(8分)27.如图,将书角斜折过去 ,直角顶点A 落在F 处 , BC 为折痕,∠FBD = ∠DBE, 求∠CBD 的度数.321O E DC B A E F ED C B A第四章 《基本平面图形》单元检测参考答案一、填空题1.射线、平行线、互相垂直;2.两点确定一条直线;3.)(21n m +; 4.> > < ,两点之间线段最短;5.⑴116°20′ ⑵11°40′20″;⑶106°25′;⑷58°57′;6.3 ∠AOC=∠BOC , ∠BOC=∠DOE ,∠DOE=∠AOC 4, 3;7.相交 平行 ;8.12 ;9.10 0 ;10.垂直,垂直;二、选择题11.C ; 12.D ; 13.D ; 14.B ; 15.C ; 16.C ; 17.D ; 18.B ;19.D ; 20.B ; 21.D ; 22.A ;三.解答题23、24.略25.∠1=∠2+∠3 26、145°24′27.如图,∠ABE 是一个平角,∴∠1 +∠2 +∠3 +∠4 =︒180,又∵∠1 =∠2,∠3 =∠4, ∴2(∠2 +∠3)=︒180, ∴∠2 +∠3 =︒90即∠CBD =︒90;4321F E D C B A。
鲁教版六年级下册《第五章基本平面图形》单元测试卷(带答案)

鲁教版六年级下册《第五章基本平面图形》单元测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题)1.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是()A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分2.小亮正确完成了以下两道作图题:①“延长线段AB到C,使BC=AB“;②“反向延长线段DE到F,使点D是线段EF的一个三等分点”.针对小亮的作图,小莹说:“点B是线段AC中点”.小轩说:“DE=2DF”.下列说法正确的是()A.小莹、小轩都对B.小莹不对,小轩对C.小莹、小轩都不对D.小莹对,小轩不对3.如图,从点B看点A的方向是()A.南偏东43°B.南偏东47°C.北偏西43°D.北偏西47°4.如图,∠AOC和∠BOD都是直角,∠BOC=60°,则∠AOD=()A.30°B.60°C.90°D.120°5.正多边形的一个外角的度数为30°,则这个正多边形的边数为()A.12B.10C.8D.66.观察图形,下列有四种说法:①经过一点可以作无数条直线;②射线AC和射线AD是同一条射线;③三条直线两两相交,有3个交点;④AB<AC+BC.其中正确的个数为()A.1B.2C.3D.47.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm8.如图,∠1=25°,∠AOB=90°,点C,O,D在同一条直线上,则∠2的度数为()A.115°B.120°C.125°D.105°9.如图所示,将三个大小相同的正方形的一个顶点重合放置,则α、β、γ三个角的数量关系为()A.α+β+γ=90°B.α+β﹣γ=90°C.α﹣β+γ=90°D.α+2β﹣γ=90°10.永祚寺双塔,又名凌霄双塔,是山西省太原市现存的古建筑中最高的建筑,十三层均为正八边形楼阁式空心砖塔,如图1所示.如图2所示的正八边形是双塔其中一层的平面示意图,则其每个内角的度数为()A.80°B.100°C.120°D.135°二.填空题(共5小题)11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是.12.如图,点C、D、E在线段AB上,若点C是线段AB的中点,点D是线段AC的中点,CE=2BE,AB =12,则DE=.13.一副三角板按如图方式摆放,∠2=25°20',则∠1=.14.把一副三角尺按如图所示那样拼在一起,则图中∠ABC=.15.如果一个多边形的内角和是它的外角和的13倍,则这个多边形是.三.解答题(共5小题)16.综合与实践:【基础巩固】(1)如图1,点E,B,F都在线段AC上,,F是BC的中点,则图中共有线段条.【深入探究】(2)在(1)的条件下,若,试探究EF与AC之间的数量关系,并说明理由.【拓展提高】(3)如图2,在(2)的基础上,G是AE的中点,若AC=20cm,求GF的长.17.如图,线段AB=24.C是线段AB的中点,D是线段BC的中点.(1)求线段AD的长;(2)在线段AD上有一点E,满足,求AE的长.18.如图,射线OB表示的方向是北偏东76°,射线OC表示的方向是北偏西46°,射线OA在射线OB 和射线OC之间,且∠AOB=32°.求∠AOC的度数.19.将直角∠AOB和直角∠COD如图1放置.(1)与∠AOC相等的角是,依据是;(2)如图2,射线OE是∠BOD的三等分线(靠近边OB).若∠AOC=63°,求∠COE的度数.20.一个多边形的内角和比外角和的3倍少180°,求(1)这个多边形的边数;(2)该多边形共有多少条对角线.参考答案与试题解析一.选择题(共10小题)1.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是()A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分【分析】由直线公理可直接得出答案.【解答】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点评】此题主要考查了考查了直线的性质,要想确定一条直线,至少要知道两点.2.小亮正确完成了以下两道作图题:①“延长线段AB到C,使BC=AB“;②“反向延长线段DE到F,使点D是线段EF的一个三等分点”.针对小亮的作图,小莹说:“点B是线段AC中点”.小轩说:“DE=2DF”.下列说法正确的是()A.小莹、小轩都对B.小莹不对,小轩对C.小莹、小轩都不对D.小莹对,小轩不对【分析】根据叙述画出相应的图形,根据图形得出结论即可.【解答】解:①“延长线段AB到C,使BC=AB“,如图①所示,此时点B是AC的中点;②“反向延长线段DE到F,使点D是线段EF的一个三等分点”如图所示,有两种情况,有DE=2DF或DE=DF 因此小莹说得对,小轩说得不对.故选:D.【点评】本题考查两点间的距离,理解线段中点的定义以及线段三等分点的定义是正确判断的关键.3.如图,从点B看点A的方向是()A.南偏东43°B.南偏东47°C.北偏西43°D.北偏西47°【分析】以B为观测中心判断A的方向即可.【解答】解:从点B看点A的方向是南偏东43°.故选:A.【点评】此题考查方向角的表示,方向角的概念为以坐标轴方向为标准方向形成的角,解题关键是以观测者为中心进行判断.4.如图,∠AOC和∠BOD都是直角,∠BOC=60°,则∠AOD=()A.30°B.60°C.90°D.120°【分析】根据同角的余角相等解答.【解答】解:∵∠AOC是直角∴∠AOD+∠DOC=90°∵∠BOD是直角∴∠BOC+∠DOC=90°∴∠AOD=∠BOC=60°故选:B.【点评】本题考查的是角的计算、余角的概念,掌握交的和差计算、余角的概念是解题的关键.5.正多边形的一个外角的度数为30°,则这个正多边形的边数为()A.12B.10C.8D.6【分析】多边形的外角和是360°,正多边形的每个外角都相等,且一个外角的度数为30°,由此即可求出答案.【解答】解:∵360÷30=12则正多边形的边数为12.故选:A.【点评】本题主要考查了多边形的外角和定理,已知正多边形的外角求正多边形的边数是一个考试中经常出现的问题.6.观察图形,下列有四种说法:①经过一点可以作无数条直线;②射线AC和射线AD是同一条射线;③三条直线两两相交,有3个交点;④AB<AC+BC.其中正确的个数为()A.1B.2C.3D.4【分析】根据经过一点可以作无数条直线对①进行判断;根据射线的表示方法对②进行判断;根据过3点的直线的条数对③进行判断;通过三角形三边的关系对④进行判断.【解答】解:①经过一点可以作无数条直线,此说法正确;②射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,此说法正确;③三条直线两两相交时,可能有1个交点,也可能有三个交点,故题意说法错误;④AB<AC+BC,三角形两边之和大于第三边,所以此说法正确;所以共有3个正确.故选:C.【点评】本题考查了直线、射线、线段,解决本题的关键是熟练掌握他们的定义、表示方法及特性.7.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10cm,M是AB中点∴BM=AB=5cm又∵NB=2cm∴MN=BM﹣BN=5﹣2=3cm.故选:C.【点评】本题考查了线段的长短比较,根据点M是AB中点先求出BM的长度是解本题的关键.8.如图,∠1=25°,∠AOB=90°,点C,O,D在同一条直线上,则∠2的度数为()A.115°B.120°C.125°D.105°【分析】根据已知条件即可求出∠BOC,然后根据平角的定义即可求出∠2.【解答】解:∵∠1=25°,∠AOB=90°∴∠BOC=∠AOB﹣∠1=65°∵点C,O,D在同一条直线上∴∠2=180°﹣∠BOC=115°.故选:A.【点评】本题考查的是角的和与差,掌握各角的关系是解决此题的关键.9.如图所示,将三个大小相同的正方形的一个顶点重合放置,则α、β、γ三个角的数量关系为()A.α+β+γ=90°B.α+β﹣γ=90°C.α﹣β+γ=90°D.α+2β﹣γ=90°【分析】根据β=∠BOD﹣∠BOC,利用正方形的角都是直角,即可求得∠BOD和∠EOF的度数从而求解.【解答】解:如图:∵∠DOE=90°﹣α∴∠BOD=90°﹣∠DOE=α∵∠BOC=90°﹣γ又∵β=∠BOD﹣∠BOC∴β=α﹣(90°﹣γ)=α﹣90°+γ∴α﹣β+γ=90°故选:C.【点评】本题主要考查了正方形的性质,角度的计算,正确应用角的和差进行推算是解决本题的关键.10.永祚寺双塔,又名凌霄双塔,是山西省太原市现存的古建筑中最高的建筑,十三层均为正八边形楼阁式空心砖塔,如图1所示.如图2所示的正八边形是双塔其中一层的平面示意图,则其每个内角的度数为()A.80°B.100°C.120°D.135°【分析】首先利用外角和360°求得外角的度数,然后根据互补求得每个内角的度数即可.【解答】解:∵多边形外角和为360°∴正八边形每个外角为360°÷8=45°∴正八边形每个内角的度数为180°﹣45°=135°故选:D.【点评】本题考查了多边形的内角和外角的知识,解题的关键是了解多边形的外角和.二.填空题(共5小题)11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.【分析】根据公理“两点确定一条直线”,来解答即可.【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是:两点确定一条直线.故答案为:两点确定一条直线.【点评】本题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.如图,点C、D、E在线段AB上,若点C是线段AB的中点,点D是线段AC的中点,CE=2BE,AB =12,则DE=7.【分析】根据线段中点的定义以及图形中线段之间的和差关系进行计算即可.【解答】解:∵点C是线段AB的中点,AB=12∴AC=BC=AB=6∵点D是线段AC的中点∴AD=CD=AC=3∵CE=2BE,BC=6∴CE=BC=4∴DE=DC+CE=7.故答案为:7.【点评】本题考查两点间的距离,掌握线段中点的定义以及图形中线段之间的和差关系是正确解答的关键.13.一副三角板按如图方式摆放,∠2=25°20',则∠1=64°40′.【分析】根据题意可得:∠ABC=90°,然后利用平角定义进行计算即可解答.【解答】解:如图:由题意得:∠ABC=90°∵∠2=25°20'∴∠1=180°﹣∠2﹣∠ABC=179°60′﹣25°20′﹣90°=64°40′故答案为:64°40′.【点评】本题考查了度分秒的换算,熟练掌握度分秒的进制是解题的关键.14.把一副三角尺按如图所示那样拼在一起,则图中∠ABC=75°.【分析】根据一副三角尺的度数特点,结合图形,即可求出∠ABC的大小.【解答】解:由题意,可知∠ABC=∠ABD+∠DBC=45°+30°=75°.故答案为75°.【点评】本题考查了学生对于一副三角板的认识程度.一副三角板由两个三角尺构成,其中一个三角尺的度数为30°,60°,90°,另一个三角尺的度数为45°,45°,90°.15.如果一个多边形的内角和是它的外角和的13倍,则这个多边形是28.【分析】根据多边形的内角和定理和外角和列方程求解即可.【解答】解:设这个多边形为n边形,由题意得(n﹣2)×180°=360°×13解得n=28故答案为:28.【点评】本题考查多边形的内角与外角,掌握多边形的内角和的计算方法以及外角和是360°是正确解答的关键.三.解答题(共5小题)16.综合与实践:【基础巩固】(1)如图1,点E,B,F都在线段AC上,,F是BC的中点,则图中共有线段10条.【深入探究】(2)在(1)的条件下,若,试探究EF与AC之间的数量关系,并说明理由.【拓展提高】(3)如图2,在(2)的基础上,G是AE的中点,若AC=20cm,求GF的长.【分析】(1)图中的线段有AE、BE、BF、FC、AB、EF、BC、AF、EC、AC这10条,据此回答即可;(2)设BF=x,先列方程求得求得AC=5BF=5x,EF=BE+BF=2x+x=3x,可得答案;(3)设BF=x,先列方程求得x=4cm,再求得GF的长即可.【解答】解:(1)图中的线段有AE、BE、BF、FC、AB、EF、BC、AF、EC、AC这10条故答案为:10;(2)设BF=x∵∴AC=5BF=5x∵F是BC的中点∴BC=2FC=2BF=2x∴AB=AC﹣BC=5x﹣2x=3x∵∴∴EF=BE+BF=2x+x=3x∴5EF=3AC(3)设BF=x∵AC=20cm∴由(2)得AC=5x=20cm,EF=3x=12cm∴x=4cm∴AE=x=4cm∵G是AE的中点∴∴GF=GE+EF=2+12=14(cm).【点评】本题考查了两点间的距离,掌握线段中点的定义,线段之间的倍分关系是关键.17.如图,线段AB=24.C是线段AB的中点,D是线段BC的中点.(1)求线段AD的长;(2)在线段AD上有一点E,满足,求AE的长.【分析】(1)根据线段的中点先算出AC,CD的长,再根据线段的和差即可求解;(2)根据题意可算出CE的长,分类讨论,当点E在AC之间时;当点E在CD之间时;由此即可求解.【解答】解:(1)∵点C是线段AB的中点∴∵点D是线段BC的中点∴∴AD=AC+CD=12+6=18∴线段AD的长为18;(2)∵AC=BC=12∴当点E在AC之间时,AE=AC﹣CE=12﹣2=10;当点E在CD之间时,AE=AC+CE=12+2=14;综上所述,AE的长为10或14.【点评】本题主要考查线段的和差运算,掌握中点的运算是解题的关键.18.如图,射线OB表示的方向是北偏东76°,射线OC表示的方向是北偏西46°,射线OA在射线OB和射线OC之间,且∠AOB=32°.求∠AOC的度数.【分析】根据方向角的定义得到∠BON=76°,∠CON=46°,结合图形中角的和差关系得出答案.【解答】解:如图,由题意可得:∠BON=76°,∠CON=46°∴∠BOC=∠BON+∠CON=122°∵∠AOB=32°∴∠AOC=∠BOC﹣∠AOB=90°.【点评】本题考查方向角,理解方向角的定义以及角的和差关系是正确解答的前提.19.将直角∠AOB和直角∠COD如图1放置.(1)与∠AOC相等的角是∠BOD,依据是这两个角有相同的余角;(2)如图2,射线OE是∠BOD的三等分线(靠近边OB).若∠AOC=63°,求∠COE的度数.【分析】(1)∠AOC=∠BOD,因为这两个角有相同的余角;(2)易得∠BOD=∠AOC=63°,根据OE是∠BOD的三等分线,可得到∠BOE=∠BOD=21°,因为∠COE=∠BOC+∠BOE,而∠BOC=∠AOB﹣∠AOC,则∠COE可求.【解答】解:(1)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°∴∠AOC=∠BOD故答案为:∠BOD,这两个角有相同的余角;(2)易得∠BOD=∠AOC=63°∵射线OE是∠BOD的三等分线(靠近边OB)∴∠BOE=∠BOD=21°;∵∠BOC=∠AOB﹣∠AOC=27°∴∠COE=∠BOC+∠BOE=48°.【点评】本题考查的是角的计算,关键在于理解图中角的大小关系.20.一个多边形的内角和比外角和的3倍少180°,求(1)这个多边形的边数;(2)该多边形共有多少条对角线.【分析】(1)任意多边形的外角和均为360°,然后依据多边形的内角和公式列方程求解即可;(2)多边形的对角线公式为:.【解答】解:(1)设这个多边形的边数为n.根据题意得:180°×(n﹣2)=360°×3﹣180°解得:n=7;(2)==14.答:(1)该多边形为七边形;(2)七边形共有14条对角线.【点评】本题主要考查的是多边形的内角与外角、多边形的对角线,掌握相关知识是解题的关键.。
2022年最新鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试试卷(含答案解析)

六年级数学下册第五章基本平面图形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上2、七巧板是我国民间流传最广的一种传统智力玩具,由正方形分割成七块板组成(如图),则图中4号部分的小正方形面积是整个正方形面积的()A.14B.16C.18D.1163、下列说法错误的是()A .两点之间,线段最短B .经过两点有一条直线,并且只有一条直线C .延长线段AB 和延长线段BA 的含义是相同的D .射线AB 和射线BA 不是同一条射线4、下列四个说法:①射线AB 和射线BA 是同一条射线;②两点之间,线段最短;③3815'︒和38.15°相等;④画直线AB =3cm ;⑤已知三条射线OA ,OB ,OC ,若12AOC AOB ∠=∠,则射线OC 是∠AOB 的平分线.其中正确说法的个数为( ) A .1个B .2个C .3个D .4个5、下列说法中正确的是( ) A .两点之间所有的连线中,直线最短 B .射线AB 和射线BA 是同一条射线 C .一个角的余角一定比这个角大D .一个锐角的补角比这个角的余角大90°6、在数轴上,点M 、N 分别表示数m ,n .则点M 、N 之间的距离为||m n -.已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d .且2||||2,||1()5a cbcd a a b -=-=-=≠,则线段BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.57、已知2532'∠=︒A ,则A ∠的补角等于( ) A .6428'︒B .6468'︒C .15428'︒D .15468'︒8、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为17.8km ,而导航提供的三条可选路线的长度分别为37km 、28km 、34km (如图),这个现象说明( )A .两点之间,线段最短B .垂线段最短C .经过一点有无数条直线D .两点确定一条直线9、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm10、如果线段10cm AB =,13cm MA MB +=,那么下面说法中正确的是( ) A .M 点在线段AB 上 B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.2、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.3、冬至是地球赤道以北地区白昼最短、黑夜最长的一天,在苏州有“冬至大如年”的说法.苏州冬至日正午太阳高度角是3524'︒,3524'︒的余角为__________︒.4、如图,已知点O 在直线AB 上,OC ⊥OD ,∠BOD :∠AOC =3:2,那么∠BOD =___度.5、如图,130∠=︒,则射线OA 表示是南偏东__________︒的方向.三、解答题(5小题,每小题10分,共计50分)1、如图,∠AOB 是平角,80AOC ∠=︒,30BOD ∠=︒,OM 、ON 外别是∠AOC 、∠BOD 的平分线,求∠MON 的度数.2、【概念与发现】当点C 在线段AB 上,AC nAB =时,我们称n 为点C 在线段AB 上的“点值”,记作AC d n AB ⎛⎫= ⎪⎝⎭. 例如,点C 是AB 的中点时,即12AC AB =,则12AC d AB ⎛⎫= ⎪⎝⎭; 反之,当12AC d AB ⎛⎫= ⎪⎝⎭时,则有12AC AB =. 因此,我们可以这样理解:“AC d n AB ⎛⎫= ⎪⎝⎭”与“AC nAB =”具有相同的含义.【理解与应用】(1)如图,点C 在线段AB 上.若3AC =,4AB =,则AC d AB ⎛⎫= ⎪⎝⎭________; 若23AC d AB ⎛⎫= ⎪⎝⎭,则AC =________AB .【拓展与延伸】(2)已知线段10cm AB =,点P 以1cm/s 的速度从点A 出发,向点B 运动.同时,点Q 以3cm/s 的速度从点B 出发,先向点A 方向运动,到达点A 后立即按原速向点B 方向返回.当P ,Q 其中一点先到达终点时,两点均停止运动.设运动时间为t (单位:s ).①小王同学发现,当点Q 从点B 向点A 方向运动时,AP AQ m d d AB AB ⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭的值是个定值,则m 的值等于________;②t 为何值时,15AQ AP d d AB AB ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭. 3、已知直线MN 上有一线段AB ,AB =6,点C 是线段AB 的中点,点D 在直线MN 上,且BD =2,求线段DC 的长.4、(1)如图l ,点D 是线段AC 的中点,且 AB =23BC ,BC =6,求线段BD 的长;(2)如图2,已知OB 平分∠AOD ,∠BOC =23∠AOC ,若∠AOD =100°,求∠BOC 的度数.5、已知∠AOB ,射线OC 在∠AOB 的内部,射线OM 是∠AOC 靠近OA 的三等分线,射线ON 是∠BOC 靠近OB 的三等分线.(1)如图,若∠AOB=120°,OC平分∠AOB,①补全图形;②填空:∠MON的度数为.(2)探求∠MON和∠AOB的等量关系.-参考答案-一、单选题1、C【解析】【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD的延长线上,故选:C.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.2、C【解析】【分析】把正方形进行分割,可分割成16个面积相等的等腰直角三角形,4号是正方形,由两个等腰直角三角形组成,占整个正方形面积的18.【详解】解:把大正方形进行切割,如下图,由图可知,正方形可分割成16个面积相等的等腰直角三角形,4号正方形,由两个等腰直角三角形组成,∴占整个正方形面积的21 168=.故选 C.【点睛】本题主要考查了七巧板,正方形的性质,能够正确的识别图形,明确4号部分的正方形是由两个等腰直角三角形构成是解题的关键.3、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.4、A【解析】【分析】根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.【详解】解:①射线AB和射线BA表示不是同一条射线,故此说法错误;②两点之间,线段最短,故此说法正确;③38°15'≠38.15°,故此说法错误;④直线不能度量,所以“画直线AB=3cm”说法是错误的;⑤已知三条射线OA,OB,OC,若12AOC AOB∠=∠,则OC不一定在∠AOB的内部,故此选项错误;综上所述,正确的是②,故选:A.【点睛】本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.5、D【解析】【分析】分别根据线段的性质、射线、余角、补角等定义一一判断即可.【详解】解:A.两点之间所有的连线中,线段最短,故此选项错误;B.射线AB和射线BA不是同一条射线,故此选项错误;C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;故选:D【点睛】本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.6、C【解析】【分析】根据题意可知,A B与C的距离相等,分D在A的左侧和右侧两种情况讨论即可【详解】解:①如图,当D在A点的右侧时,2||||2,||1()5a cbcd a a b -=-=-=≠224AB AC a c ∴==-=, 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当D 在A 点的左侧时,2||||2,||1()5a cbcd a a b -=-=-=≠224AB AC a c ∴==-=, 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段BD 的长度为6.5或1.5 故选C 【点睛】本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键. 7、C 【解析】 【分析】补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可. 【详解】解:∵2532'∠=︒A ,∴A ∠的补角等于1801802532=15428A ︒''-∠=-, 故选:C .本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.8、A【解析】【分析】根据两点之间线段最短,即可完成解答.【详解】由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.故选:A【点睛】本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.9、B【解析】【分析】根据中点的定义求出AE和AD,相减即可得到DE.【详解】解:∵D是线段AB的中点,AB=6cm,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.10、D【解析】【分析】AB=,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.根据10cm【详解】AB=,MA+MB=13cm,解:∵10cm∴M点可能在直线AB上,也可能在直线AB外,故选:D.【点睛】此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.二、填空题1、两点确定一条直线【解析】【分析】根据两点确定一条直线,即可求解.【详解】解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.故答案为:两点确定一条直线【点睛】本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.【解析】【分析】根据90°-∠α即可求得β∠的值.【详解】解:∵∠α与∠β互余,且∠α=35°30′,∴∠β903530'=︒-︒896035305430'''=︒-︒=︒ 30300.560'==︒ 54.5β∴∠=︒故答案为:54.5【点睛】本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.3、5436'︒【解析】【分析】两个角的和为直角,则称这两个角互为余角,简称互余,根据余角的概念即可求得结果.【详解】9035245436''︒-︒=︒故答案为:5436'︒【点睛】本题主要考查了余角的计算,掌握余角的概念是关键.4、54【分析】根据平角等于180°得到等式为:∠AOC+∠COD+∠DOB=180°,再由∠COD=90°,∠BOD:∠AOC=3:2即可求解.【详解】解:∵OC⊥OD,∴∠COD=90°,设∠BOD=3x,则∠AOC=2x,由题意知:2x+90°+3x=180°,解得:x=18°,∴∠BOD=3x=54°,故答案为:54°.【点睛】本题考查了平角的定义,属于基础题,计算过程中细心即可.5、60【解析】【分析】如图,利用互余的含义,先求解2∠的大小,再根据方向角的含义可得答案.【详解】∠=︒解:如图,130,2=90160,∴ 射线OA 表示是南偏东60︒的方向.故答案为:60【点睛】本题考查的是互余的含义,方向角的含义,掌握“方向角的含义”是解本题的关键.三、解答题1、125︒【解析】【分析】根据角平分线的定义求出,AOM BON ∠∠,再用平角减去+AOM BON ∠∠即可得到结果.【详解】解:∵∠AOB 是平角,∴180AOB ∠=︒∵OM 、ON 外别是∠AOC 、∠BOD 的平分线,且∠AOC =80°,∠BOD =30°, ∴1402AOM AOC ∠=∠=︒,1152BON BOD ∠=∠=︒, ∴∠MON =∠AOB -∠AOM -∠BON =180°-40°-15°=125°.【点睛】本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON =∠COD +∠COM +∠DON .2、 (1)34,23 (2)①3;②2或6【解析】【分析】(1)根据“点值”的定义即可得出答案;(2)①设运动时间为t ,再根据AP AQ m d d AB AB ⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭的值是个定值即可得出m 的值; ②分点Q 从点B 向点A 方向运动时和点Q 从点A 向点B 方向运动时两种情况加以分析即可(1)解:∵3AC =,4AB =, ∴34AC AB = ∴34AC d AB ⎛⎫= ⎪⎝⎭, ∵23AC d AB ⎛⎫= ⎪⎝⎭, ∴23AC AB =(2)解:①设运动时间为t ,则AP =t ,AQ =10-3t , 则=10AP t d AB ⎛⎫ ⎪⎝⎭,10-310AQ t d AB ⎛⎫= ⎪⎝⎭ ∵AP AQ m d d AB AB ⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭的值是个定值, ∴()10-310-3101010m t t t m +⋅+=的值是个定值, ∴m =3②当点Q从点B向点A方向运动时,∵15 AQ APd dAB AB⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭∴10-31 10105t t-=∴t=2当点Q从点A向点B方向运动时,∵15 AQ APd dAB AB⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭∴3-101 10105 t t-=∴t=6∴t的值为2或6【点睛】本题考查了一元一次方程的应用,理解新定义,并能运用是本题的关键.3、1或5【解析】【分析】根据题意,分两种情况:(1)点D在点B的右侧时,(2)点D在点B的左侧时,求出线段DC的长度是多少即可.【详解】解:∵点C是AB的中点,∴12BC AB=.∵AB =6,当点D 在点B 左侧时;CD CB DB =-∵DB =2,∴321CD CB DB =-=-=当点D 在点B 右侧时;325CD CB DB =+=+=.【点睛】本题考查了利用中点性质转化线段之间倍分关系,从而求出线段的长短.解题的关键是在不同情况下灵活运用它的不同表示方法,同时灵活运用线段的和差倍分转化线段之间的数量关系也是十分关键的一点.4、(1)BD =1;(2)∠COB =20°【解析】【分析】(1)根据AB =23BC ,BC =6求出AB 的值,再根据线段的中点求出AD 的值,然后可求BD 的长;(2)先根据角平分线的定义求出∠AOB ,再根据∠BOC =23∠AOC ,求解即可.【详解】解:(1)∵AB =23BC ,BC =6,∴AB =23×6=4,∴AC =AB +BC =10,∵点D 是线段AC 的中点,∴AD=12AC=5,∴BD=AD-AB=5-4=1;(2)∵OB平分∠AOD,∠AOD=100°,∴∠AOB=12∠AOD=50°,∵∠BOC+∠AOC=∠AOB,∠BOC=23∠AOC,∴23∠AOC+∠AOC=50°,∴∠AOC=30°,∴∠BOC=23∠AOC=20°.【点睛】本题考查了线段的中点,线段的和差,角的平分线,角的和差,数形结合是解答本题的关键.5、(1)①见解析;②80︒(2)23MON AOB∠=∠,见解析【解析】【分析】(1)①根据∠AOB=120°,OC平分∠AOB,先求出∠BOC=∠AOC=60︒,在根据OM是∠AOC靠近OA的三等分线,求出∠AOM=20︒,根据ON是∠BOC靠近OB的三等分线,∠BON=20︒,然后在∠AOB 内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON即可;②根据∠AOM=20︒,∠BON=20︒,∠AOB=120°,可求∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°即可;(2)根据OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.可求∠AOM=13AOC ∠,∠BON=13BOC∠,可得()MON AOB AOM BON∠=∠-∠+∠23AOB=∠.(1)①∵∠AOB =120°,OC 平分∠AOB ,∴∠BOC =∠AOC =6201AOB ∠=︒, ∵OM 是∠AOC 靠近OA 的三等分线,∴∠AOM =11602033AOC ∠=⨯︒=︒, ∵ON 是∠BOC 靠近OB 的三等分线,∴∠BON =11602033BOC ∠=⨯︒=︒, 在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON , 补全图形;②∵∠AOM =20︒,∠BON =20︒,∠AOB =120°,∴∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°,∴∠MON 的度数是80°,故答案为:80°(2)∠MON =23∠AOB .∵OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.∴∠AOM =13AOC ∠,∠BON=13BOC ∠, ∴()MON AOB AOM BON ∠=∠-∠+∠ ,1()3AOB AOC BOC =∠-∠+∠, 13AOB AOB =∠-∠, 23AOB =∠. 【点睛】本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.。
2022年最新鲁教版(五四制)六年级数学下册第五章基本平面图形综合测评试题(含答案解析)

六年级数学下册第五章基本平面图形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若5318A '∠=︒,则A ∠的补角的度数为( )A .3642'︒B .3682'︒C .12642'︒D .12682'︒2、已知2532'∠=︒A ,则A ∠的补角等于( )A .6428'︒B .6468'︒C .15428'︒D .15468'︒3、如图,在方格纸中,点A ,B ,C ,D ,E ,F ,H ,K 中,在同一直线上的三个点有( ).A .3组B .4组C .5组D .6组4、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )A .东南方向B .西南方向C .东北方向D .西北方向5、①线段6cm AB =,AB 的中点为D ,则3cm BD =;②射线10cm OA =;③OB 是AOC ∠的平分线,52AOC ∠︒=,则104AOB ∠=︒;④把一个周角6等分,每份是60°.以上结论正确的有( )A .②③B .①④C .①③④D .①②③6、下列说法错误的是( )A .两点之间,线段最短B .经过两点有一条直线,并且只有一条直线C .延长线段AB 和延长线段BA 的含义是相同的D .射线AB 和射线BA 不是同一条射线7、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )A .两点之间线段最短B .过一点有无数条直线C .两点确定一条直线D .两点之间线段的长度叫做这两点之间的距离8、钟表10点30分时,时针与分针所成的角是( )A .120︒B .135︒C .150︒D .225︒9、下列各角中,为锐角的是( )A .12平角B .15周角 C .32直角 D .12周角10、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )A .105︒B .100︒C .90︒D .85︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,O 是直线AB 上的一点,AOC ∠和DOB ∠互余,OE 平分BOC ∠,若DOE m ∠=,则AOC ∠的度数为__________.(用含m 的代数式表示)2、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.3、A 、B 、C 三个城市的位置如右图所示,城市C 在城市A 的南偏东60°方向,且155BAC ∠=︒,则城市B 在城市A 的______方向.4、在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若|a ﹣b |=2022,且AO =2BO ,则a +b 的值为___.5、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,则平面内不同的n 个点最多可确定_____条直线(用含有n 的代数式表示).三、解答题(5小题,每小题10分,共计50分)1、已知100AOB ∠=︒,40COD ∠=︒,OE ,OF 分别平分AOD ∠,BOD ∠.(1)如图1,当OA ,OC 重合时,EOF ∠= 度;(2)若将COD ∠的从图1的位置绕点O 顺时针旋转,旋转角AOC α∠=,满足090α︒<<︒且40≠︒α. ①如图2,用等式表示BOF ∠与COE ∠之间的数量关系,并说明理由;②在COD ∠旋转过程中,请用等式表示∠BOE 与COF ∠之间的数量关系,并直接写出答案.2、如图,线段AB 的长为12,C 是线段AB 上的一点,AC =4,M 是AB 的中点,N 是AC 的中点,求线段MN 的长.3、(1)计算:-12+(-3)2(2)一个角是它的余角的两倍,求这个角4、如图,已知平面上三点A ,B ,C ,请按要求完成下列问题:(1)画射线AC ,线段BC ;(2)连接AB ,并用圆规在线段AB 的延长线上截取BD =BC ,连接CD (保留画图痕迹);(3)利用刻度尺取线段CD 的中点E ,连接BE ;(4)通过测量猜测线段BE 和AB 之间的数量关系.5、如图,在直线上顺次取A 、B 、C 三点,使得AB =40cm ,BC =280cm .点P 、点Q 分别由A 点、B 点同时出发向点C 运动,运用时间为t (单位:s ),点P 的速度为3cm/s ,点Q 的速度为1cm/s(1)请求出线段AC 的长;(2)若点D 是线段AC 的中点,请求出线段BD 的长;(3)请求出点P 出发多少秒后追上点Q ?(4)请计算出点P 出发多少秒后,与点Q 的距离是20cm ?-参考答案-一、单选题1、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵5318A '∠=︒,∴A ∠的补角的度数为180180531812642A ''︒-∠=︒-︒=︒.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.2、C【解析】【分析】补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.【详解】解:∵2532'A,∠=︒∴A∠的补角等于1801802532=15428-∠=-,A︒''故选:C.【点睛】本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.3、C【解析】【分析】利用网格作图即可.【详解】如图:在同一直线上的三个点有A 、B 、C ;B 、E 、K ;C 、H 、E ;D 、E 、F ;D 、H 、K ,共5组,故选:C【点睛】此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.4、B【解析】略5、B【解析】【分析】分别根据中点的定义,射线的性质,角平分线的定义,周角的定义逐项判断即可求解.【详解】解:①线段6cm AB =,AB 的中点为D ,则3cm BD =,故原判断正确;②射线没有长度,故原判断错误;③OB 是AOC ∠的平分线,52AOC ∠︒=,则26AOB ∠=︒,故原判断错误;④把一个周角6等分,每份是60°,故原判断正确.故选:B【点睛】本题考查了中点的定义,射线的理解,角平分线的性质,周角的定义等知识,熟知相关知识是解题关键.6、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.7、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.【详解】结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.8、B【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:10点30分时的时针和分针相距的份数是4.5,10点30分时的时针和分针所成的角的度数为30°×4.5=135°,故选:B.【点睛】本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.9、B【解析】【分析】求出各个选项的角的度数,再判断即可.【详解】解:A. 1平角=90°,不符合题意;2B. 15周角=72°,符合题意;C. 32直角=135°,不符合题意;D. 12周角=180°,不符合题意;故选:B.【点睛】本题考查了角的度量,解题关键是明确周角、平角、直角的度数.10、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.二、填空题1、2m【解析】【分析】根据互余定义求得∠DOC=90°,由此得到∠COE=90°-m,根据角平分线的定义求得∠BOC的度数,利用互补求出答案. 【详解】解:∵AOC ∠和DOB ∠互余, ∴AOC ∠+DOB ∠=90°, ∴∠DOC =90°, ∵DOE m ∠=, ∴∠COE =90°-m , ∵OE 平分BOC ∠, ∴∠BOC =2∠COE =180°-2m , ∴AOC ∠=180°-∠BOC =2m , 故答案为:2m . 【点睛】此题考查了角平分线的定义,余角的定义,补角的定义,正确理解图形中各角度的关系并进行推理论证是解题的关键. 2、八 【解析】 【分析】根据n 边形从一个顶点出发可引出(n -3)条对角线,可组成(n -2)个三角形,依此可得n 的值,即得出答案. 【详解】解:由题意得,n -2=6, 解得:n =8, 故答案为:八.本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.3、35°##35度【解析】【分析】根据方向角的表示方法可得答案.【详解】解:如图,∵城市C在城市A的南偏东60°方向,∴∠CAD=60°,∴∠CAF=90°-60°=30°,∵∠BAC=155°,∴∠BAE=155°-90°-30°=35°,即城市B在城市A的北偏西35°,故答案为:35°.【点睛】本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.【解析】【分析】根据绝对值和数轴表示数的方法,可求出OA,OB的长,进而确定a、b的值,再代入计算即可.【详解】∵|a﹣b|=2022,即数轴上表示数a的点A,与表示数b的点B之间的距离为2022,∴ AB=2022,∵且AO=2BO,∴OB=674,OA=1348,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴a=﹣1348,b=674,∴a+b=﹣1348+674=﹣674,故答案为:﹣674.【点睛】本题考查数轴表示数,代数式求值以及绝对值的定义,掌握数轴表示数的方法,绝对值的定义是解决问题的前提.5、(1)2n n【解析】【分析】平根据面内不同的两点确定一条直线,不同的三点最多确定三条直线…依此类推找出规律.【详解】解:平面内不同的2个点确定1条直线,3个点最多确定3条,即3=1+2; 4个点确定最多1+2+3=6条直线; 则n 个点最多确定1+2+3+……(n -1)=(1)2n n -条直线, 故答案为(1)2n n -. 【点睛】此题主要考查了两点确定一条直线,解决问题的关键是通过观察、分析、归纳、验证,然后得出一般性的结论,再代入求值. 三、解答题 1、 (1)50(2)①90COE BOF ∠∠+=︒;②40α<︒时,150COF BOE α∠∠=+︒+;4090α︒<<︒时,30COF BOE α∠=-∠-︒【解析】 【分析】(1)由题意得出40AOD COD ∠=∠=︒,140BOD AOB COD ∠=∠+∠=︒,由角平分线定义得出1202EOD AOD ∠=∠=︒,1702DOF BOD ∠=∠=︒,即可得出答案; (2)①由角平分线定义得出112022EOD AOE AOD α∠=∠=∠=︒+,117022BOF BOD α∠=∠=︒+,求出1202COE AOE AOC α∠=∠-∠=︒-,即可得出答案;②由①得1202EOD AOE α∠=∠=︒+,1702DOF BOF α∠=∠=︒+,当40AOC ∠<︒时,求出1302COF DOF COD α∠=∠-∠=︒+,11202BOE BOD EOD AOB COD EOD αα∠=∠-∠=∠+∠+-∠=︒+,即可得出答案;当4090AOC ︒<∠<︒时,求出11502COF DOF DOC α∠=∠+∠=︒-,11202BOE BOD DOE α∠=∠-∠=︒+,即可得出答案.(1)OA ,OC 重合,40AOD COD ∴∠=∠=︒,10040140BOD AOB COD ∠=∠+∠=︒+︒=︒,OE 平分AOD ∠,OF 平分BOD ∠,11402022EOD AOD ∴∠=∠=⨯︒=︒,111407022DOF BOD ∠=∠=⨯︒=︒, 702050EOF DOF EOD ∴∠=∠-∠=︒-︒=︒;(2)①90COE BOF ∠∠+=︒;理由如下:OE 平分AOD ∠,OF 平分BOD ∠,111(40)20222EOD AOE AOD αα∴∠=∠=∠=︒+=︒+,1111()(10040)702222BOF BOD AOB COD ααα∠=∠=∠+∠+=︒+︒+=︒+, 11202022COE AOE AOC ααα∴∠=∠-∠=︒+-=︒-,1170209022BOF COE αα∴∠+∠=︒++︒-=︒;②由①得:1202EOD AOE α∠=∠=︒+,1702DOF BOF α∠=∠=︒+, 当40AOC ∠<︒时,如图2所示:1170403022COF DOF COD αα∠=∠-∠=︒+-︒=︒+,1110040(20)12022BOE BOD EOD AOB COD EOD αααα∠=∠-∠=∠+∠+-∠=︒+︒+-︒+=︒+,111203015022BOE COF AOC ααα∴∠+∠-∠=︒++︒+-=︒,∴150COF BOE α∠∠=+︒+当4090AOC ︒<∠<︒时,如图3所示:11(360140)4015022COF DOF DOC αα∠=∠+∠=︒-︒-+︒=︒-, 11140(20)12022BOE BOD DOE ααα∠=∠-∠=︒+-︒+=︒+,11150(120)3022COF AOC BOE ααα∴∠+∠-∠=︒-+-︒+=︒;∴30COF BOE α∠=-∠-︒综上所述,40α<︒时,150COF BOE α∠∠=+︒+;4090α︒<<︒时,30COF BOE α∠=-∠-︒ 【点睛】本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键. 2、4MN = 【解析】 【分析】根据1122MN AM AN AB AC =-=-求解即可. 【详解】解:由题意知:162AM AB ==,122AN AC == ∴4MN AM AN =-= ∴线段MN 的长为4. 【点睛】本题考查了线段的中点有关的计算.解题的关键在于正确的表示线段之间的数量关系. 3、(1)-3;(2)这个角的度数为60°. 【解析】 【分析】(1)先计算乘方,再计算加减即可;(2)设这个角的度数为x ,然后根据题意列出方程,解方程即可. 【详解】解:(1)-12+(-3)2129=-+3=-;(2)设这个角的度数为x ,则它的余角为90°-x , 由题可得:2(90)x x ,解得:x =60°,答:这个角的度数为60°. 【点睛】本题考查了余角,有理数的混合运算,熟练掌握余角的意义是解题的关键. 4、 (1)见解析 (2)见解析 (3)见解析(4)3cm =1.5cm AB BE =,,猜测2AB BE = 【解析】 【分析】(1)根据题意画射线AC ,线段BC ;(2)根据题意,连接AB ,并用圆规在线段AB 的延长线上截取BD =BC ,连接CD ; (3)根据题意,利用刻度尺取线段CD 的中点E ,连接BE ;(4)测量线段BE 和AB 的长度,进而求得猜测BE 和AB 之间的数量关系. (1)如图所示,射线AC ,线段BC 即为所求; (2)如图所示,连接AB ,在线段AB 的延长线上截取BD =BC ,连接CD ; (3)如图所示,取线段CD 的中点E ,连接BE ;(4)通过测量3cm =1.5cm AB BE =,,猜测2AB BE = 【点睛】本题考查了直线、射线、线段以及线段的中点,正确区分直线、线段、射线是解题关键. 5、 (1)320cm (2)120cm (3)20秒 (4)10或30秒 【解析】 【分析】(1)根据AB +BC =AC ,已知AB =40cm ,BC =280cm ,代入数据,即可解得线段AC 的长; (2)根据线段的中点定理可得11602AD AC cm ==,而BD =AD ﹣AB ,即可求出线段BD 的长;(3)这属于追击问题,设点P出发t秒后追上点Q,即当追上时有AP AB BQ=+,可方程3t=t+40,即可得本题之解;(4)设点P出发t秒,点Q的距离是20cm;分两种情况,①是当P在Q的左侧时,3t=40+t+20;②是当P在Q的右侧时,3t=40+t+20,分别解这两个方程,即可得出本题答案.(1)解:∵AB+BC=AC,∴AC=320cm;(2)解:∵D是线段AC的中点,∴11602AD AC cm==,∴BD=AD﹣AB=120cm;(3)解:设点P出发t秒后追上点Q,依题意有:3t=t+40,解得t=20.答:点P出发20秒后追上点Q.(4)解:当P在Q的左侧时,此时3t+20=40+t,解得:t=10;当P在Q的右侧时,此时3t=40+t+20,解得:t=30.答:点P出发10或30秒后,与点Q的距离是20cm.【点睛】本题主要考查了线段的有关计算,一元一次方程的应用等知识.。
综合解析鲁教版(五四制)六年级数学下册第五章基本平面图形章节测评试题(含解析)

六年级数学下册第五章基本平面图形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若5318A '∠=︒,则A ∠的补角的度数为( )A .3642'︒B .3682'︒C .12642'︒D .12682'︒2、下列说法中正确的是( )A .两点之间直线最短B .单项式32πx 2y 的系数是32C .倒数等于本身的数为±1D .射线是直线的一半3、如图所示,若90AOB ∠=︒,则射线OB 表示的方向为( ).A .北偏东35°B .东偏北35°C .北偏东55°D .北偏西55°4、如图,在方格纸中,点A ,B ,C ,D ,E ,F ,H ,K 中,在同一直线上的三个点有( ).A.3组B.4组C.5组D.6组5、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为()A.10cm B.2cm C.10或2cm D.无法确定6、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有()A.一对B.二对C.三对D.四对α=︒,则β的补角的大小为()7、已知α与β互为余角,若20A.70︒B.110︒C.140︒D.160︒8、如图,O是直线AB上一点,则图中互为补角的角共有()A .1对B .2对C .3对D .4对9、在一幅七巧板中,有我们学过的( )A .8个锐角,6个直角,2个钝角B .12个锐角,9个直角,2个钝角C .8个锐角,10个直角,2个钝角D .6个锐角,8个直角,2个钝角10、如图,点A ,B 在线段EF 上,点M ,N 分别是线段EA ,BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长为( )cmA .10B .11C .12D .13第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、阳阳在月月的西南方向200m 处,则月月在阳阳的_____方向_____m 处.2、已知点C ,D 在直线AB 上,且2==AC BD ,若7AB =,则CD 的长为______.3、南偏西25°:_________北偏西70°:_________南偏东60°:_________4、如图,邮局在学校( )偏( )( )°方向上,距离学校是( )米.5、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.三、解答题(5小题,每小题10分,共计50分)1、数轴上不重合两点A,B.(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为;(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为;(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD 上一点.设移动的时间为t(t>0)秒,①用含t的式子填空:点A表示的数为;点C表示的数为;②当点O是线段AB的中点时,直接写出t的取值范围.2、已知直线MN上有一线段AB,AB=6,点C是线段AB的中点,点D在直线MN上,且BD=2,求线段DC的长.3、如图①.直线DE上有一点O,过点O在直线DE上方作射线OC,将一直角三角板AOB(其中∠=)的直角顶点放在点O处,一条直角边OB在射线OE上,另一边OA在直线DE的上OAB45方,将直角三角形绕着点O按每秒15的速度顺时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到图②的伩置时, 射线OB 恰好平分COE ∠, 此时, AOC ∠与AOD ∠ 之间的数量关系为____________.(2)若射线OC 的位置保持不变, 且120COD ∠=,①在旋转过程中,是否存在某个时刻,使得射线OB , 射线OC , 射线OE 中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出t 的值; 若不存在, 请说明理由;②在旋转过程中, 当边AB 与射线OD 相交时, 如图③, 请直接写出BOC AOD ∠∠-的值____________.4、如图,已知平面内有四个点A ,B ,C ,D .根据下列语句按要求画图.(1)连接AB ;(2)作射线AD ,并在线段AD 的延长线上用圆规截取DE =AB ;(3)作直线BC 与射线AD 交于点F .观察图形发现,线段AF +BF >AB ,得出这个结论的依据是: .5、如图,已知∠AOB =150°,∠AOC =30°,OE 是∠AOB 内部的一条射线,OF 平分∠AOE ,且OF 在OC 的右侧.(1)若∠COF =25°,求∠EOB 的度数;(2)若∠COF =n °,求∠EOB 的度数.(用含n 的式子表示)-参考答案-一、单选题1、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵5318A '∠=︒,∴A ∠的补角的度数为180180531812642A ''︒-∠=︒-︒=︒.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.2、C【解析】【分析】 分别对每个选项进行判断:两点之间线段最短;单项式单项式32πx 2y 的系数是32π;倒数等于本身的数为±1;射线是是直线的一部分.【详解】解:A .两点之间线段最短,故不符合题意;B .单项式32πx 2y 的系数是32π,不符合题意;C .倒数等于本身的数为±1,故符合题意;D .射线是是直线的一部分,故不符合题意;故选:C .【点睛】本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.3、A【解析】【分析】根据同角的余角相等90BOD AOD AOD AOC ∠+∠=∠+∠=︒即可得,35BOD AOC ∠=∠=︒,根据方位角的表示方法即可求解.【详解】如图,90,35AOB AOC ∠=︒∠=︒∠+∠=∠+∠=︒BOD AOD AOD AOC90∴∠=∠=︒BOD AOC35即射线OB表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.4、C【解析】【分析】利用网格作图即可.【详解】如图:在同一直线上的三个点有A、B、C;B、E、K;C、H、E;D、E、F;D、H、K,共5组,故选:C【点睛】此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.5、C【解析】【分析】分AC=AB+BC和AC=AB-BC,两种情况求解.【详解】∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,当AC=AB+BC时,AC=6+4=10;当AC=AB-BC时,AC=6-4=2;∴AC的长为10或2cm故选C.【点睛】本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.6、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC=90°,∠COD=45°,∴∠AOC=90°,∠BOD=45°,∠AOD=135°,∴∠AOC +∠BOC =180°,∠AOD +∠COD =180°,∠AOD +∠BOD =180°,∴图中互为补角的角共有3对,故选:C .【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.7、B【解析】【分析】根据90βα=︒-求得β,根据180β︒-求得β的补角【详解】解:∵α与β互为余角,若20α=︒,∴9070βα=︒-=︒∴180β︒-110=︒故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为90︒,互为补角的两角之和为180︒.8、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC 与∠BOC ,∠AOD 与∠BO D ,共2对,故选:B.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.9、B【解析】【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.10、C【解析】【分析】由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.【详解】解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=12EA=12x,NB=12BF32x,∴MN=MA+AB+BN=12x+2x+32x=4x,∵MN=16cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故选C.【点睛】本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题1、东北 200【解析】【分析】根据方向角的定义解答即可.【详解】解:阳阳在月月的西南方向200m处,则月月在阳阳的东北方向200m处.故答案为:东北,200.【点睛】本题考查方向角,解题的关键是理解题意,灵活运用所学知识解决问题.2、3或7或11【解析】【分析】分三种情况讨论,当,C D在线段AB上,当C在A的左边,D在线段AB上,当C在A的左边,D在B 的右边,再利用线段的和差关系可得答案.【详解】解:如图,当,C D在线段AB上,AC BD,72==AB=,CD AB AC BD7223,如图,当C在A的左边,D在线段AB上,AC BD,7==2AB=,CD AC AD AD BD AB7,如图,当C在A的左边,D在B的右边,AC BD,7==2AB=,CD AC AB BD27211,故答案为:3或7或11【点睛】本题考查的是线段的和差运算,清晰的分类讨论是解本题的关键.3、射线OA射线OB射线OC【解析】略4、北东 45 1000【解析】【分析】图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.【详解】解:邮局在学校北偏东45°的方向上,距离学校 1000米.故答案为:北,东,45,1000.【点睛】此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.5、两点确定一条直线【解析】【分析】根据两点确定一条直线,即可求解.【详解】解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.故答案为:两点确定一条直线【点睛】本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.三、解答题1、 (1)1-(2)5(3)①5t -,33t -;②26t ≤≤且5t ≠【解析】【分析】(1)先根据两点距离公式求出AB =1-(-3)=1+3=4,根据点M 为AB 中点,求出AM ,然后利用点A 表示的数与AM 长求出点M 表示的数即可;(2)根据点A 表示的数为﹣3,线段AB 中点N 表示的数为1,求出AN =1-(-3)=1+3=4,根据点N 为AB 中点,可求AB =2AN =2×4=8,然后利用点A 表示的数与AB 的长求出点B 表示的数即可;(3)①用点A 运动的速度×运动时间+起点表示数得出点A 表示的数为5t -,用点C 运动的速度×运动时间+起点表示数得出点C 表示的数为33t -;②点A 与点B 关于点O ,点A 从-5出发,点B 此时对应的数为5,当点B 与点C 相遇时满足条件,列方程-3+3t +t =5-(-3)得出点B 在CD 上t =2,当点A 与点B 相遇时点A 在点O 处,三点A 、O 、B 重合,此时没有中点,t ≠5,当点B 与点D 重合时,点A 运动到1,列方程-5+t =1解方程即可.(1)解:∵点A 表示的数为﹣3,点B 表示的数为1,∴AB =1-(-3)=1+3=4,∵点M 为AB 中点,∴AM =BM 114222AB =⨯=,∴点M 表示的数为:-3+2=-1,故答案为:-1;(2)解:∵点A 表示的数为﹣3,线段AB 中点N 表示的数为1,∴AN =1-(-3)=1+3=4,∵点N 为AB 中点,∴AB =2AN =2×4=8,∴点B 表示的数为:-3+8=5,故答案为:5;(3)①点A 表示的数为5t -,点C 表示的数为33t -,故答案为:5t -;33t -;②点A 与点B 关于点O 对称,点A 从-5出发,点B 此时对应的数为5,当点B 与点C 相遇时满足条件,∴-3+3t +t =5-(-3),∴t =2,当点A 与点B 相遇时点A 在点O 处,三点A 、O 、B 重合,此时没有中点,∴t≠5,当点B 与点D 重合时,点A 运动到1,-5+t =1,∴t =6,∴当点O 是线段AB 的中点时, t 的取值范围为2≤t ≤6,且t ≠5.【点睛】本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.2、1或5【解析】【分析】根据题意,分两种情况:(1)点D 在点B 的右侧时,(2)点D 在点B 的左侧时,求出线段DC 的长度是多少即可.【详解】解:∵点C 是AB 的中点, ∴12BC AB =. ∵AB =6,当点D 在点B 左侧时;CD CB DB =-∵DB =2,∴321CD CB DB =-=-=当点D 在点B 右侧时;325CD CB DB =+=+=.【点睛】本题考查了利用中点性质转化线段之间倍分关系,从而求出线段的长短.解题的关键是在不同情况下灵活运用它的不同表示方法,同时灵活运用线段的和差倍分转化线段之间的数量关系也是十分关键的一点.3、 (1)AOC AOD∠=∠(2)①2t=;②30︒【解析】【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC=90°,∠BOE+∠AOD=90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据120COD∠=,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC=90°,∠BOE+∠AOD=90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵120COD∠=,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∴∠BOC=2∠EOC=120°>90°,当OE平分∠BOC时,∠BOC不是锐角舍去,综上,所有满足题意的t 的取值为2,②如图∵∠COD =120°,当AB 与OD 相交时,∵∠BOC=∠COD -∠BOD=120°-∠BOD,∠AOD=∠AOB -∠BOD=90°-∠BOD,∴()1209030BOC AOD BOD BOD ∠∠-=︒-∠-︒-∠=︒,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.4、 (1)见解析(2)见解析(3)见解析,两点之间,线段最短【分析】(1)根据题意作线段AB 即可;(2)作射线AD ,并在线段AD 的延长线上用圆规截取DE =AB ;(3)作直线BC 与射线AD 交于点F ,进而根据两点之间,线段最短即可求解(1)如图所示,作线段AB ,AB 即为所求;(2)如图所示,作射线AD ,并在线段AD 的延长线上用圆规截取DE =AB ,射线AD ,线段DE 即为所求;(3)如图所示,作直线BC 与射线AD 交于点F ,直线BC 即为所求;线段AF +BF >AB ,得出这个结论的依据是:两点之间,线段最短.故答案为:两点之间,线段最短.【点睛】本题考查了画射线、线段、直线,两点之间线段最短,掌握线段的性质是解题的关键.5、 (1)40EOB ∠=︒(2)902EOB n ∠=︒-︒【分析】(1)求出55AOF ∠=︒,再由角平分线计算求出110AOE ∠=︒,结合图形即可求出EOB ∠;(2)求出30AOF n ∠=︒+︒,再由角平分线计算求出260AOE n ∠=︒+︒,结合图形即可求出EOB ∠.(1)∵25COF ∠=︒,30AOC ∠=︒,∴55AOF ∠=︒,∵OF 平分AOE ∠,∴110AOE ∠=︒,∵150AOB ∠=︒,∴15011040EOB AOB AOE ∠=∠-∠︒-︒=︒=; (2)∵COF n ∠=︒,30AOC ∠=︒,∴30AOF n ∠=︒+︒,∵OF 平分AOE ∠,∴260AOE n ∠=︒+︒,∵150AOB ∠=︒,∴()150260902EOB AOB AOE n n ∠=∠-∠=︒-︒+︒=︒-︒.【点睛】题目主要考查利用角平分线进行角度间的计算,理解题意,找准各角之间的数量关系是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C A B
40︒60︒南
北(4)北西南东C A B 初一数学《基本平面图形》测试题班别: 学号: 姓名: 分数:
一、选择题。
(每小题3分,10小题共30分)
1、下列各直线的表示法中,正确的是( )
A :直线A ,
B :直线AB ,
C :直线ab ,
D :.直线Ab
2、一个钝角与一个锐角的差是( ) A.锐角 B.直角 C.钝角 D.不能确定
3、手电筒射出去的光线,给我们的形象是( ) A.直线 B.射线 C.线段 D.折线
4、图中给出的直线、射
线、线段,根据各自的性质,能相交的是( )
5、如图,AB=CD,则AC 与BD 的大小关系是( ) A.AC>BD B.AC<BD C.AC=BD D.不能确定
6.角是指( ) A.由两条线段组成的图形; B.由两条射线组成的图形
C.由两条直线组成的图形;
D.有公共端点的两条射线组成的图形
7、下列说法正确的是( )
A. 两点之间的连线中,直线最短
B.若P 是线段AB 的中点,则AP=BP
C. 若AP=BP, 则P 是线段AB 的中点
D. 两点之间的线段叫做者两点之间的距离
8、 已知线段AB=6cm,C 是AB 的中点,D 是AC 的中点,则DB 等于( )
A. 1.5cm
B. 4.5 cm C3 cm. D.3.5 cm 9、如图3,下列表示角的方法,错误的是( )
A.∠1与∠AOB 表示同一个角;
B.∠AOC 也可用∠O 来表示
C.图中共有三个角:∠AOB 、∠AOC 、∠BOC;
D.∠β表示的是∠BOC 10、如图4,在A 、B 两处观测到的C 处的方位角分别是( )
A.北偏东60°,北偏西40°
B.北偏东60°,北偏西50°
C.北偏东30°,北偏西40°
D.北偏东30°,北偏西50°
二、填空题。
(每小题3分,5小题共15分)
1、5点钟时,时针与分针所成的角度是
2、用一副三角板,可以拼出不同度数的角共有 个。
3、要把木条固定在墙上至少需要钉_______颗钉子,根据是 .
4、计算:48°39′+67°41′= ,41.2°= ° ′
5、 过8边形的一个顶点可作 条对角线,可将8边形分成
个三角形。
β(3)
1O C A
B
C
A D
B
C A
D B
三、作图题。
(每小题5分,3小题共15分)
1、已知线段a 和b ,求作线段MN ,使MN=a+b 。
(不要求写作法,但要保留痕迹)
a b
2、已知平面上四点A 、B 、C 、D,如图:
(1)画直线AD;
(2)画射线BC ,与AD 相交于O 。
(3)连结AC 、BD 相交于点F.3、已知∠AOB ,利用能画直角的工
具再画出一个与它相等的角。
四、解答题。
(第1、2小题每题5分,其余每小题6分,共40分)
1、已知D 是AC 的中点, AD=2,CB=5,求AB 的长度。
2、已知∠AOB=25°,∠BOC=3∠AOB ,求∠AOC
的大小。
C O B A
3如图,BC=4cm,BD=7cm , D 是AC 的中点,求AC 的长度。
4、将一个半径为10cm 的圆分成3个扇形,其圆心角的比1:2:3,求:
①各个扇形的圆心角的度数。
②其中最小一个扇形的面积。
5、如图,AB=20cm,C 是AB 上一点,且AC=12cm,
D 是AC 的中点,
E 是BC 的中点,求线段DE 的长. 6、如图,如果∠1=65.4°,∠2=78°30′,求∠3的度数。
C 31
2
7、如下图,∠AOC=∠BOD=90°, ∠BOC=38° ,求∠AOD 的度数. 附加题。
(每小题5分)
1、平面上有不在一直线上n 个点,过其中的每两点画直线,最多可以画 条线段,
一个会议,任两个人都要互相握手一次,则n 个人一共握了 次手。
2、从n 边形的一个顶点出发,可以画 条对角线,n 边形总共有 条对角线
3、如图所示,OE 平分∠BOC,OD 平分∠AOC,∠COE=20.6°,∠COD=40°40′, 求∠AOB 的度数.
4、计算: 49°28′52″÷4,
5、已知A 、B 、C 在同一直线上,且AB=25,BC=5,求D 是AB 的中点,E 是BC 的中点,求DE 的长。
O C A
D B
E C B D
O
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。