抽象函数与函数方程(一)

合集下载

高三数学函数与方程压轴题训练——抽象函数

高三数学函数与方程压轴题训练——抽象函数

高三数学函数与方程压轴题训练——抽象函数抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征式子的一类函数.由于抽象函数表现形式抽象,对学生思维能力考查的起点较高,使得此类问题成为函数内容的难点之一,使多数学生感觉无从下手,望而生畏.事实上,解决此类问题时,只要准确掌握函数的性质,熟知我们所学的基本初等函数,将抽象函数问题转化为具体函数问题,问题就迎刃而解了.[典例]已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1m(x i +y i )=( )A .0B .mC .2mD .4m[思路点拨](1)由于题目条件中的f (x )没有具体的解析式,仅给出了它满足的性质f (-x )=2-f (x ),即f (x )(x ∈R)为抽象函数,显然我们不可能求出这些点的坐标,这说明这些交点坐标应满足某种规律,而这种规律必然和这两个函数的性质有关.(2)易知函数y =x +1x关于点(0,1)成中心对称,自然而然的让我们有这样的想法:函数f (x )(x ∈R)的图象是否也关于点(0,1)成中心对称?基于这个想法及选择题的特点,那么解题方向不外乎两个:一是判断f (x )的对称性,利用两个函数的对称性求解;二是构造一个具体的函数f (x )来求解.[方法演示]法一:利用函数的对称性由f (-x )=2-f (x ),知f (-x )+f (x )=2,所以点(x ,f (x ))与点(-x ,f (-x ))连线的中点是(0,1),故函数f (x )的图象关于点(0,1)成中心对称.(此处也可以这样考虑:由f (-x )=2-f (x ),知f (-x )+f (x )-2=0,即[f (x )-1]+[f (-x )-1]=0,令F (x )=f (x )-1,则F (x )+F (-x )=0,即F (x )=f (x )-1为奇函数,图象关于点(0,0)对称,而F (x )的图象可看成是f (x )的图象向下平移一个单位得到的,故f (x )的图象关于点(0,1)对称).又y =x +1x =1+1x 的图象也关于点(0,1)对称,所以两者图象的交点也关于点(0,1)对称,所以对于每一组对称点x i +x i ′=0,y i +y i ′=2,所以∑i =1m (x i +y i )=∑i =1m x i +∑i =1my i =0+2×m2=m ,故选B.法二:构造特殊函数由f (-x )=2-f (x ),知f (-x )+f (x )-2=0, 即[f (x )-1]+[f (-x )-1]=0.令F (x )=f (x )-1,则F (x )为奇函数, 即f (x )-1为奇函数,从而可令f (x )-1=x , 即f (x )=x +1,显然该函数满足此条件.此时y =f (x )与y =x +1x 的交点分别为(1,2)和(-1,0),所以m =2,∑i =1m(x i +y i )=1+2+(-1)+0=2,结合选项可知选B. 答案:B [解题师说]1.解决抽象函数问题的2个常用方法2.解决抽象函数问题常用的结论(1)函数y =f (x )关于x =a +b2对称⇔f (a +x )=f (b -x )⇔f (x )=f (b +a -x ).特例:函数y =f (x )关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x ); 函数y =f (x )关于x =0对称⇔f (x )=f (-x )(即为偶函数).(2)函数y =f (x )关于点(a ,b )对称⇔f (a +x )+f (a -x )=2b ⇔f (2a +x )+f (-x )=2b . 特例:函数y =f (x )关于点(a,0)对称⇔f (a +x )+f (a -x )=0⇔f (2a +x )+f (-x )=0; 函数y =f (x )关于点(0,0)对称⇔f (x )+f (-x )=0(即为奇函数).(3)y =f (x +a )是偶函数⇔函数y =f (x )关于直线x =a 对称;y =f (x +a )是奇函数⇔函数y=f(x)关于(a,0)对称.(4)对于函数f(x)定义域内任一自变量的值x:①若f(x+a)=-f(x),则T=2a;②若f(x+a)=1f(x),则T=2a;③若f(x+a)=-1f(x),则T=2a;(a>0)④若f(x+a)=f(x+b)(a≠b),则T=|a-b|;⑤若f(2a-x)=f(x)且f(2b-x)=f(x)(a≠b),则T=2|b-a|.[应用体验]1.已知函数f(x)在R上是单调函数,且满足对任意x∈R,都有f(f(x)-2x)=3,则f(3)的值是()A.3B.7C.9 D.12解析:选C由题意,知对任意x∈R,都有f(f(x)-2x)=3,不妨令f(x)-2x=c,其中c是常数,则f(c)=3,所以f(x)=2x+c.再令x=c,则f(c)=2c+c=3,即2c+c-3=0.易得2c与3-c至多只有1个交点,即c=1.所以f(x)=2x+1,所以f(3)=23+1=9.2.已知奇函数f(x)(x∈D),当x>0时,f(x)≤f(1)=2.给出下列命题:①D=[-1,1];②对∀x∈D,|f(x)|≤2;③∃x0∈D,使得f(x0)=0;④∃x1∈D,使得f(x1)=1.其中所有正确命题的个数是()A.0B.1C.2D.3解析:选A由奇函数f(x)(x∈D),当x>0时,f(x)≤f(1)=2,只说明函数有最值,与定义域无关,故①错误;对于②,可能f(3)=-3,|f(3)|=3>2,故②错误;对于③,当0不在D中,且x轴为渐近线时,则不满足③;当y=1为渐近线时,不满足④,因此选A.3.已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1-2)·(x2-2)<0,则f(x1)+f(x2)的值()A.恒大于0 B.恒小于0C.可能等于0 D.可正可负解析:选B法一:由f(-x)=-f(x+4),得f (-x +2)=-f (x -2+4)=-f (x +2), 即f (x +2)=-f (-x +2), 故函数f (x )的对称中心为M (2,0). 令x =-2,得f (2)=-f (2),解得f (2)=0.又函数f (x )在[2,+∞)上单调递增,画出函数的大致图象如图所示.由(x 1-2)(x 2-2)<0,可得x 1-2与x 2-2异号,即x 1,x 2分布在直线x =2的两侧,不妨设x 1<2<x 2.由x 1+x 2<4,可得(x 1-2)+(x 2-2)<0,即|x 1-2|>|x 2-2|,由函数的对称性,可知必有f (x 1)+f (x 2)<0.法二:由f (-x )=-f (x +4)可知,f (2+x )=-f (2-x ),则函数图象关于点(2,0)中心对称.因为x <2时,f (x )单调递增,所以x >2时,f (x )单调递增.因为x 1+x 2<4且(x 1-2)·(x 2-2)<0,设x 1<2<x 2,则x 2<4-x 1,所以f (x 2)<f (4-x 1).又因为f (4-x 1)=-f (x 1),所以f (x 2)<-f (x 1),即f (x 1)+f (x 2)<0.一、选择题1.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))的值为( )A .5B .-5 C.15D .-15解析:选D ∵函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),∴f (x +4)=f [(x +2)+2]=1f (x +2)=f (x ),即函数f (x )是以4为周期的周期函数. ∵f (1)=-5,∴f (f (5))=f (f (1))=f (-5)=f (3)=1f (1)=-15.2.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数. 因为f (x )在R 上单调递增,f (0)=0, 所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0. 又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3), 20.8<2=log 24<log 25.1<log 28=3, 所以b <a <c .3.已知函数f (x )(x ∈R)满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m 解析:选B ∵f (x )=f (2-x ), ∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1m x i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m . 4.已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.5.已知定义在R 上的函数f (x ),对任意x ∈R ,都有f (x +4)=f (x )+f (2)成立,若函数y =f (x +1)的图象关于直线x =-1对称,则f (2 018)的值为( )A .2 018B .-2 018C .0D .4解析:选C 依题意得,函数y =f (x )的图象关于直线x =0对称,因此函数y =f (x )是偶函数,且f (-2+4)=f (-2)+f (2),即f (2)=f (2)+f (2),所以f (2)=0,所以f (x +4)=f (x ),即函数y =f (x )是以4为周期的函数,f (2 018)=f (4×504+2)=f (2)=0.6.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,若实数a 满足f (2log 3a )>f (-2),则实数a 的取值范围是( )A .(-∞,3)B .(0,3)C .(3,+∞)D .(1,3)解析:选B ∵f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,∴f (x )在区间[0,+∞)上单调递减.根据函数的对称性,可得f (-2)=f (2),∴f (2log 3a )>f (2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a < 3.7.设函数y =f (x )(x ∈R)的图象关于直线x =0及直线x =1对称,且x ∈[0,1]时,f (x )=x 2,则f ⎝⎛⎭⎫-32=( ) A.12 B.14 C.34D.94解析:选B 法一:∵函数y =f (x )(x ∈R)的图象关于直线x =0对称, ∴f (-x )=f (x ).∵函数y =f (x )(x ∈R)的图象关于直线x =1对称, ∴f (1-x )=f (1+x ).∴f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫1+12=f ⎝⎛⎭⎫1-12=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14. 法二:∵函数y =f (x )关于直线x =0对称,则函数f (x )是偶函数,又关于x =1对称,则f (2-x )=f (x ),故f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14. 8.定义在R 上的函数y =f (x ),满足f (4-x )=f (x ),(x -2)·f ′(x )<0,若x 1<x 2且x 1+x 2>4,则有( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不确定解析:选B 由f (4-x )=f (x ),知函数f (x )关于直线x =2对称.又(x -2)f ′(x )<0,故当x >2时,函数f (x )单调递减;当x <2时,函数f (x )单调递增,所以当x =2时,函数f (x )取得最大值.由x 1<x 2且x 1+x 2>4知x 1离x =2更近,故f (x 1)>f (x 2).9.已知函数y =f (x )的定义域为R ,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0恒成立;②f (x +4)=-f (x ); ③y =f (x +4)是偶函数.若a =f (8),b =f (11),c =f (2 018),则a ,b ,c 的大小关系为( ) A .a <b <c B .b <c <a C .a <c <bD .c <b <a解析:选B 由①知函数f (x )在区间[4,8]上为单调递增函数;由②知f (x +8)=-f (x +4)=f (x ),即函数f (x )的周期为8,所以c =f (2 018)=f (252×8+2)=f (2),b =f (11)=f (3);由③可知函数f (x )的图象关于直线x =4对称,所以b =f (3)=f (5),c =f (2)=f (6).因为函数f (x )在区间[4,8]上为单调递增函数,所以f (5)<f (6)<f (8),即b <c <a .10.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). 因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).11.已知函数f (x )是定义在R 上的偶函数,且f (-x -1)=f (x -1),当x ∈[-1,0]时,f (x )=-x 3,则关于x 的方程f (x )=|cos πx |在-52,12上的所有实数解之和为( )A .-7B .-6C .-3D .-1解析:选A 因为函数f (x )为偶函数,所以f (-x -1)=f (x +1)=f (x -1),所以函数f (x )的周期为2,又当x ∈[-1,0]时,f (x )=-x 3,由此在同一平面直角坐标系内作出函数y =f (x )与y =|cos πx |的图象如图所示.由图象知关于x 的方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的实数解有7个.不妨设x 1<x 2<x 3<x 4<x 5<x 6<x 7,则由图得x 1+x 2=-4,x 3+x 5=-2,x 4=-1,x 6+x 7=0,所以方程f (x )=|cos πx |在⎣⎡⎦⎤-52,12上的所有实数解的和为-4-2-1+0=-7.12.已知函数f (x )为定义在R 上的奇函数,当x ≥0时,有f (x +3)=-f (x ),且当x ∈(0,3)时,f (x )=x +1,则f (-2 017)+f (2 018)=( )A .3B .2C .1D .0解析:选C 因为函数f (x )为定义在R 上的奇函数,所以f (-2 017)=-f (2 017), 因为当x ≥0时,有f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),所以f (x )的周期为6.又当x ∈(0,3)时,f (x )=x +1, 所以f (2 017)=f (336×6+1)=f (1)=2, f (2 018)=f (336×6+2)=f (2)=3,故f (-2 017)+f (2 018)=-f (2 017)+3=-2+3=1. 二、填空题13.已知函数f (x )的图象关于y 轴对称,且对任意x ∈R 都有f (x +3)=-f (x ),若当x ∈⎝⎛⎭⎫12,32时,f (x )=⎝⎛⎭⎫12x ,则f (2 018)=________. 解析:因为对任意x ∈R 都有f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),函数f (x )是周期为6的函数,f (2 018)=f (336×6+2)=f (2).由f (x +3)=-f (x )可得f (-1+3)=-f (-1)=f (2),因为函数f (x )的图象关于y 轴对称,所以函数f (x )是偶函数,f (-1)=f (1)=12,所以f (2 018)=f (2)=-f (1)=-12. 答案:-1214.已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1.又f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1, 利用叠加法,得f (2 017)=2 018. 答案:2 01815.定义在R 上的函数f (x )满足f (x +6)=f (x ),当x ∈[-3,-1)时,f (x )=-(x +2)2,当x ∈[-1,3)时,f (x )=x ,则f (1)+f (2)+f (3)+…+f (2 018)=________.解析:由题意得f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,所以数列{f (n )}从第一项起,每连续6项的和为1,则f (1)+f (2)+f (3)+…+f (2 018)=336×1+f (1)+f (2)=339.答案:33916.已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为________.解析:f (x +3)=fx +32+32=-f ⎝⎛⎭⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确; 函数f ⎝⎛⎭⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎫-34,0对称,-34=-x +⎝⎛⎭⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎫-32+x ,又f ⎝⎛⎭⎫-32+x =-f -32+x +32=-f (x ), 所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误. 故真命题的序号为①②③. 答案:①②③。

抽象函数模型归纳总结(八大题型)(解析版)

抽象函数模型归纳总结(八大题型)(解析版)

抽象函数模型归纳总结目录01方法技巧与总结02题型归纳总结题型一:一次函数模型题型二:二次函数模型题型三:幂函数模型题型四:指数函数模型题型五:对数函数模型题型六:正弦函数模型题型七:余弦函数模型题型八:正切函数模型03过关测试20一次函数(1)对于正比例函数f x =kx k≠0,与其对应的抽象函数为f x±y=f x ±f y .(2)对于一次函数f x =kx+b k≠0,与其对应的抽象函数为f x±y=f x ±f y ∓b.二次函数(3)对于二次函数f x =ax2+bx+c a≠0,与其对应的抽象函数为f x+y=f x +f y +2axy-c幂函数(4)对于幂函数f x =x n,与其对应的抽象函数为f xy=f x f y .(5)对于幂函数f x =x n,其抽象函数还可以是fxy=f x f y.指数函数(6)对于指数函数f x =a x,与其对应的抽象函数为f x+y=f x f y .(7)对于指数函数f x =a x,其抽象函数还可以是f x -y =f xf y.其中(a >0,a ≠1)对数函数(8)对于对数函数f x =log a x ,与其对应的抽象函数为f xy =f x +f y .(9)对于对数函数f x =log a x ,其抽象函数还可以是fxy=f x -f y .(10)对于对数函数f x =log a x ,其抽象函数还可以是f x n=nf x .其中(a >0,a ≠1)三角函数(11)对于正弦函数f x =sin x ,与其对应的抽象函数为f x +y f x -y =f 2x -f 2y 注:此抽象函数对应于正弦平方差公式:sin 2α-sin 2β=sin α+β sin α-β(12)对于余弦函数f x =cos x ,与其对应的抽象函数为f x +f y =2fx +y 2 f x -y2注:此抽象函数对应于余弦和差化积公式:cos α+cos β=2cos α+β2cosα-β2(13)对于余弦函数f x =cos x ,其抽象函数还可以是f x f y =12f x +y +f x -y注:此抽象函数对应于余弦积化和差公式:cos αcos β=cos α+β +cos α-β2(14)对于正切函数f x =tan x ,与其对应的抽象函数为f x ±y =f x ±f y1∓f x f y注:此抽象函数对应于正切函数和差角公式:tan α±β =tan α±tan β1∓tan αtan β题型一:一次函数模型1已知f x +y =f x +f y -1且f 1 =2,则f 1 +f 2 +⋯+f n 不等于A.f 1 +2f 1 +⋯+nf 1 -n n -12B.f n n +1 2+n -1C.n 2+3n2 D.n n +1【答案】D【解析】∵f x +y =f x +f y -1,∴f x +y -1=f x -1 +f y -1 ,构造函数g x =f x -1,则g x +y =g x +g y ,且g 1 =f 1 -1=1,令a n =g n =f n -1,则a 1=f 1 -1=1,令x =n ,y =1,得g n +1 =g n +g 1 ,∴a n +1=a n +a 1=a n +1,即a n +1-a n =1,所以,数列a n 为等差数列,且首项为1,公差为1,∴a n =1+n -1 ×1=n ,∴f n -1=n ,则f n =n +1.f 1 +f 2 +⋯+f n =2+3+⋯+n +1 =n 2+n +1 2=n n +3 2=n 2+3n 2,f 1 +2f 1 +⋯+nf 1 -n n -1 2=n n +1 2f 1 -n n -1 2=n n +1 -n n -1 2=n 2+3n2,合乎题意;f n n +1 2 +n -1=n n +1 2+1+n -1=n 2+3n 2,合乎题意;故选D .2已知函数f x 的定义域为R ,且f 12≠0,若f (x +y )+f (x )f (y )=4xy ,则下列结论错误的是()A.f -12=0 B.f 12=-2C.函数f x -12是偶函数 D.函数f x +12是减函数【答案】C【解析】对于A ,令x =12、y =0,则有f 12 +f 12 ×f 0 =f 121+f 0 =0,又f 12≠0,故1+f 0 =0,即f 0 =-1,令x =12、y =-12,则有f 12-12 +f 12 f -12 =4×12×-12,即f 0 +f 12 f -12 =-1,由f 0 =-1,可得f 12 f -12 =0,又f 12 ≠0,故f -12=0,故A 正确;对于C ,令y =-12,则有f x -12 +f x f -12 =4x ×-12,则f x -12 =-2x ,故函数f x -12是奇函数,故C 错误;对于D ,有f x +1-12 =-2x +1 =-2x -2,即f x +12=-2x -2,则函数f x +12 是减函数,故D 正确;对于B ,由f x -12 =-2x ,令x =1,有f 12=-2×1=-2,故B 正确.故选:C 3(2024·河南新乡·一模)已知定义在R 上的函数f x 满足∀x ,y ∈R ,f 2xy -1 =f x ⋅f y +f y +2x -3,f 0 =-1,则不等式f x >3-2x 的解集为()A.1,+∞B.-1,+∞C.-∞,1D.-∞,-1【答案】A【解析】令x =y =0,得f (-1)=f (0)⋅f (0)+f (0)-3=-3.令y =0,得f (-1)=f (x )f (0)+f (0)+2x -3,解得f (x )=2x -1,则不等式f (x )>3-2x 转化为2x +2x -4>0,因为y =2x +2x -4是增函数,且2×1+21-4=0,所以不等式f (x )>3-2x 的解集为(1,+∞).故选:A4已知定义在R 上的单调函数f x ,其值域也是R ,并且对于任意的x ,y ∈R ,都有f xf y =xy ,则f 2022 等于()A.0B.1C.20222D.2022【答案】D【解析】由于f x 在R 上单调,且值域为R ,则必存在y 0∈R ,使得f y 0 =1,令y =y 0得,f xf y 0 =xy 0,即f x =y 0x ,于是∀x ,y ∈R ,f xf y =f xy 0y =y 0xy 0y =y 20xy =xy ,则y 0=±1,从而f x =±x ,有f 2022 =2022.故选:D题型二:二次函数模型1(2024·高三·河北保定·期末)已知函数f (x )满足:∀x ,y ∈Z ,f (x +y )=f (x )+f (y )+2xy +1成立,且f (-2)=1,则f 2n n ∈N * =()A.4n +6B.8n -1C.4n 2+2n -1D.8n 2+2n -5【答案】C【解析】令x =y =0,则f 0 =f 0 +f 0 +1,所以f 0 =-1,令x =y =-1,则f -2 =f -1 +f -1 +2+1=2f -1 +3=1,所以f -1 =-1,令x =1,y =-1,则f 0 =f 1 +f -1 -2+1=f 1 -2=-1,所以f 1 =1,令x =n ,y =1,n ∈N *,则f n +1 =f n +f 1 +2n +1=f n +2n +2,所以f n +1 -f n =2n +2,则当n ≥2时,f n -f n -1 =2n ,则f n =f n -f n -1 +f n -1 -f n -2 +⋯+f 2 -f 1 +f 1=2n +2n -2 +⋯+4+1=2n +4 n -12+1=n 2+n -1,当n =1时,上式也成立,所以f n =n 2+n -1n ∈N * ,所以f 2n =4n 2+2n -1n ∈N * .故选:C .2(2024·山东济南·三模)已知函数f x 的定义域为R ,且yf x -xf y =xy x -y ,则下列结论一定成立的是()A.f 1 =1B.f x 为偶函数C.f x 有最小值D.f x 在0,1 上单调递增【答案】C【解析】由于函数f x 的定义域为R ,且yf x -xf y =xy x -y ,令y =1,则f x -xf 1 =x x -1 ,得f x =x 2+f 1 -1 x ,x =1时,f 1 =12+f 1 -1 恒成立,无法确定f 1 =1,A 不一定成立;由于f 1 =1不一定成立,故f x =x 2+f 1 -1 x 不一定为偶函数,B 不确定;由于f x =x 2+f 1 -1 x 的对称轴为x =-12⋅f 1 -1 与0,1 的位置关系不确定,故f x 在0,1 上不一定单调递增,D 也不确定,由于f x =x 2+f 1 -1 x 表示开口向上的抛物线,故函数f x 必有最小值,C 正确,故选:C3(2024·陕西西安·模拟预测)已知函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,则下列结论正确的是()A.f (4)=12B.方程f (x )=x 有解C.f x +12 是偶函数D.f x -12是偶函数【答案】C【解析】对于A ,因为函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,取x =y =1,得f (1)+f (1)=f (2)-2+2,则f (2)=4,取x =y =2,得f (2)+f (2)=f (4)-8+2,则f (4)=14,故A 错误;对于B ,取y =1,得f (x )+f (1)=f (x +1)-2x +2,则f (x +1)-f (x )=2x ,所以f (x )-f (x -1)=2(x -1),f (x -1)-f (x -2)=2(x -2),⋯,f (2)-f (1)=2,以上各式相加得f (x )-f (1)=2(x -1)+2 ⋅(x -1)2=x 2-x ,所以f (x )=x 2-x +2,令f (x )=x 2-x +2=x ,得x 2-2x +2=0,此方程无解,故B 错误.对于CD ,由B 知f (x )=x 2-x +2,所以f x +12 =x +12 2-x +12 +2=x 2+74是偶函数,f x -12 =x -12 2-x -12 +2=x 2-2x +114不是偶函数,故C 正确,D 错误.故选:C .4(2024·河南·三模)已知函数f x 满足:f 1 ≥3,且∀x ,y ∈R ,f x +y =f x +f y +6xy ,则9i =1f i 的最小值是()A.135 B.395C.855D.990【答案】C【解析】由f x +y =f x +f y +6xy ,得f x +y -3x +y 2=f x -3x 2+f y -3y 2,令g x =f x -3x 2,得g x +y =g x +g y ,令x =n ,y =1,得g n +1 -g n =g 1 ,故g n =g n -g n -1 + g n -1 -g n -2 +⋅⋅⋅+ g 2 -g 1 +g 1 =ng 1 ,又g n =f n -3n 2,所以f n =g n +3n 2=3n 2+f 1 -3 n ,所以9i =1f i =39i =1i 2+f 1 -3 9i =1i =855+45f 1 -3 ,因为f 1 ≥3,当f 1 =3时,9i =1f i 的最小值为855.故选:C .题型三:幂函数模型1已知函数f x 的定义域为-∞,0 ∪0,+∞ ,且xf x =y +1 f y +1 ,则()A.f x ≥0B.f 1 =1C.f x 是偶函数D.f x 没有极值点【答案】D【解析】令g x =xf x ,则g y +1 =y +1 f y +1 ,所以g x =g y +1 ,且x ,y +1为定义域内任意值,故g x 为常函数.令g x =k ,则f x =kx,为奇函数且没有极值点,C 错,D 对;所以f x ≥0不恒成立,f 1 =1不一定成立,A 、B 错.故选:D2(2024·河北·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x 满足f xy =f -x y +f -yx+1xy,则()A.f x 是奇函数且在0,+∞ 上单调递减B.f x 是奇函数且在-∞,0 上单调递增C.f x 是偶函数且在0,+∞ 上单调递减D.f x 是偶函数且在-∞,0 上单调递增【答案】A【解析】令x =y =-1,则f 1 =-2f 1 +1,所以f 1 =13,令x =y =1,则f 1 =2f -1 +1,所以f -1 =-13,令y =-1,则f -x =-f -x +f 1 x -1x =-f -x +13x -1x =-f -x -23x,所以f -x =-13x,令y =1,则f x =f -x +f -1 x +1x =-13x -13x +1x =13x ,所以f x =13x,因为f -x =-13x=-f x ,且定义域关于原点对称,所以函数f x 是奇函数,由反比例函数的单调性可得函数f x =13x在0,+∞ 上单调递减.故选:A .题型四:指数函数模型1(多选题)(2024·山西晋中·三模)已知函数f x 的定义域为R ,满足f x +y =f x f y +f x +f y ,且f 0 ≠-1,f 1 >-1,则下列说法正确的是()A.f 0 =0B.f x 为非奇非偶函数C.若f 1 =1,则f 4 =15D.f x >-1对任意x ∈N *恒成立【答案】ACD【解析】我们有恒等式:f x +y +1=f x f y +f x +f y +1=f x +1 f y +1 .对于A ,由恒等式可得f 0 +1=f 0 +1 f 0 +1 ,而f 0 ≠-1,故f 0 +1≠0,所以1=f 0 +1,即f 0 =0,故A 正确;对于B ,由于f x =0满足条件且是偶函数,所以f x 有可能是偶函数,故B 错误;对于C ,由恒等式可得f x +1 +1=f x +1 f 1 +1 ,故f 4 +1=f 3 +1 f 1 +1 =f 2 +1 f 1 +12=f 1 +1 4.若f 1 =1,则f 4 =f 1 +1 4-1=24-1=15,故C 正确;对于D ,由恒等式可得f x +1 +1=f x +1 f 1 +1 .而f 1 +1>0,故f x +1 +1和f x +1同号(同为正数,或同为负数,或同为0),从而再由f 1 +1>0可知f x +1>0x ∈N * ,即f x >-1x ∈N * ,故D 正确.故选:ACD .2已知函数f x 满足,f p +q =f p ⋅f q ,f 1 =3,则f 21 +f 2 f 1 +f 22 +f 4f 3+f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10f 9 的值为()A.15B.30C.60D.75【答案】B【解析】∵f p +q =f p ⋅f q ,∴f n +1 =f n ⋅f 1 ,∵f 1 =3∴f n +1 =3f n ∴f n =3×3n -1=3n因此f 21 +f 2 f 1 +f 22 +f 4 f 3 +f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10 f 9=32+323+34+3433+36+3635+38+3837+310+31039=6+6+6+6+6=30故选:B3如果f a +b =f a f b 且f 1 =2,则f 2 f 1 +f 4 f 3 +f 6f 5=()A.125B.375C.6D.8【答案】C【解析】∵f 1 =2,f a +b =f a f b ,∴f 2 =f 1 f 1 ,f 4 =f 3 f 1 ,f 6 =f 5 f 1 ,∴f 2 f 1 =f 1 ,f 4 f 3 =f 1 ,f 6 f 5 =f 1 ,∴f 2 f 1 +f 4 f 3 +f 6 f 5 =3f 1 =6,故选:C .4已知函数f x 对一切实数a ,b 满足f a +b =f a ⋅f b ,且f 1 =2,若a n =f n2+f 2n f 2n -1n ∈N *,则数列a n 的前n 项和为()A.nB.2nC.4nD.8n【答案】C【解析】∵函数f x 对一切实数a,b满足f a+b=f a ⋅f b ,且f1 =2∴f n+1=f n ⋅f1 =2f n∴数列f n是等比数列,首项为2,公比为2∴f n =2n,n∈N*所以a n=f n2+f2nf2n-1=22n+22n22n-1=4所以数列a n的前n项和为4n.故选:C.题型五:对数函数模型1(多选题)已知函数f x 的定义域为R,f xy=y2f x +x2f y ,则( ).A.f0 =0 B.f1 =0C.f x 是偶函数D.x=0为f x 的极小值点【答案】ABC【解析】方法一:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,不妨令f(x)=0,显然符合题设条件,此时f(x)无极值,故D错误.方法二:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,当x2y2≠0时,对f(xy)=y2f(x)+x2f(y)两边同时除以x2y2,得到f(xy)x2y2=f(x)x2+f(y)y2,故可以设f(x)x2=ln x (x≠0),则f(x)=x2ln x ,x≠00,x=0,当x>0肘,f(x)=x2ln x,则f x =2x ln x+x2⋅1x=x(2ln x+1),令f x <0,得0<x<e-12;令f x >0,得x>e-12;故f(x)在0,e-1 2上单调递减,在e-12,+∞上单调递增,因为f(x)为偶函数,所以f(x)在-e-1 2,0上单调递增,在-∞,e-12上单调递减,显然,此时x =0是f (x )的极大值,故D 错误.故选:ABC .2.已知定义在0,+∞ 上的函数f x ,满足f xy +1=f x +f y ,且f 12=0,则f 211 =()A.1B.11C.12D.-1【答案】C【解析】令x =y =1,则f 1 +1=f 1 +f 1 ,解得f 1 =1,令x =2,y =12,则f 1 +1=f 2 +f 12,解得f 2 =2,令x =y =2,则f 22 +1=f 2 +f 2 ,解得f 22 =3,令x =22,y =2,则f 23 +1=f 22 +f 2 ,解得f 23 =4,⋯⋯,依次类推可得f 211 =12。

抽象函数常见题型解法

抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型:一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。

其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。

例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。

解:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数,∴==f f ()()200000例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域。

解:设x x 12<且x x R 12,∈,则x x 210->,由条件当x >0时,f x ()>0∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

函数的对应法则 抽象函数的表达式

函数的对应法则 抽象函数的表达式

函数的对应法则1、待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1(2)()(x xf x f x f =-满足求)(x f五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f二,练习题1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。

2、求一个一次函数f(x),使得f{f[f(x)]}=8x+73、设二次函数f(x)满足f(x-2)=f(-x-2),且在y 轴上的截距为1,在x 轴截得的线段长为22,求f(x )的解析式4、211f (1)1x x +=-5、2211f ()x x x x-=+6、已知f (x )为二次函数, f(x-1)= 2x -4x ,解方程f(x+1)=08、若)()()(y f x f y x f ⋅=+,且2)1(=f , 求值)2004()2005()3()4()2()3()1()2(f f f f f f f f ++++ ..10、已知f (x +x 1)=x 3+x31,求f (x )的解析式。

抽象函数的一般解题,单调性构造,方程形式

抽象函数的一般解题,单调性构造,方程形式

一、抽象函数常见问题:1、定义域(就是自变量x 取值范围):整体替换,2、简单求值问题:主要就是赋值,主要赋值有0、1、2、-1、-23、综合问题(求值和解不等式):一般2种方向:赋值和构造函数 其目的就是构造f(x)<f(m)或f(x)=f(n)的形式,从而达到去掉“马甲 ”f, 难题可以多次赋值,从而达到构造目的二、抽象函数单调性常见构造形式:1、f(x 1+x 2)=f(x 1)+f(x 2)构造为f(x 2)=f(x 2-x 1+x 1)=f(x 2-x 1)+f(x 1)即f(x 2)-f(x 1)=f(x 2-x 1)2、f(x 1)+f(x 2)=f(x 1+x 2)-a构造为f(x 2)-f(x 1)=f[(x 2-x 1)+x 1]-f(x 1)即f(x 2)-f(x 1)=f(x 2-x 1)+f(x 1)-f(x 1)-a3、f(x 1/x 2)=f(x 1)-f(x 2) 直接设x 1,x 2,函数直接作差即可4、f(x 1*x 2)=f(x 1)*f(x 2)构造为f(x 2)=f(x 2-x 1+x 1)=f(x 2-x 1)*f(x 1)即f(x 2)/f(x 1)=f(x 2-x 1)三、几个常见抽象函数的方程:(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.f(x/y)=f(x)-f(y)(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()c o f x x =,正弦函数()s i g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x →==.(6)正切函数f(x)=tanx,f(x+y)=(f(x)+f(y))/(1-f(x)f(y))或f(x-y)=(f(x)-f(y))/(1+f(x)f(y))。

抽象函数

抽象函数

高考数学总复习:抽象函数题型抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型:一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。

其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。

例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。

解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数, 二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

例2 已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围。

解: f x ()是偶函数,且在(0,1)上是增函数, ∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a 。

(1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立。

(2)当32<<a 时,f a f a f a a a a a a ()()()-<-=-⇔-<-<-<-<->-⎧⎨⎪⎩⎪<<24412014024322222解之得,(3)当25<<a 时, f a f a ()()-<-242=-⇔<-<<-<-<-⎧⎨⎪⎩⎪<<f a a a a a a ()22240210412425解之得,综上所述,所求a 的取值范围是()()3225,, 。

抽象函数解题方法与技巧

抽象函数解题方法与技巧

抽象函数解题方法与技巧函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x -a)(或f(x -2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a -b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a -b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a -b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a -x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ⎛⎫+= ⎪⎝⎭或()1()f x a f x ⎛⎫+=-⎪⎝⎭或,则y=f(x)是周期为2|a|的周期函数;7、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数;8、若()()()11f x f x a f x -+=+在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。

(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b -x),则函数y=f(x)的图像关于直线2a b x +=对称;2、若函数y=f(x)满足f(x)=f(2a -x)或f(x+a)=f(a -x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b -x)=c ,则y=f(x)的图像关于点,22a b c +⎛⎫⎪⎝⎭成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a -x,2b -y)=0;()()()()()()()1111212112()()11f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++5、形如()0,ax by c ad bc cx d+=≠≠+的图像是双曲线,由常数分离法 d ad ad a x b ba c c c y d d c c x c x c c ⎛⎫+-+-+ ⎪⎝⎭==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭知:对称中心是点,d a c c ⎛⎫- ⎪⎝⎭;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b -x)的图像关于直线2b a x -=对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。

抽象函数方程

抽象函数方程

八类抽象函数方程性质的探讨抽象函数是指没有给出具体的函数解析式或图像,只给出函数满足的一些特征或性质的函数.抽象函数方程的性质因能有效考查学生的抽象思维能力、逻辑推理能力以及后继学习的潜能一直是高考的热点。

本节主要探讨八类典型抽象函数方程的性质.类型1 ()()()f m n f m f n +=+型 原型 正比例函数()0y kx k =≠性质 设函数()f x 定义在R 上,满足()()()f m n f m f n +=+,若0x >时,()f x 恒大于0,则()f x 有如下性质:①(0)0f =;②()f x 是R 上的奇函数;③()f x 在R 上单调递增.证明 ①令0m n ==,得(0)(0)(0)f f f +=,故(0)0f =;②令m x =,n x =-,有()()(0)0f x f x f +-==,()()f x f x -=-,故()f x 是R 上的奇函数; ③任取1x ,2x R ∈,设12x x >,则120x x ->,于是()120f x x ->,令1m n x +=,2m x =, 则12n x x =-,得()()()1212f x f x f x x =+-()2f x >,故()f x 是R 上的增函数.思考1 ()()()()()f m f n f m n f m f n +=+(()f m ,()f n ,()f m n +均不为零)型原型 反比例函数()af x x=()0a ≠ 分析 对()()()()()f m f n f m n f m f n +=+两边取倒数,得()()()111f m n f m f n =++,令 ()()1g x f x =,有()()()g m n g m g n +=+,由类型1知,()g x kx =,故()1af x kx x== (1a k=). 类型2 ()()()f m n f m f n b +=++型 原型 一次函数()0y kx b k =-≠性质 已知函数()f x 定义域为R ,对任意,m n R ∈都有()()()f m n f m f n b +=++,且()0f b =,当x b >时,()0f x >,则()f x 在R 上单调递增.证明 令m n b ==,得()2f b b =;令2m b =,n b =-,得()2f b b -=-. 任取1x ,2x R ∈,设12x x >,令1m n x +=,2n x =,则12m x x =-,有()()()1122f x f x x f x b=-++,()()()1212f x f x f x x b -=-+()12f x x b b b =-+-+()()12f x x b f b b b =-++-++ ()12f x x b =-+.因为12x x >,则12x x b b -+>,于是()120f x x b -+>,因此()()12f x f x >,故()f x 是R 上的增函数或者在()()()f m n f m f n b +=++两边同时加上b ,令()()g x f x b =+, 问题可转化为类型1. 思考2 ()()()f x y f x f y kx +=++(或()()()f x y f x f y kxy +=++)(0k ≠)型 分析 若()f x 是定义在正整数集N +上的函数,对任意,x y N +∈,满足()()()f x y f x f y kx +=++(或()()()f x y f x f y kxy +=++)(0k ≠),则()2f x ax bx=+(x N +∈).令1y =,()()()11f x f x f kx +=++,运用累加法可得()()2122k k f x n f n ⎛⎫=+- ⎪⎝⎭ 2ax bx =+(2k a =,()12kb f =-). 类型3 ()()()f m n f m f n +=g 型 原型 指数函数()0,1x y a a a =>≠性质 已知定义在R 上的函数()f x 满足对任意,m n R ∈都有()()()f m n f m f n +=g ,且当0x >时,()1f x >,则有如下性质:①()01f =;②()()1f x f x -=g ;③当0x <时, ()01f x <<;④()f x 在R 上单调递增;证明 ①令1m =,0n =,有()()()110f f f =g ,因为()10f ≠,故()01f =; ②令m x =,n x =-,有()()()01f f x f x =-=g ; ③当0x <时,0x ->,则 ()1f x ->,()101f x <<-,故()01f x <<;④任取1x ,2x R ∈,设12x x >,则120x x ->,于是()121f x x ->, 令1m n x +=,2n x =,则12m x x =-,有()()()1122f x f x x f x =-g , ()()()()121221f x f x f x x f x -=--⎡⎤⎣⎦g ,由()121f x x ->,()20f x >,得()()12f x f x >,故()f x 是R 上的增函数.类型4 ()()()f m n f m f n =+g 型 原型 对数函数log a y x =()0,1a a >≠性质 若函数()f x 定义域为()0,+∞,当1x >时,()0f x >,且对任意0m >,0n >都有()()()f m n f m f n =+g ,则()f x 有如下性质:①()10f =; ②()()x f f x f y y ⎛⎫=- ⎪⎝⎭;③()f x 在()0,+∞上单调递增; ④当01x <<时,()0f x <. 证明 ①令1m n ==,得()10f =;②令m n x =g ,n y =,则xm y =,有()()x f x f f y y ⎛⎫=+ ⎪⎝⎭, 得()()x f f x f y y ⎛⎫=- ⎪⎝⎭;③任取1x ,()20,x ∈+∞,设12x x >,则121x x >,于是120x f x ⎛⎫> ⎪⎝⎭, 令1m n x =g ,2n x =,则12x m x =,有()()1122x f x f f x x ⎛⎫=+ ⎪⎝⎭()2f x >, 得()()12f x f x >,故()f x 是()0,+∞上的增函数. ④令01x <<,则11x >,所以10f x ⎛⎫> ⎪⎝⎭.令m x =,1n x =,有()()11f f x f x ⎛⎫=+ ⎪⎝⎭,即()10f x f x ⎛⎫=+ ⎪⎝⎭,因为10f x ⎛⎫> ⎪⎝⎭,所以()0f x <.类型5 ()()()f m n f m f n =g g 型 原型 幂函数n y x =性质 若函数()f x 满足对任意,m n R ∈都有()()()f m n f m f n =g g ,且()f x 不恒为0,当1x >时()1f x >,则有如下性质:①()11f =;②当01x <<时,()01f x <<;③()f x 在()0,+∞上单调递增.证明 ①令m x =,1n =,则()()()1f x f x f =g ,因为()f x 不恒为0,故()11f =; ②当01x <<时,令m x =,1n x =,则()()111f f x f x ⎛⎫== ⎪⎝⎭g ,因为11x >,所以11f x ⎛⎫> ⎪⎝⎭,故()01f x <<;③任取1x ,()20,x ∈+∞,设12x x >,则121x x >,于是121x f x ⎛⎫> ⎪⎝⎭, 令1m n x =g ,2n x =,则12x m x =,有()()1122x f x f f x x ⎛⎫= ⎪⎝⎭g ,又()20f x >,所以 ()()()112221x f x f x ff x x ⎡⎤⎛⎫-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦g 0>,得()()12f x f x >,故()f x 是()0,+∞上的增函数. 类型6 ()()()()2f m n f m n f m f n ++-=g 型 原型 函数cos y x =性质 设()f x 是定义在R 上不恒为零的函数,对一切实数,m n 都满足()()()()2f m n f m n f m f n ++-=g ,则有如下性质:①()01f =;②()f x 是偶函数;③若()0f t =,则()f x 是以4t 为周期的函数;证明 ①令0m n ==,则()()22020f f =⎡⎤⎣⎦,于是()00f =或()01f =;当()00f =时,令m x =,0n =,有()()()()0020f x f x f x f ++-=,于是()0f x =,与()f x 不恒为零矛盾,故()01f =;②令0m =,n x =,有()()()()0020f x f x f x f ++-=,得()()f x f x -=,故()f x 为偶函数;③令m x =,n t =,得()()()()2f x t f x t f x f t ++-=g ,由()0f t =得()()0f x t f x t ++-=,将上式中的x 换成x t +得:()()20f x t f x ++=,即()()2f x t f x +=-,于是()()42f x t f x t +=-+()()f x f x =--=⎡⎤⎣⎦,故()f x 是以4t 为周期的函数.类型7 ()()()()()1f m f n f m n f m f n ++=-(()()1f m f n ≠)型原型 正切函数()tan f x x =性质 设()f x 是定义在R 上的函数,对一切实数,m n 都满足 ()()()()()1f m f n f m n f m f n ++=-(()()1f m f n ≠),则有如下性质:①()00f =;②()f x 是奇函数;③若()1f t =,则()f x 是以4t 为周期的函数;证明 ①令0m n ==,得()()()()200010f f f f +=-⎡⎤⎣⎦,有()()20010f f ⎡⎤+=⎣⎦,故()00f =; ②令m x =,n x =-,有()()()()()01f x f x f f x f x +-=--,又()00f =,从而()()0f x f x +-=,故()f x 是奇函数;③若()1f t =,令m x =,n t =,有()()()()()1f x f t f x t f x f t ++=-()()11f x f x +=-,从而()()()121f x t f x t f x t +++=-+()()()()111111f x f x f x fx ++-=+--()1f x =-, ()()142f x t f x t +=-+()11f x =-=-()f x =,故()f x 是以4t 为周期的函数;类型8 ()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭型原型 复合函数()1ln 1xf x x-=+性质 定义在()1,1-上的函数()f x 满足对实数,m n 都有()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭,且()0,1x ∈时()0f x <,则有如下性质:①()00f =; ②()f x 为奇函数; ③()f x 是()1,1-上的减函数. 证明 ①令0m n ==得()()()000f f f +=,所以()00f =;②令m x =,n x =-,有()()21x x f x f x f x -⎛⎫+-= ⎪-⎝⎭()00f ==,从而()()f x f x -=-,故()f x 为奇函数;③任取()12,1,1x x ∈-,不妨设12x x >, ()()()()121212121x x f x f x f x f x f x x ⎛⎫--=+-= ⎪-⎝⎭,由11x <,21x <得121x x <g ,即1211x x -<<g ,故1210x x ->g ,则121201x x x x ->-.又12121212121111x x x x x x x x x x ---+-=--()()12121101x x x x -+=<-,即121211x xx x -<-. 所以1212011x x x x -<<-,于是121201x x f x x ⎛⎫-< ⎪-⎝⎭,得()()12f x f x <, 故()f x 是()1,1-上的减函数. 从以上分析不难看出,抽象函数方程问题中的特殊值、单调性、奇偶性和周期性等问题往往紧密联系,赋值、使用定义与合理变形是突破这类问题的关键.另外,有些抽象函数问题有具体的函数原型,若能由抽象函数的结构,联想到相似结构的原型函数,并由原型函数的相关结论,预测、猜想抽象函数可能具有的某些性质,常常有利于顺利地解决问题.第二讲 抽象函数方程问题中的递推关系抽象函数方程问题是高中数学中的一个难点,直接求解往往比较困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档