高一数学必修2经典习题与答案(复习专用)
高一数学习题答案必修二

高一数学习题答案必修二高一数学学习题答案必修二在高一数学学习中,必修二是一个重要的内容,涵盖了许多基础知识和重要概念。
通过学习必修二,学生可以建立起对数学的基本理解,为以后的学习打下坚实的基础。
以下是一些高一数学学习题答案必修二的例题及其解答:1. 计算下列各式的值:(1) $-3+5$(2) $2-7$(3) $-4-(-8)$(4) $-6-9$答案:(1) $-3+5=2$(2) $2-7=-5$(3) $-4-(-8)=-4+8=4$(4) $-6-9=-15$2. 如果$a=3$,$b=-2$,求下列各式的值:(1) $a+b$(2) $a-b$(3) $ab$(4) $a^2+b^2$答案:(1) $a+b=3+(-2)=1$(2) $a-b=3-(-2)=5$(3) $ab=3\times(-2)=-6$(4) $a^2+b^2=3^2+(-2)^2=9+4=13$3. 解方程:$2x+5=11$答案:$2x=11-5=6$$x=6/2=3$通过以上例题的解答,我们可以看到在必修二的学习中,学生需要掌握基本的运算规则、代数式的计算、方程的解法等内容。
这些知识不仅在高中阶段的学习中有用,也为日后的数学学习奠定了基础。
除了以上例题外,必修二还包括了许多其他重要的内容,如二次函数、平面直角坐标系、直线与圆等。
通过系统的学习,学生可以逐步掌握这些知识,并在实际应用中加以运用。
总之,高一数学学习题答案必修二是一个重要的学习内容,通过认真学习和练习,学生可以在数学领域建立起坚实的基础,为将来的学习和发展打下良好的基础。
(word完整版)高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。
一、选择题1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C. 2D. 不存在2.过点且平行于直线的直线方程为()A. B.C.D.3. 下列说法不正确的....是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是()A. B. C. D.5. 研究下在同一直角坐标系中,表示直线与的关系6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能相交7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是( )(A)①和②(B)②和③(C)③和④(D)①和④8. 圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2 C.3 D.010. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( )A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C )A.MN∥βB.MN与β相交或MNβC. MN∥β或MNβD. MN∥β或MN与β相交或MNβ12. 已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(A )A.垂直B.平行C.相交D.位置关系不确定二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为;14.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;16.圆心在直线上的圆C与轴交于两点,,则圆C的方程为.三解答题17(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0 求AC边上的高所在的直线方程.18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1) FD∥平面ABC;(2) AF⊥平面EDB.19(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.20(12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上. 求圆C的方程.设所求的圆C与y轴相切,又与直线交于AB,2分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3) 当直线l的倾斜角为45度时,求弦AB的长.一、选择题(5’×12=60’)(参考答案)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A D B C C A A C A C A二、填空题:(4’×4=16’) (参考答案)13. (0,0,3) 14. 15 y=2x或x+y-3=0 16. (x-2)2+(y+3)2=5三解答题17(12分) 解:由解得交点B(-4,0),. ∴AC边上的高线BD的方程为.18(12分) 解:(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点∴ FM∥EA, FM=EA∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形∴FD∥MCFD∥平面ABC(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,因F是BE的中点, EA=AB所以AF⊥EB.19解:略20解:∵圆心C在直线上,∴圆心C(3a,a),又圆与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离在Rt△CBD中,.∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为或.21解解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0).由|OP|2+|OQ|2=|PQ|2知,………………3分(3vx0)2+(vx0+vy0)2=(3vy0)2,即.……①………………6分将①代入……………8分又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置. 设直线相切,则有……………………11分答:A、B相遇点在离村中心正北千米处………………12分22解:(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即 2x-y-20.(2)当弦AB被点P平分时,l⊥PC, 直线l的方程为, 即 x+2y-6=0(3)当直线l的倾斜角为45度时,斜率为1,直线l的方程为y-2=x-2 ,即 x-y=0圆心C到直线l的距离为,圆的半径为3,弦AB的长为.。
高一数学必修2习题(答案详解)

高一数学必修2习题(答案详解)高一数学必修2习题(答案详解)一、选择题1. 题目:已知集合A={1, 2, 3, 4},集合B={3, 4, 5, 6},则A∩B的最小值是()选项:A. 0B. 1C. 2D. 3解析:集合A和集合B的交集即为A∩B。
在这里,A和B的交集为{3, 4},共有两个元素。
因此,答案为C. 2。
2. 题目:若sinθ=1/2,θ∈(0, π),则cosθ的值为()选项:A. 1/2B. -1/2C. √3/2D. -√3/2解析:根据三角函数的定义,sinθ=对边/斜边。
在这里,sinθ=1/2,代表一个直角三角形中,对边的长度是斜边长度的一半。
根据勾股定理,可知另外一个边的长度为√3/2。
因此,cosθ=邻边/斜边=√3/2。
答案为C. √3/2。
二、填空题1. 题目:已知事件A的概率为0.6,事件B的概率为0.4,事件A 和事件B同时发生的概率为0.3,则事件A和事件B互不独立。
事件A的补事件的概率是()。
解析:事件A的概率为0.6,补事件即为事件A不发生的概率,即1-0.6=0.4。
2. 题目:已知函数y=2x-1,若x=3,则y的值为()。
解析:将x=3代入函数中,得到y=2*3-1=5。
三、计算题1. 题目:已知函数y=2x+3,求当x=1时,y的值。
解析:将x=1代入函数中,得到y=2*1+3=5。
2. 题目:已知函数y=3x^2-2x+1,求当x=2时,y的值。
解析:将x=2代入函数中,得到y=3*2^2-2*2+1=13。
四、解答题1. 题目:求解方程2x-5=7。
解析:将方程两边都加上5,得到2x=12。
再将方程两边都除以2,得到x=6。
因此,方程的解为x=6。
2. 题目:求解方程3x^2-5=0。
解析:将方程两边都加上5,得到3x^2=5。
再将方程两边都除以3,得到x^2=5/3。
对方程两边取平方根,得到x=±√(5/3)。
因此,方程的解为x=±√(5/3)。
高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。
一、选择题1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C. 2D. 不存在2.过点且平行于直线的直线方程为()A. B.C.D.3. 下列说法不正确的....是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是()A. B. C. D.5. 研究下在同一直角坐标系中,表示直线与的关系6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能相交7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是( )(A)①和②(B)②和③(C)③和④(D)①和④8. 圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2 C.3 D.010. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( )A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C )A.MN∥βB.MN与β相交或MNβC. MN∥β或MNβD. MN∥β或MN与β相交或MNβ12. 已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(A )A.垂直B.平行C.相交D.位置关系不确定二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为;14.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;16.圆心在直线上的圆C与轴交于两点,,则圆C的方程为.三解答题17(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0 求AC边上的高所在的直线方程.18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1) FD∥平面ABC;(2) AF⊥平面EDB.19(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.20(12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上. 求圆C的方程.设所求的圆C与y轴相切,又与直线交于AB,2分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3) 当直线l的倾斜角为45度时,求弦AB的长.一、选择题(5’×12=60’)(参考答案)二、填空题:(4’×4=16’) (参考答案)13. (0,0,3) 14. 15 y=2x或x+y-3=0 16. (x-2)2+(y+3)2=5三解答题17(12分) 解:由解得交点B(-4,0),. ∴AC边上的高线BD的方程为.18(12分) 解:(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点∴ FM∥EA, FM=EA∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形∴FD∥MCFD∥平面ABC(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,因F是BE的中点, EA=AB所以AF⊥EB.19解:略20解:∵圆心C在直线上,∴圆心C(3a,a),又圆与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离在Rt△CBD中,.∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为或.21解解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0).由|OP|2+|OQ|2=|PQ|2知,………………3分(3vx0)2+(vx0+vy0)2=(3vy0)2,即.……①………………6分将①代入……………8分又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置. 设直线相切,则有……………………11分答:A、B相遇点在离村中心正北千米处………………12分22解:(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即 2x-y-20.(2)当弦AB被点P平分时,l⊥PC, 直线l的方程为, 即 x+2y-6=0(3)当直线l的倾斜角为45度时,斜率为1,直线l的方程为y-2=x-2 ,即 x-y=0圆心C到直线l的距离为,圆的半径为3,弦AB的长为.。
高一数学必修2测试题及答案全套

数学2(必修)第一章:空间几何体[基础训练A组] 数学2(必修)第一章:空间几何体[综合训练B组] 数学2(必修)第一章:空间几何体[提高训练C组] 数学2(必修)第二章:点直线平面[基础训练A组] 数学2(必修)第二章:点直线平面[综合训练B组]数学2(必修)第二章:点直线平面[提高训练C组]数学2(必修)第三章:直线和方程[基础训练A组]数学2(必修)第三章:直线和方程[综合训练B组]数学2(必修)第三章:直线和方程[提高训练C组]数学2(必修)第四章:圆和方程 [基础训练A组]数学2(必修)第四章:圆和方程 [综合训练B组]数学2(必修)第四章:圆和方程 [提高训练C组](数学2必修)第一章空间几何体[基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对主视图左视图俯视图2.棱长都是1的三棱锥的表面积为()A3B. 3C. 33D. 33.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )A .3:1B .3:2C .2:3D .3:35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
高一数学必修2测试题及答案全套

(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示;这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )AB. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5;且它的8个顶点都在 同一球面上;则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.2:D35.在△ABC 中;02, 1.5,120AB BC ABC ==∠=;若使绕直线BC 旋转一周;则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长 分别是9和15;则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点; 顶点最少的一个棱台有 ________条侧棱。
主视图 左视图 俯视图2.若三个球的表面积之比是1:2:3;则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中;O 是上底面ABCD 中心;若正方体的棱长为a ; 则三棱锥11O AB D -的体积为_____________。
4.如图;,E F 分别为正方体的面11A ADD 、面11B BCC 的中心;则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6;这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15;则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12M ;高4M ;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
高中数学必修二直线和圆的方程复习练习试题及答案

1、已知圆2522=+y x ,求:(1)过点A (4,-3)的切线方程(2)过点B (-5,2)的切线方程。
2、求直线01543=-+y x 被圆2522=+y x 所截得的弦长。
3、实数y x ,满足)0(422≥=+y y x ,试求y x m +=3的取值范围。
4、已知实数y x ,满足01422=+-+x y x(1)求xy的最大值和最小值;(2)求x y -的最大值和最小值; (3)求22y x +的最大值和最小值。
1、在直角坐标系中,直线033=-+y x 的倾斜角是()A .6πB .3π C .65π D .32π2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y x D .1)2()1(22=-++y x3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab 5、不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是() A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为cb a 、、的三角形()A .是锐角三角形 B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是() A .23-B .32-C .52 D .29、点)5,0(到直线x y 2=的距离为()A .25 B .5C .23D .2511、由点)3,1(P 引圆922=+y x的切线的长是 ()A .2B .19 C .1 D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是 ()A .03或B .03或-C .3D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-16、由422=+=y x x y 和圆所围成的较小图形的面积是( )A .4πB .πC .43πD .23π17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y x D .21)23(22=++y x19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是 20、过点023)4,3(=+-y x 且与直线平行的直线的方程是 21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23、若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是 25、求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程。
高一数学必修2测试题及答案全套

数学2(必修)第一章:空间几何体[基础训练A组]数学2(必修)第一章:空间几何体[综合训练B组]数学2(必修)第一章:空间几何体[提高训练C组]数学2(必修)第二章:点直线平面[基础训练A组]数学2(必修)第二章:点直线平面[综合训练B组]数学2(必修)第二章:点直线平面[提高训练C 组]数学2(必修)第三章:直线和方程[基础训练A组]数学2(必修)第三章:直线和方程[综合训练B组]数学2(必修)第三章:直线和方程[提高训练C组]数学2(必修)第四章:圆和方程 [基础训练A组]数学2(必修)第四章:圆和方程 [综合训练B组]数学2(必修)第四章:圆和方程 [提高训练C组](数学2必修)第一章空间几何体[基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为()A. B. C.D.3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是左视图俯视图( ) A .25π B .50π C .125πD .都不对4.正方体的内切球和外接球的半径之比为( )AB2 C.D5.在△ABC中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A. 92πB. 72π C.52π D. 32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(数学2必修)第一章空间几何体[基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为()A. 3B. 23C. 33D. 433.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A.25πB.50πC.125πD.都不对4.正方体的内切球和外接球的半径之比为()A.3:1B.3:2C.2:3D.3:35.在△ABC中,02, 1.5,120AB BC ABC==∠=,若使绕直线BC旋转一周,则所形成的几何体的体积是()A. 92π B.72π C.52π D.32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是()A.130B.140C.150D.160二、填空题1.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
主视图左视图俯视图3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
(1) 分别计算按这两种方案所建的仓库的体积; (2) 分别计算按这两种方案所建的仓库的表面积; (3) 哪个方案更经济些?2.将圆心角为0120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积(数学2必修)第一章 空间几何体 [综合训练B 组] 一、选择题1.如果一个水平放置的图形的斜二测直观图是一个底面为045, 腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A . 22+ B .221+ C .222+ D . 21+ 2.半径为R 的半圆卷成一个圆锥,则它的体积为( )A .3324R π B .338R π C .3524R π D .358R π 3.一个正方体的顶点都在球面上,它的棱长为2cm , 则球的表面积是( ) A.28cm π B.212cm πC.216cmπD.220cm πABD CE F4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B.6 C.5 D.3 5.棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )A .1:7 B.2:7 C.7:19 D.5:166.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )A .92B.5 C.6 D.152二、填空题1.圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成060,则圆台的侧面积为____________。
2.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________。
3.等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体4.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________。
5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。
6.若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________。
三、解答题图(1)图(2)1.有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?2.已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和, 求该圆台的母线长.(数学2必修)第一章 空间几何体 [提高训练C 组] 一、选择题1.下图是由哪个平面图形旋转得到的( )A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为( )A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:93.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A. 23 B. 76 C. 45D.564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V ( ) A. 1:3 B. 1:1C. 2:1D. 3:15.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:96.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A. 224cm π,212cm πB. 215cm π,212cmπC. 224cm π,236cm π D. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。
2.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 .3.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.4.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。
三、解答题1. (如图)在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱, 求圆柱的表面积2.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,22CD =,2AD =,求四边形ABCD绕AD 旋转一周所成几何体的表面积及体积.65P ABCVEDF(数学2必修)第二章 点、直线、平面之间的位置关系 [基础训练A 组] 一、选择题 1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )A .0B .1C .2D .32.下面列举的图形一定是平面图形的是( )A .有一个角是直角的四边形B .有两个角是直角的四边形C .有三个角是直角的四边形D .有四个角是直角的四边形 3.垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能4.如右图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,,,D E F 分别是 ,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( ) A .030 B . 090 C . 060 D .随P 点的变化而变化。
5.互不重合的三个平面最多可以把空间分成( )个部分 A .4 B .5 C .7 D .86.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A .90B .60C .45D .30 二、填空题1. 已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。
2. 直线l 与平面α所成角为030,,,l A m A m αα=⊂∉ ,则m 与l 所成角的取值范围是 _________3.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为1234,,,d d d d ,则1234d d d d +++的值为 。
4.直二面角α-l -β的棱l 上有一点A ,在平面,αβ内各有一条射线AB ,AC 与l 成045,,AB AC αβ⊂⊂,则BAC ∠= 。
5.下列命题中:(1)、平行于同一直线的两个平面平行; (2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行; (4)、垂直于同一平面的两直线平行. 其中正确的个数有_____________。
三、解答题1.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,且//EH FG .求证://EH BD .2.自二面角内一点分别向两个半平面引垂线,求证:它们所成的角与二两角的平面角互补。
(数学2必修)第二章 点、直线、平面之间的位置关系 [综合训练B 组] 一、选择题1.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A.16π B.20π C.24π D.32π2.已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥,则EF 与CD 所成的角的度数为( ) A.90B.45C.60D.303.三个平面把空间分成7部分时,它们的交线有( )A.1条 B.2条H G FE D BACC.3条 D.1条或2条4.在长方体1111ABCD A BC D -,底面是边长为2的正方形,高为4,则点1A 到截面11AB D 的距离为( )A .83 B . 38 C .43 D . 345.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点, 连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为( )A .361a B .3123a C .363a D .3121a6.下列说法不正确的....是( ) A .空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面;C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D .过一条直线有且只有一个平面与已知平面垂直.二、填空题1.正方体各面所在的平面将空间分成_____________部分。