2020届山东省青岛市平度市高考数学二模试卷(文)(有答案)(精校版)
2020-2021学年山东省高考二模考试数学试题(文)及答案解析

2020-2021学年⼭东省⾼考⼆模考试数学试题(⽂)及答案解析⼭东省⾼三下学期⼆模考试⾼三数学(⽂科)试题第Ⅰ卷(共50分)⼀、选择题:本⼤题共10个⼩题,每⼩题5分,共50分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.设全集U R =,集合{}2|20M x x x =+->,11|()22x N x -?=≥,则()U M N =I e() A .[]2,0-B .[]2,1-C .[]0,1D .[]0,22.若复数(1)(3)mi i ++(i 是虚数单位,m R ∈)是纯虚数,则复数31m ii+-的模等于() A .1 B .2 C .3 D .43.已知平⾯向量a r 和b r 的夹⾓为60?,(2,0)a =r ,||1b =r ,则|2|a b +=r r()A .20B .12C .D .4.已知3cos 5α=,cos()10αβ-=,且02πβα<<<,那么β=()A .12πB .6π C .4π D .3π 5.设3log 6a =,4log 8b =,5log 10c =,则() A .a b c >>B .b c a >>C .a c b >>D .b a c >>6.某产品的⼴告费⽤x 万元与销售额y 万元的统计数据如表:根据上表可得回归⽅程9.4y x a =+,据此模型预测,⼴告费⽤为6万元时的销售额为()万元 A .63.6B .65.5C .72D .67.77.下列说法正确的是()A .命题“x R ?∈,使得210x x ++<”的否定是:“x R ?∈,210x x ++>”B .命题“若2320x x -+=,则1x =或2x =”的否命题是:“若2320x x -+=,则1x ≠或2x ≠”C .直线1l :210ax y ++=,2l :220x ay ++=,12//ll 的充要条件是12a = D .命题“若x y =,则sin sin x y =”的逆否命题是真命题8.已知双曲线22221x y a b-=(a >,0b >)的两条渐进线与抛物线24y x =的准线分别交于A ,B两点,O 为坐标原点,若AOB S ?=e =()A .32B .2C .2 D9.已知某空间⼏何体的三视图如图所⽰,则该⼏何体的体积为()A .403B .343C .4210+D .436 10.已知函数|ln |,0,()(2),2,x x e f x f e x e x e <≤?=?-<f x b -=+(b R ∈)的四个实根从⼩到⼤依次为1x ,2x ,3x ,4x ,对于满⾜条件的任意⼀组实根,下列判断中⼀定成⽴的是() A .122x x += B .2234(21)e x x e <<-C .340(2)(2)1e x e x <--<D .2121x x e <<第Ⅱ卷(共100分)⼆、填空题(每题5分,满分25分,将答案填在答题纸上)11.已知函数221,1,()log (1),1,x x f x x x ?-≤=?->?则7(())3f f = .12.在长为5的线段AB 上任取⼀点P ,以AP 为边长作等边三⾓形,3和3的概率为.13.设x,y满⾜约束条件360,20,0,0,x yx yx y--≤-+≥≥≥则22x y+的最⼤值为.14.执⾏如图所⽰的程序框图,则输出的结果是.15.若对任意的x D∈,均有()()()g x f x h x≤≤成⽴,则称函数()f x为函数()g x到函数()h x在区间D上的“任性函数”.已知函数()f x kx=,2()2g x x x=-,()(1)(ln1)h x x x=++,且()f x 是()g x到()h x在区间[]1,e上的“任性函数”,则实数k的取值范围是.三、解答题(本⼤题共6⼩题,共75分.解答应写出⽂字说明、证明过程或演算步骤.)16.某⾷品⼚为了检查甲、⼄两条⾃动包装流⽔线的⽣产情况,随机在这两条流⽔线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在[495,510)内的产品为合格品,否则为不合格品,统计结果如表:(Ⅰ)求甲流⽔线样本合格的频率;(Ⅱ)从⼄流⽔线上重量值落在[]505,515内的产品中任取2个产品,求这2件产品中恰好只有⼀件合格的概率.17.已知函数()4sin cos()33f x x x π=++,0,6x π??∈. (Ⅰ)求函数()f x 的值域;(Ⅱ)已知锐⾓ABC ?的两边长a ,b 分别为函数()f x 的最⼩值与最⼤值,且ABC ?的外接圆半径为32,求ABC ?的⾯积. 18.如图,在四棱锥S ABCD -中,四边形ABCD 为矩形,E 为SA 的中点,2SB =,3BC =,13SC =.(Ⅰ)求证://SC 平⾯BDE ;(Ⅱ)求证:平⾯ABCD ⊥平⾯SAB .19.已知等⽐数列{}n a 的前n 项和为n S ,且163n n S a +=+(a N +∈).(Ⅰ)求a 的值及数列{}n a 的通项公式;(Ⅱ)设122233(1)(221)(log 2)(log 1)n n n n n n b a a --++=++,求{}n b 的前n 项和n T . 20.已知椭圆C :22221(0)x y a b a b +=>>经过点,左右焦点分别为1F 、2F ,圆222x y +=与直线0x y b ++=相交所得弦长为2.(Ⅰ)求椭圆C 的标准⽅程;(Ⅱ)设Q 是椭圆C 上不在x 轴上的⼀个动点,Q 为坐标原点,过点2F 作OQ 的平⾏线交椭圆C 于M 、N 两个不同的点,求||||MN OQ 的取值范围. 21.已知函数21()2ln (2)2f x x a x a x =-+-,a R ∈.(Ⅰ)当1a =-时,求函数()f x 的极值;(Ⅱ)当0a <时,讨论函数()f x 单调性;(Ⅲ)是否存在实数a ,对任意的m ,(0,)n ∈+∞,且m n ≠,有()()f m f n a m n->-恒成⽴?若存在,求出a 的取值范围;若不存在,说明理由.⾼三数学(⽂科)试题答案⼀、选择题1-5:ACDCA 6-10:BDDBB⼆、填空题13 12.2513.52 14.8 15.[]2,2e - 三、解答题16.解:(Ⅰ)由表知甲流⽔线样本中合格品数为814830++=,故甲流⽔线样本中合格品的频率为300.7540=.(Ⅱ)⼄流⽔线上重量值落在[]505,515内的合格产品件数为0.025404??=,不合格产品件数为0.015402??=.设合格产品的编号为a ,b ,c ,d ,不合格产品的编号为e ,f .抽取2件产品的基本事件空间为{(,)a b Ω=,(,)a c ,(,)a d ,(,)a e ,(,)a f ,(,)b c ,(,)b d ,(,)b e ,(,)b f ,(,)c d ,(,)c e ,(,)c f ,(,)d e ,(,)d f ,}(,)e f 共15个.⽤A 表⽰“2件产品恰好只有⼀件合格”这⼀基本事件,则{(,)A a e =,(,)a f ,(,)b e ,(,)b f ,(,)c e ,(,)c f ,(,)d e ,}(,)d f 共8个,故所求概率815P =. 17.解:(Ⅰ)1()4sin (cos )22f x x x x =?-+22sin cos x x x =-+sin 22x x =2sin(2)3x π=+,∵06x π≤≤,∴22333ππ≤+≤,sin(2)13x π≤+≤,∴函数()f x的值域为2??.(Ⅱ)依题意a =2b =,ABC ?的外接圆半径4r =,sin 2a A r ===,sin 232b B r ===,cos 3A =,1cos 3B =,sin sin()sin cos cos sin 3C A B A B A B =+=+=,∴11sin 2223ABC S ab C ?==?=. 18.证明:(Ⅰ)连接AC 交BD 于F ,则F 为AC 中点,连接EF ,∵E 为SA 的中点,F 为AC 中点,∴//EF SC ,⼜EF ?⾯BDE ,SC ?⾯BDE ,∴//SC 平⾯BDE .(Ⅱ)∵2SB =,3BC =,13SC =,∴222SB BC SC +=,∴BC SB ⊥,⼜四边形ABCD 为矩形,∴BC AB ⊥,⼜AB 、SB 在平⾯SAB 内且相交,∴BC ⊥平⾯SAB ,⼜BC ?平⾯ABCD ,∴平⾯ABCD ⊥平⾯SAB .19.解:(Ⅰ)∵等⽐数列{}n a 满⾜163n n S a +=+(a N +∈),1n =时,169a a =+;2n ≥时,1166()3(3)23n n n n n n a S S a a +-=-=+-+=?.∴13n n a -=,1n =时也成⽴,∴169a ?=+,解得3a =-,∴13n n a -=.(Ⅱ)122233(1)(221)(log 2)(log 1)n n n n n n b a a --++=++1222(1)(221)(1)n n n n n --++=+12211(1)(1)n n n -??=-+??+?? .当n 为奇数时,22222221111111()()11223(1)(1)n T n n n ??=+-++++=+??++??…;当n 为偶数时,n T =22222221111111()()11223(1)(1)n n n ??+-++-+=-??++??…. 综上,1211(1)(1)n n T n -=+-+. 20.解:(Ⅰ)由已知可得:圆⼼到直线0x y b ++=的距离为11=,所以b =,⼜椭圆C经过点,所以221413a b+=,得到a = 所以椭圆C 的标准⽅程为22132x y +=.(Ⅱ)设00(,)Q x y ,11(,)M x y ,22(,)N x y ,OQ 的⽅程为x my =,则MN 的⽅程为1x my =+.由22,1,32x my x y =+=??得222226,236,23m x m y m ?=??+??=?+?即22022026,236.23m x m y m ?=??+?=+所以0||||OQ y ==由221,1,32x my x y =++=??,得22(23)440m y my ++-=,所以122423m y y m +=-+,122423y y m =-+,12||||MN y y =-====所以||||MNOQ====,因为2 11m+≥,所以21011m<≤+,即212231m<+≤+,即213221m≤<++,所以||23||MNOQ≤<,即||||MNOQ的取值范围为[,2) 3.21.解:(Ⅰ)当1 a=-时,21()2ln32f x x x x=+-,2232(1)(2)x x x xf x xx x x-+--=+-==.当01x<<或2x>时,'()0f x>,()f x单调递增;当12x<<时,'()f x<,()f x单调递减,所以1x=时,5()(1)2f x f==-极⼤值;2x=时,()(2)2ln24 f x f==-极⼩值.(Ⅱ)当0a<时,2'()(2)ax=-+-2(2)2x a x ax+--=(2)()x x ax-+=,①当2a->,即2a<-时,由'()0f x>可得02x<<或x a>-,此时()f x单调递增;由'()0 f x<可得2x a<<-,此时()f x单调递减;②当2a-=,即2a=-时,'()0f x≥在(0,)+∞上恒成⽴,此时()f x单调递增;③当2a-<,即20a-<<时,由'()0f x>可得0x ax>,此时()f x单调递增;由'()0f x<可得2a x-<<,此时()f x单调递减.综上:当2a <-时,()f x 增区间为(0,2),(,)a -+∞,减区间为(2,)a -;当2a =-时,()f x 增区间为(0,)+∞,⽆减区间;当20a -<<时,()f x 增区间为(0,)a -,(2,)+∞,减区间为(,2)a -.(Ⅲ)假设存在实数a ,对任意的m ,(0,)n ∈+∞,且m n ≠,有()()1f m f n a m ->-恒成⽴,不妨设0m n >>,则由()()1f m f n a m ->-恒成⽴可得:()()f m am f n an ->-恒成⽴,令()()g x f x ax =-,则()g x 在(0,)+∞上单调递增,所以'()0g x ≥恒成⽴,即'()0f x a -≥恒成⽴,∴2(2)0ax a a x-+--≥,即2220x x a x --≥恒成⽴,⼜0x >,∴2220x x a --≥在0x >时恒成⽴,∴2min11(2)22a x x ??≤-=-??,∴当12a ≤-时,对任意的m ,(0,)n ∈+∞,且m n ≠,有()()1f m f n a m ->-恒成⽴.。
山东省2020届高三数学二模试卷

山东省2020届高三数学二模试卷含解析一、单选题(共8题;共16分)1.已知角的终边经过点,则()A. B. C. D.2.已知集合,则()A. B. C. D.3.设复数z满足,z在复平面内对应的点为,则()A. B.C. D.4.设,,,则a,b,c的大小关系是()A. B. C. D.5.已知正方形的边长为()A. 3B. -3C. 6D. -66.函数y= 的图象大致是()A. B.C. D.7.已知O,A,B,C为平面内的四点,其中A,B,C三点共线,点O在直线外,且满足.其中,则的最小值为()A. 21B. 25C. 27D. 348.我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.椭球是椭圆绕其长轴旋转所成的旋转体,如图,将底面半径都为.高都为的半椭球和已被挖去了圆锥的圆柱(被挖去的圆锥以圆柱的上底面为底面,下底面的圆心为顶点)放置于同一平面上,用平行于平面且与平面任意距离d处的平面截这两个几何体,截面分别为圆面和圆环,可以证明圆= 圆环总成立.据此,椭圆的短半轴长为2,长半轴长为4的椭球的体积是()A. B. C. D.二、多选题(共4题;共12分)9.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中错误的是()A. 消耗1升汽油乙车最多可行驶5千米.B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多.C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油.D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油.10.设,分别为双曲线的左、右焦点,若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则关于该双曲线的下列结论正确的是()A. 渐近线方程为B. 渐近线方程为C. 离心率为D. 离心率为11.已知函数的图象的一条对称轴为,则下列结论中正确的是()A. 是最小正周期为的奇函数B. 是图像的一个对称中心C. 在上单调递增D. 先将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,即可得到函数的图象.12.如图,点M是正方体中的侧面上的一个动点,则下列结论正确的是()A. 点M存在无数个位置满足B. 若正方体的棱长为1,三棱锥的体积最大值为C. 在线段上存在点M,使异面直线与所成的角是D. 点M存在无数个位置满足到直线和直线的距离相等.三、填空题(共3题;共3分)13.古典著作《连山易》中记载了金、木、水、火土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰是相克关系的概率为________14.已知点A,B,C,D均在球O的球面上,,,若三棱锥体积的最大值是,则球O的表面积为________15.设是定义在R上且周期为6的周期函数,若函数的图象关于点对称,函数在区间(其中)上的零点的个数的最小值为,则________四、双空题(共1题;共1分)16.动圆E与圆外切,并与直线相切,则动圆圆心E的轨迹方程为________,过点作倾斜角互补的两条直线,分别与圆心E的轨迹相交于A,B两点,则直线的斜率为________.五、解答题(共6题;共61分)17.已知△的内角A,B,C的对边分别为a,b,c,若,________,求△的周长L和面积S.在① ,,② ,,③ ,这三个条件中,任选一个补充在上面问题中的横线处,并加以解答.18.已知为等差数列,,,为等比数列,且,.(1)求,的通项公式;(2)记,求数列的前n项和.19.如图所示,在等腰梯形中,∥,,直角梯形所在的平面垂直于平面,且,.(1)证明:平面平面;(2)点在线段上,试确定点的位置,使平面与平面所成的二面角的余弦值为.20.已知椭圆经过点,离心率为(1)求椭圆C的方程;(2)设直线与椭圆C相交于A,B两点,若以,为邻边的平行四边形的顶点P在椭圆C上,求证:平行四边形的面积为定值.21.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区200名患者的相关信息,得到如下表格:潜伏期(单位:天)人数17 41 62 50 26 3 1附:0.05 0.025 0.0103.841 5.024 6.635,其中(1)求这200名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述200名患者中抽取40人得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期天潜伏期天总计50岁以上(含50岁)2050岁以下9总计40(3)以这200名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入硏究,该研究团队在该地区随机调查了10名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?22.已知函数,(1)讨论函数的单调性;(2)当时,证明曲线分别在点和点处的切线为不同的直线;(3)已知过点能作曲线的三条切线,求m,n所满足的条件.答案解析部分一、单选题1.【答案】B【解析】【解答】解:由于角的终边经过点,则,.故答案为:B.【分析】由条件利用任意角的三角函数的定义,求得和的值,可得的值.2.【答案】C【解析】【解答】解:集合则.故答案为:C.【分析】先化简集合B,再根据交集的定义即可求出.3.【答案】A【解析】【解答】解:∵z在复平面内对应的点为,∴,又,.故答案为:A.【分析】由z在复平面内对应的点为,可得,然后代入,即可得答案.4.【答案】D【解析】【解答】解:,,,∴.故答案为:D.【分析】利用对数函数和指数函数的性质求解.5.【答案】A【解析】【解答】解:因为正方形的边长为3,,则.故答案为:A.【分析】直接根据向量的三角形法则把所求问题转化为已知长度和夹角的向量来表示,即可求解结论.6.【答案】D【解析】【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D【分析】根据掌握函数的奇偶性和函数的单调性即可判断.7.【答案】B【解析】【解答】解:根据题意,A,B,C三点共线,点O在直线外,.设,,则,,消去得,(当且仅当时等式成立).故答案为:B.【分析】根据题意,易得,则,根据基本不等式的应用运算,易得的最小值.8.【答案】C【解析】【解答】解:∵圆= 圆环总成立,∴半椭球的体积为:,∴椭球的体积,∵椭球体短轴长为2,长半轴长为4,∴该椭球体的体积.故答案为:C.【分析】由圆= 圆环总成立,求出椭球的体积,代入b与a的值得答案.二、多选题9.【答案】A,B,C【解析】【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,A错误,符合题意;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,B错误,符合题意;对于C,由图象可知当速度为80km/h 时,甲车的燃油效率为10km/L,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km,燃油为8升,C错误,符合题意;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,D正确,不符合题意.故答案为:ABC.【分析】过横轴上某一点做纵轴的平行线,这条线和三条折线的交点的意思是相同速度下的三个车的不同的燃油效率,过纵轴上某一点做横轴的平行线,这条线和三条折线的交点的意思是相同燃油效率下的三个车的不同的速度,利用这一点就可以很快解决问题.涉及到将图形语言转化为数学语言的能力和简单的逻辑推理能力.10.【答案】A,C【解析】【解答】解:设,由,可得,由到直线的距离等于双曲线的实轴长,设的中点,由等腰三角形的性质可得,,即有,,即,可得,即有,则双曲线的渐近线方程为,即;离心率.故答案为:AC.【分析】设,运用双曲线的定义和等腰三角形的性质可得关于a,b,c的方程,再由隐含条件即可得到a与b的关系,求出双曲线的渐近线方程及离心率即可.11.【答案】B,D【解析】【解答】解:,当时,取到最值,即解得,.A:,故不是奇函数,A不符合题意;B:,则是图像的一个对称中心,B符合题意;C:当时,,又在上先增后减,则在上先增后减,C不符合题意;D. 将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,得,D符合题意.故答案为:BD.【分析】化简函数,将代入得函数最值,可求得,进而可得,通过计算,可判断A;通过计算,可判断B;当时,,可得在上的单调性,可判断C;通过振幅变换和平移变换,可判断D12.【答案】A,B,D【解析】【解答】解:A.连接,由正方体的性质可得,则面当点上时,有,故点M存在无数个位置满足,A符合题意;B.由已知,当点M与点重合时,点M到面的距离最大,则三棱锥的体积最大值为,B符合题意;C. 连接,因为则为异面直线与所成的角设正方体棱长为1,,则,点到线的距离为,,解得,所以在线段上不存在点M,使异面直线与所成的角是,C不符合题意;D. 连接,过M作交于N,由面,面,得,则为点到直线的距离,为点到直线的距离,由已知,则点M在以为焦点,以为准线的抛物线上,故这样的点M有无数个,D符合题意.故答案为:ABD.【分析】通过证明面,可得当点上时,有,可判断A;由已知,当点与点重合时,点到面的距离最大,计算可判断B;C. 连接,因为,则为异面直线与所成的角,利用余弦定理算出的距离,可判断C;连接,过M作交于N,得到,则点在以为焦点,以为准线的抛物线上,可判断D.三、填空题13.【答案】【解析】【解答】解:古典著作《连山易》中记载了金、木、水、火土之间相生相克的关系,现从五种不同属性的物质中任取两种,基本事件总数,取出的两种物质恰是相克关系包含的基本事件有:水克火,木克土,火克金,土克水,金克木,共5种,则取出的两种物质恰是相克关系的概率为.故答案为:.【分析】基本事件总数,利用列举法求出取出的两种物质恰是相克关系包含的基本事件有5种,由此能求出取出的两种物质恰是相克关系的概率.14.【答案】【解析】【解答】解:设的外接圆的半径为,∵,,则,为直角三角形,且,∵三棱锥体积的最大值是,,,,均在球的球面上,∴到平面的最大距离,设球的半径为,则,即解得,∴球的表面积为.故答案为:.【分析】设的外接圆的半径为r,可得为直角三角形,可求出,由已知得D到平面的最大距离h,设球O的半径为R,则,由此能求出R,从而能求出球O的表面积.15.【答案】,,或(表示不超过x的最大整数)【解析】【解答】将的图象向左平移1个单位,得到的图象,因为函数的图象关于点对称,即有的图象关于原点对称,即为定义在上的奇函数,可得,又为周期为6的周期函数,可得.可令,则,即,可得,当时,在上,有;当时,在上,有;当时,在上,有;当时,在上,有,,…,可得即,或(表示不超过的最大整数)故答案为:,或(表示不超过的最大整数)【分析】由图象平移可知,为定义在R上的奇函数,可得,又为周期为6的周期函数,可得,分别求得时,的值,归纳即可得到所求通项.四、双空题16.【答案】;-1【解析】【解答】解:如图,由题意可知,,则,∴点到直线的距离等于到点的距离,∴动圆圆心的轨迹是以为焦点,以为准线的抛物线,则其轨迹方程为;点坐标为,设,由已知设:,即:,代入抛物线的方程得:,即,则,故,设,即,代入抛物线的方程得:,即,则:,故,,直线AB的斜率,∴直线AB的斜率为−1.故答案为:;−1.【分析】由已知可得点到直线的距离等于到点的距离,即动圆圆心的轨迹是以M为焦点,以为准线的抛物线,则轨迹方程可求;设出直线的方程,与抛物线方程联立,求出的坐标,利用斜率公式,即可求得直线的斜率五、解答题17.【答案】解: 选① 因为,,且,,所以,,在△中,,即,所以,由正弦定理得,,因为,所以,所以△的周长,△的面积.选② 因为,所以由正弦定理得,因为,所以. 又因为.由余弦定理得所以. 解得. 所以.所以△的周长.△的面积.选③ 因为,,所以由余弦定理得,.即. 解得或(舍去).所以△的周长,因为,所以,所以△的面积,【解析】【分析】选择①:根据条件求出,,则可求出,再根据正弦定理可求出,进而可得周长面积;选择②:,,.由正弦定理可得:.由余弦定理可得:,联立解得:,进而可得周长面积;选择③:由余弦定理可得,则周长可求,再根据可得,通过面积公式可得面积18.【答案】(1)解:设等差数列的公差为d,由题意得,解得,所以数列的通项公式,即.设等比数列的公比为,由,,得,,解得,所以数列的通项公式;(2)解:由(1)知,则,,两式相减得,所以【解析】【分析】(1)设等差数列的公差为d,由等差数列的通项公式,解方程可得首项和公差,进而得到;设等比数列的公比为q,由等比数列的通项公式,解方程可得首项和公比,进而得到;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.19.【答案】(1)解:因为平面平面,平面平面,,平面,所以平面,又平面,所以,在△中,,,,由余弦定理得,,所以,所以.又,,所以平面,又平面,所以平面平面(2)解:以C为坐标原点,以,所在直线分别为x轴、y轴建立如图所示的空间直角坐标系,,,,,,,,,,,,设,则.设平面的一个法向量为,则,即,取,得.设平面的一个法向量为,由,得,令,得,因为平面与平面所成的二面角的余弦值为,所以,整理得,解得或(舍去),所以点M为线段中点时,平面与平面所成的二面角的余弦值为.【解析】【分析】(1)推导出平面,,,从而平面,由此能证明平面平面;(2)以为坐标原点,以,所在直线分别为轴、轴建立空间直角坐标系,利用向量法能求出点为线段中点时,平面与平面所成的二面角的余弦值.20.【答案】(1)解:因为椭圆过点,代入椭圆方程,可得①,又因为离心率为,所以,从而②,联立①②,解得,,所以椭圆为;(2)解:把代入椭圆方程,得,所以,设,,则,所以,因为四边形是平行四边形,所以,所以P点坐标为.又因为点P在椭圆上,所以,即.因为.又点O到直线的距离,所以平行四边形的面积,即平行四边形的面积为定值.【解析】【分析】(1)由题意可得关于的方程组,求得的值,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系及四边形是平行四边形,可得点坐标,把P点坐标代入椭圆方程,得到,利用弦长公式求得,再由点到直线的距离公式求出点O到直线l的距离,代入三角形面积公式即可证明平行四边形的面积为定值21.【答案】(1)解:(天).(2)解:根据题意,补充完整的列联表如下:潜伏期天潜伏期天总计50岁以上(含50岁)15 5 2050岁以下9 11 20总计24 16 40则,经查表,得,所以没有的把握认为潜伏期与患者年龄有关;(3)解:由题意可知,该地区每名患者潜伏期超过6天发生的概率为.设调查的10名患者中潜伏期超过6天的人数为X,由于该地区人数较多,则近似服从二项分布,即,, (10)由,得化简得,又,所以,即这10名患者中潜伏期超过6天的人数最有可能是4人.【解析】【分析】(1)利用平均值的定义求解即可;(2)根据题目所给的数据填写2×2列联表,根据公式计算,对照题目中的表格,得出统计结论;(3)先求出该地区每名患者潜伏期超过6天发生的概率,设调查的10名患者中潜伏期超过6天的人数为X,由于该地区人数较多,则X近似服从二项分布,即,,…,10,由得:,即这10名患者中潜伏期超过6天的人数最有可能是4人.22.【答案】(1)解:因为,所以,所以当时,;当时,.所以在上单调递增,在上单调递减;(2)解:因为,所以,.又因为,.所以曲线在点处的切线方程为;曲线在点处的切线方程为.因为.所以.所以两条切线不可能相同.(3)解:设直线l过点与曲线在点处相切,设直线,则消去,得.因为过点能作曲线的三条切线,所以关于的方程有三个不等实根.设,则有三个零点.又,①若,则,所以在上单调递增,至多一个零点,故不符合题意;②若,则当时,,单调递增;当时,,单调递减;当时,,单调递增.所以的极大值为,极小值为. 又有三个零点,所以,即,所以;③若,则当时,,单调递增;当,,单调递减;当时,,单调递增,所以的极大值为,极小值为.又有三个零点,所以,即,所以,综上所述,当时,;当时,.【解析】【分析】(1)对求导,根据的符号判断的单调性;(2)先分别求出曲线分别在点和点处的切线方程,然后根据条件证明两者为不同的直线的方程;(3)先设直线过点与曲线在点处相切,再设直线,根据两者联立得到方程,要求此方程有三个不等实根即可.然后构造函数,研究该函数有3个零点的条件即可.。
山东省青岛市2020届高三二模数学试题

9.已知曲线 的方程为 ,则下列结论正确的是()
A.当 时,曲线 为椭圆,其焦距为
B.当 时,曲线 为双曲线,其离心率为
C.存在实数 使得曲线 为焦点在 轴上的双曲线
D.当 时,曲线 为双曲线,其渐近线与圆 相切
10.已知 的面积为3,在 所在的平面内有两点P,Q,满足 , ,记 的面积为S,则下列说法正确的是()
(i)若 ,B队员控制球的次数为X,求 ;
(ii)若 , , , , ,证明: 为等比数列,并判断经过200次传球后A队员控制球的概率与 的大小.
附1:回归方程 中斜率和截距的最小二乘估计公式分别为: ; .
附2:参考数据: , .
参考答案
1.C
【解析】
【分析】
分别求出集合A和B,再求出 ,即可得解.
【详解】
由题 ,
, .
故选:C
【点睛】
此题考查集合补集和并集的运算,关键在于准确求解已知集合的值域和定义域,根据集合的运算法则求解.
2.D
【解析】
【分析】
先将复数 ,利用复数的除法运算化简为 ,再化为三角形式求解.
【详解】
因为 ,
所以 ,
所以z的辐角主值为 .
故选:D
【点睛】
本题主要考查复数的代数形式与三角形式的转化,还考查了运算求解的能力,属于基础题.
4.A
【解析】
【分析】
根据分段函数的定义计算.
【详解】
,所以 ,解得 .
故选:A.
【点睛】
本题考查分段函数,根据自变量的不同取值范围选择不同的表达式计算是解题关键.本题考查了三角函数的计算,对数的概念.属于中档题.
【附加15套高考模拟试卷】山东省青岛市2020届高三第二次模拟考试【文科】数学试题含答案

山东省青岛市2020届高三第二次模拟考试【文科】数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.运行如图所示的程序框图,则输出的s 值为( )A .-10B .-9C .-8D .-62.设不等式组40310x x y y -≤⎧⎪+≥⎨⎪-≥⎩,表示的可行域M 与区域N 关于y 轴对称,若点(,)P x y N ∈,则2z x y=+的最小值为( ) A .-9B .9C .-7D .73.在ABC ∆中,内角A ,B ,C 对的边分别为a ,b ,c ,23ABC π∠=,BD平分ABC ∠交AC 于点D ,2BD =,则ABC ∆的面积的最小值为( )A .33 B .43 C .53 D .634.已知平面向量AB u u u r ,AC u u u r 的模都为2,,90AB AC =o uu u r uuu r ,若(0)BM MC λλ=≠u u u u r u u u u r ,则()AM AB AC ⋅+=u u u u r u u u r u u u r ( ) A .4B .3C .2D .05.一个四棱锥的三视图如图所示,其正视图和侧视图为全等的等腰直角三角形,俯视图是边长为2的正方形,该几何体的表面积为( )A .3.4 C .223+.66.已知在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且6a =,点O 为其外接圆的圆心.已知·15BO AC =u u u r u u u r ,则cos C 的最小值为( ) A .306B .5C .3010D .257.不等式组1,24x y x y +≥⎧⎨-≤⎩表示的平面区域为D ,则( )A .(,),22x y D x y ∀∈+≥B .(,),22x y D x y ∀∈+≤C .(,),22x yD x y ∃∈+-≥D .(,),22x y D x y ∃∈+-≤8.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( )A .53πB .2πC .76πD .π9.在ABC △中,点,M N 满足2AM MC =uuu r uuu r ,BN NC =uuu r uuu r,若MN xAB yAC =+u u u r u u u r u u u r ,则x y +的值为( ) A .13 B .12 C .23 D .3410.数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有( ) A .39410a a b b +<+ B .39410a a b b +≥+C .39410a a b b +≠+D .39a a +与410b b +的大小不确定11.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若223,sin 23sin a b bc C B -==,则角A 为( )A .30oB .60oC .120oD .150o12.若函数y =x a a - (a>0,a≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1 B .2 C .3 D .4二、填空题:本题共4小题,每小题5分,共20分。
山东省青岛市平度第二中学2020年高三数学文联考试卷含解析

山东省青岛市平度第二中学2020年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在平面直角坐标系中,已知,,,则的值为().A.B.C.D.参考答案:B解:,,∴.故选.2. 已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log6f(log6),c=60.6f(60.6),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b参考答案:D【考点】利用导数研究函数的单调性;函数的图象.【分析】利用导数判断函数的单调性,判断函数的奇偶性,然后求解a,b,c的大小.【解答】解:定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,可知函数是偶函数,当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),可知函数y=xf(x)是增函数,x>0时是减函数;0.76∈(0,1),60.6(2,4),log6≈log1.56∈(4,6).所以a>c>b.故选:D.3. 已知i为虚数单位,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:B试题分析:因为,所以对应的点的坐标是,所以在第二象限,故选B.考点:1、复数的乘法运算;2、复平面.4. 已知集合,,则A. [1,2]B. [0,2]C. [-1,1]D. (0,2)参考答案:B5. 已知f(x)=3sinx﹣πx,命题p:?x∈(0,),f(x)<0,则( )A.p是假命题,?p:?x∈(0,),f(x)≥0B.p是假命题,?p:?x0∈(0,),f(x0)≥0C.p是真命题,?p:?x0∈(0,),f(x0)≥0D.p是真命题,?p:?x∈(0,),f(x)>0参考答案:C考点:命题的真假判断与应用;命题的否定.专题:简易逻辑.分析:通过函数的导数判断函数的单调性,判断全称命题的真假,然后写出命题的否定命题,判断真假即可得到选项.解答:解:因为f'(x)=3cosx﹣π,所以当时,f'(x)<0,函数f (x)单调递减,即对,f(x)<f(0)=0恒成立,所以p是真命题.又全称命题的否定是特称命题,所以?p是,f(x0)≥0.故选:C.点评:本题考查函数的单调性与全称命题的否定.解题首先判断命题p的真假,然后再将命题p写成?p的形式,注意特称命题与全称命题否定形式的基本格式.6. 若曲线y=e x﹣(a>0)上任意一点切线的倾斜角的取值范围是[,),则a=()A.B.C.D.3参考答案:C【考点】利用导数研究曲线上某点切线方程.【分析】求导f′(x)=e x+,从而由f′(x)=e x+≥,求解.【解答】解:f′(x)=e x+,∵f(x)=e x﹣在任一点处的切线的倾斜角的取值范围是[,),∴f′(x)=e x+≥,∴≤[f′(x)]min,而由a>0知,e x+≥2;(当且仅当e x=时,等号成立),故2=,故a=故选:C.7. 若两个非零向量,满足,且,则与夹角的余弦值为()A. B. C. D.参考答案:D【分析】根据题意,设与的夹角为.由,可得,再将两边同时平方,将代入,变形可得的值,即可得答案.【详解】设与的夹角为.∵,∴,∴.①∵,∴②由①②,解得.故选:D.【点睛】本题考查向量数量积的计算,属于基础题.8. 有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为()A.12πcm2B.15πcm2C.24πcm2D.36πcm2参考答案:C9. 若程序框图如右图所示,则该程序运行后输出的值是( )A. 5B. 6C. 7D. 8参考答案:A10. 将函数y=sin(2x+)的图象经过怎样的平移后所得图象关于点(,0)中心对称()A.向右平移 B.向右平移 C.向左平移 D.向左平移参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 如图所示,直线与双曲线C:的渐近线交于两点,记,.任取双曲线C上的点,若(、),则、满足的等式是.参考答案:4ab=112. 函数在内单调递减,则实数a的范围为▲.参考答案:【答案解析】解析:解:因为函数的导数为,所以.【思路点拨】导数与函数的单调性之间的关系,根据函数的导数,我们直接确定a的取值范围.13. ,则的值为( )A. B. C.D.-参考答案:A14. 函数y=的导函数等于.参考答案:﹣【考点】导数的运算.【专题】计算题.【分析】利用商的导数运算法则及三角函数、幂函数的导数运算公式求出函数的导函数.【解答】解:=故答案为【点评】求一个函数的导函数,应该先化简函数,再根据函数的形式选择合适的导数运算法则.15. 已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为_____________ .参考答案:略16. 若函数f(x)=cos2x+asinx在区间[,]上的最小值大于零,则a的取值范围是.参考答案:(﹣∞,1)∪(2,+∞)【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】将函数化简只有一个函数名,转化为二次函数问题,利用三角函数的有界限,求解即可.【解答】解:函数f(x)=cos2x+asinx化简可得:f(x)=1﹣2sin2x+asinx∵x∈[,]上,∴sinx∈[,1],令sinx=t,()函数f(x)转化为g(t)=﹣2t2+at+1,()上的最小值大于零其对称轴t=,当时,g()最小为由题意:,可得:a>﹣1,∴a≥4.当时,g(1)最小为1﹣a由题意:1﹣a>0,可得:1>a∴a<1.当,其最小为或1﹣a.即2<a<4,与a>﹣1或1>a∴2<a<4,综上可得a的取值范围是(﹣∞,1)∪(2,+∞).【点评】本题考查了三角函数与二次函数的结合,利用二次函数的性质,讨论在其范围内的最值问题.属于难题.17. 已知max(a,b)表示a,b两数中的最大值.若f(x)=max{e|x|,e|x﹣2|},则f(x)的最小值为.参考答案:e【考点】函数最值的应用.【专题】新定义;函数的性质及应用.【分析】化简函数的解析式,讨论x的范围,由指数函数的单调性,可得最小值.【解答】解:由于f(x)=max{e|x|,e|x﹣2|}=,当x≥1时,f(x)≥e,且当x=1时,取得最小值e;当x<1时,f(x)>e.故f(x)的最小值为f(1)=e.故答案为:e.【点评】本题主要考查指数函数的单调性,分段函数的应用,属于基础题.三、解答题:本大题共5小题,共72分。
【附28套精选模拟试卷】山东省青岛市2020届高三第二次模拟考试【文科】数学试题及答案

山东省青岛市2020届高三第二次模拟考试【文科】数学试题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合{|02},{|11}A y y B x x =≤<=-<<,则R ()A B =I ðA .{|01}x x ≤≤B .{|12}x x ≤<C .{|10}x x -<≤D .{|01}x x ≤< 2. 已知复数(1i)(12i)z =-+,其中i 为虚数单位,则z 的实部为 A .3- B .1 C .1- D .33. 数列{}n a 为等差数列,123,,a a a 为等比数列,11a =,则10a = A .5 B .1- C .0 D .14. 函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图所示,则(0)f 的值为A .1B .0C D5. 在平面直角坐标系中,O 为坐标原点,直线:10l x ky -+=圆22:4C x y +=相交于, A B 两点,OM OA OB =+u u u u r u u u r u u u r .若点在圆C 上,则实数k = A .2-B .1-C .0D .16. 如图是一个算法的流程图.若输入x 的值为2,则输出y 的值是 A .0 B .1- C .2- D .3-A .1030人B .97人C .950人D .970人8. 已知点(,)P a b 与点(1,0)Q 在直线2310x y +-=的两侧,且0, 0a b >>, 则2w a b =-的取值范围是A .21[,]32- B .2(,0)3- C .1(0,)2 D .21(,)32- 9. 已知三棱锥D ABC -中,1AB BC ==,2AD =,BD =,AC =BC AD ⊥,则关于该三棱锥的下列叙述正确的为A.表面积13)2S =B.表面积为12)2S = C.体积为1V = D. 体积为23V =10. 已知定义在实数集R 上的偶函数()f x 满足(1)(1)f x f x +=-,且当[0,1]x ∈时,2()f x x =,则关于x 的方程1()||2f x x =在[1,2]-上根的个数是 A .2B .4C .6D .8第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11. 抛物线24x y =的焦点坐标为 ; 12. 已知y 与x 之间具有很强的线性相关关系,现观测得到),(y x 的四组观测值并制作了右边的对照表,由表中数据粗略地得到线性回归直线方程为$60y bx=+$,其中b$的值没有写上.当x 等于5-时,预测y 的值为 ; 13. 已知||2, ||4a b ==r r ,a r 和b r 的夹角为3π,以, a b r r 为邻边作平行四边形,则该四边形的面积为 ; 14. 如图,()y f x =是可导函数,直线l 是曲线)(x f y =在4=x 处的切线,令()()f x g x x=,则(4)g '= ; 15. 对于下列命题:①函数()12f x ax a =+-在区间(0,1)内有零点的充分不必要条件是1223a <<;②已知,,,E F G H 是空间四点,命题甲:,,,E F G H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的充分不必要条件;③“2a <”是“对任意的实数x ,|1||1|x x a ++-≥恒成立”的充要条件; ④“01m <<”是“方程22(1)1mx m y +-=表示双曲线”的充分必要条件. 其中所有真命题的序号是 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知函数2()cos888f x x x x πππ=+,R ∈x .(Ⅰ)求函数)(x f 的最小正周期和单调递增区间;(Ⅱ)若函数)(x f 图象上的两点,P Q 的横坐标依次为2,4,O 为坐标原点,求OPQ ∆的外接圆的面积.17.(本小题满分12分) 已知函数4()f x ax x=+. (Ⅰ)从区间(2,2)-内任取一个实数a ,设事件A ={函数()2y f x =-在区间(0,)+∞上有两个不同的零点},求事件A 发生的概率;(Ⅱ)若连续掷两次骰子(骰子六个面上标注的点数分别为1, 2, 3, 4, 5, 6)得到的点数分别为a和b ,记事件B ={2()f x b >在(0,)x ∈+∞恒成立},求事件B 发生的概率.18.(本小题满分12分)如图,在四棱锥ABCD E -中,底面ABCD 为正方形,⊥AE 平面CDE ,已知2AE DE ==,F 为线段DE 的中点.(Ⅰ)求证://BE 平面ACF ; (Ⅱ)求四棱锥ABCD E -的体积.19.(本小题满分12分) 已知数列}{n a 满足:1211,,2a a ==且2[3(1)]22[(1)1]0,n n n n a a ++--+--=*N n ∈. (Ⅰ)令21n n b a -=,判断{}n b 是否为等差数列,并求出n b ; (Ⅱ)记{}n a 的前2n 项的和为2n T ,求2n T .20.(本小题满分13分)已知函数()xf x e ax =+,()lng x ax x =-,其中0a <,e 为自然对数的底数. (Ⅰ)若()g x 在(1,(1))g 处的切线l 与直线350x y --=垂直,求a 的值; (Ⅱ)求)(x f 在[0,2]x ∈上的最小值;(Ⅲ)试探究能否存在区间M ,使得)(x f 和()g x 在区间M 上具有相同的单调性?若能存在,说明区间M 的特点,并指出)(x f 和()g x 在区间M 上的单调性;若不能存在,请说明理由.21.(本小题满分14分)已知动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,记圆心P 的轨迹为曲线C ;设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行线交曲线C 于,M N 两个不同的点. (Ⅰ)求曲线C 的方程;(Ⅱ)试探究||MN 和2||OQ 的比值能否为一个常数?若能,求出这个常数;若不能,请说明理ACBE F由;(Ⅲ)记QMN ∆的面积为S ,求S 的最大值.数学(文科) 参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分. B D D A C C D D A B 二、填空题:本大题共5小题,每小题5分,共25分. 11.(0,1) 12.7013. 14.316-15.①②④ 三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分) 解:(Ⅰ)2()cos1)888f x x x x πππ=-2sin()4444x x x ππππ==+,……………………………………………2分所以,函数)(x f 的最小正周期为284T ππ==. ………………………………………3分由222442k x k ππππππ-≤+≤+(Z ∈k )得8381k x k -≤≤+(Z ∈k ),∴函数)(x f 的单调递增区间是[]83,81k k -+(Z ∈k )………………………………5分(Ⅱ)(2)2sin()2cos 244f πππ=+==Q ,(4)2sin()2sin 44f πππ=+=-=,(4,P Q ∴ ……………………………………………………………………7分|| || ||OP PQ OQ ∴===从而cos 3||||OP OQ POQ OP OQ ⋅∠===⋅u u u r u u u r u u u r u u u rsin 3POQ ∴∠==,………………………………………………10分 设OPQ ∆的外接圆的半径为R ,由||2sin PQ R POQ =∠||2sin PQ R POQ ⇒===∠∴OPQ ∆的外接圆的面积292S R ππ==………………………………………………12分17.(本小题满分12分)解:(Ⅰ)Q 函数()2y f x =-在区间(0,)+∞上有两个不同的零点,∴()20f x -=,即2240ax x -+=有两个不同的正根1x 和2x1212020404160a x x ax x aa ≠⎧⎪⎪+=>⎪∴⎨⎪=>⎪⎪∆=->⎩104a ⇒<< ………………………………………………………4分114()416P A ∴== …………………………………………………………………………6分(Ⅱ)由已知:0,0a x >>,所以()f x ≥()f x ≥min ()f x ∴=Q ()2b x f >在()0,x ∈+∞恒成立2b ∴>……()* ……………………………8分当1a =时,1b =适合()*;当2,3,4,5a =时,1,2b =均适合()*;当6a =时,1,2,3b =均适合()*;满足()*的基本事件个数为18312++=. ………………………………………………10分 而基本事件总数为6636⨯=,……………………………………………………………11分121()363P B ∴==. ………………………………………………………………………12分18.(本小题满分12分)证明:(Ⅰ) 连结BD 和AC 交于O ,连结OF ,…………………………………………1分 ABCD Q 为正方形,∴O 为BD 中点,F Θ为DE 中点,BE OF //∴, ……………………………………………………………………………4分BE ⊄Q 平面ACF ,OF ⊂平面ACF//BE ∴平面ACF .……………………………………………5分(Ⅱ) 作EG AD ⊥于G⊥AE Θ平面CDE ,⊂CD 平面CDE ,CD AE ⊥∴,ABCD Q 为正方形,CD AD ∴⊥,,,AE AD A AD AE =⊂Q I 平面DAE ,⊥∴CD 平面DAE , ………………………………………………………………………7分CD EG ∴⊥,AD CD D =Q I ,EG ∴⊥平面ABCD ………………………………8分⊥AE Θ平面CDE ,DE ⊂平面CDE ,AE DE ∴⊥,2AE DE ==Q,AD ∴=EG = …………………………………………10分∴四棱锥ABCD E -的体积211333ABCD V S EG =⨯=⨯=W …………………………………………12分19.(本小题满分12分)解:(Ⅰ)Q 2[3(1)]22[(1)1]0,n nn n a a ++--+--=21212121[3(1)]22[(1)1]0,n n n n a a --+-∴+--+--=OACBE F G即21212n n a a +--=……………………………………………………………………………4分Q 21n n b a -=,121212n n n n b b a a ++-∴-=-={}n b ∴是以111b a ==为首项,以2为公差的等差数列 …………………………………5分 1(1)221n b n n =+-⨯=- …………………………………………………………………6分(Ⅱ)对于2[3(1)]22[(1)1]0,n nn n a a ++--+--=当n 为偶数时,可得2(31)22(11)0,n n a a ++-+-=即212n n a a +=, 246 , , , a a a ∴L 是以212a =为首项,以12为公比的等比数列;………………………8分当n 为奇数时,可得2(31)22(11)0,n n a a +--+--=即22n n a a +-=,135 , , , a a a ∴L 是以11a =为首项,以2为公差的等差数列…………………………10分 21321242()()n n n T a a a a a a -∴=+++++++L L11[(1()]122[1(1)2]1212n n n n -=⨯+-⨯+-2112nn =+- ……………………………12分 20.(本小题满分13分)解:(Ⅰ)()ln g x ax x =-Q ,(1)g a ∴=,1()g x a x'=-Q ()g x 在(1,(1))g 处的切线l 与直线350x y --=垂直,1(1)13g '∴⨯=-1(1)123a a ⇒-⋅=-⇒=- ………………………………………………………………3分(Ⅱ)()f x 的定义域为R ,且 ()e xf x a '=+.令()0f x '=,得ln()x a =-. …………………………………………………………4分 若ln()0a -≤,即10a -≤<时,()0f x '≥,()f x 在[0,2]x ∈上为增函数,∴min ()(0)1f x f ==;………………………………………………………………………5分若ln()2a -≥,即2a e ≤-时,()0f x '≤,()f x 在[0,2]x ∈上为减函数,∴2min ()(2)2f x f e a ==+; ……………………………………………………………6分若0ln()2a <-<,即21e a -<<-时,由于[0,ln())x a ∈-时,()0f x '<;(ln(),2]x a ∈-时,()0f x '>, 所以min ()(ln())ln()f x f a a a a =-=--综上可知22min21, 10()2, ln(),1a f x e a a e a a a e a -≤<⎧⎪=+≤-⎨⎪---<<-⎩………………………………………8分 (Ⅲ)()g x 的定义域为(0,)+∞,且 11()ax g x a x x-'=-=. Q 0a <时,()0g x '∴<,()g x ∴在(0,)+∞上单调递减.……………………………9分令()0f x '=,得ln()x a =-①若10a -≤<时,ln()0a -≤,在(ln(),)a -+∞上()0f x '>,()f x ∴单调递增,由于()g x 在(0,)+∞上单调递减,所以不能存在区间M ,使得)(x f 和()g x 在区间M 上具有相同的单调性;………………………………………………………………………………10分 ②若1a <-时,ln()0a ->,在(,ln())a -∞-上()0f x '<,()f x 单调递减;在(ln(),)a -+∞上()0f x '>,()f x 单调递增.由于()g x 在(0,)+∞上单调递减,∴存在区间(0,ln()]M a ⊆-,使得)(x f 和()g x 在区间M 上均为减函数.综上,当10a -≤≤时,不能存在区间M ,使得)(x f 和()g x 在区间M 上具有相同的单调性;当1a <-时,存在区间(0,ln()]M a ⊆-,使得)(x f 和()g x 在区间M 上均为减函数.…………………………………………………………………………………………13分 21.(本小题满分14分)解:(I )设圆心P 的坐标为(,)x y ,半径为R由于动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,所以动 圆P 与圆221:(3)81F x y ++=只能内切12||9||1PF RPF R =-⎧∴⎨=-⎩1212||||8||6PF PF F F ⇒+=>= ………………………………………2分 ∴圆心P 的轨迹为以12, F F 为焦点的椭圆,其中28, 26a c ==,2224, 3, 7a c b a c ∴===-=故圆心P 的轨迹C :221167x y += …………………………………………………………4分 (II )设112233(,), (,), (,)M x y N x y Q x y ,直线:OQ x my =,则直线:3MN x my =+由221167x my x y=⎧⎪⎨+=⎪⎩可得:22222112716112716m x m y m ⎧=⎪⎪+⎨⎪=⎪+⎩, 2232232112716112716mx m y m ⎧=⎪⎪+∴⎨⎪=⎪+⎩2222233222112112112(1)||716716716m m OQ x y m m m +∴=+=+=+++ ……………………………6分 由2231167x my x y =+⎧⎪⎨+=⎪⎩可得:22(716)42490m y my ++-=1212224249,716716m y y y y m m ∴+=-=-++∴||MN ==21|y y =-=2256(1)716m m +==+………………………………8分 ∴2222256(1)||1716112(1)||2716m MN m m OQ m ++==++ ∴||MN 和2||OQ 的比值为一个常数,这个常数为12……………………………………9分 (III )//MN OQ Q ,∴QMN ∆的面积OMN =∆的面积O Q 到直线:3MN x my =+的距离d =2221156(1)||22716716m S MN d m m +∴=⋅=⨯=++ …………………………11分t =,则221m t =-(1)t ≥2284848497(1)16797t t S t t t t===-+++97tt +≥=Q 97t t =,即t =m =时取等号)∴当7m =±时,S 取最大值14分 高考模拟数学试卷文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题。
青岛市2020届高三二模数学答案

青岛市2020年高考模拟检测数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分。
C D A A A B D B 二、多项选择题:本题共4小题,每小题5分,共20分。
9.ABD 10.BD 11.ABD 12.ACD 三、填空题:本题共4个小题,每小题5分,共20分。
13.5;14.3315.(1)(0,1);(2)1-16.11;四、解答题:本题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)解:(1)连接BD ,在Rt ABD ∆中,由勾股定理得:2224BD AB AD =+=,所以2BD =在BCD ∆中,由余弦定理知:222cos 22BC CD BD C BC CD +-==⋅因为(0,)C π∈,所以4C π=所以122ABD S AB AD ∆=⋅=,11sin 22BCD S BC CD C ∆+=⋅⋅=所以ABCD 的面积12ABD BCD S S S ∆∆=+=(2)在BCD ∆中,由正弦定理知:sin sin BC BDBDC BCD=∠∠所以sin sin 35BC BCD BDC BD ⋅∠∠==因为(0,)2ADC π∠∈,所以(0,2BDC π∠∈,4os 5c BDC ∠=在Rt ABD ∆中,3tan 3AB ADB AD ∠==,所以6ADB π∠=所以3341433sin sin()6525210ADC BDC π+∠=∠+=⨯=中数学18.(本小题满分12分)解:若选②:由PO ⊥平面ABCD 知PO AB ⊥,又PC AB⊥所以AB ⊥面PAC ,所以AB AC ⊥,所以90BAC ∠=︒,BC BA >这与底面ABCD 为菱形矛盾,所以②必不选,故选①③下面证明:PO ⊥平面ABCD因为四边形ABCD 为菱形,所以AC BD⊥因为PC BD ⊥,PC AC C = ,所以BD ⊥平面APC 又因为PO ⊂平面APC ,所以BD PO⊥因为PA PC =,O 为AC 中点,所以PO AC ⊥又AC BD O = ,所以PO ⊥平面ABCD因为PO ⊥面ABCD ,以O 为坐标原点,以OB ,OC ,OP的方向分别作为x 轴,y 轴,z 轴的正方向,建立如图空间直角坐标系O xyz -,因为//AB CD ,所以PBA ∠为异面直线PB 与CD 所成的角,所以=60PBA ∠︒在菱形ABCD 中,设2AB =,因为60ABC ∠=︒,所以1OA =,设PO a =,则PA =,PB =在PBA ∆中,由余弦定理得:2222cos PA BA BP BA BP =+-⋅⋅∠所以221432a a +=++-⨯解得a =所以(0,1,0)A -,B ,(0,1,0)C ,P 设1111(,,)n x y z =为平面ABP 的法向量,AB =,AP =由1100n AB n AP ⎧⋅=⎪⎨⋅=⎪⎩可得:111100y y +=+=⎪⎩,令11z =得:1n = 设2222(,,)n x y z = 为平面CBP 的法向量,1,0)CB =- ,(0,CP =-由2200n CB n CP ⎧⋅=⎪⎨⋅=⎪⎩可得:222200y y -==⎪⎩,令21z =得:2n = 设二面角A PB C --的平面角为θ,所以1212||1cos =3||||n n n n θ⋅=,所以二面角A PB C --的余弦值为13中数学19.(本小题满分12分)解:(1)因为2121n n S n a +++=,所以212n n S n a -+=(2)n ≥两式相减得:22121n n n a a a ++=-(2)n ≥所以22121n n n a a a +++=,即221(1)n n a a ++=(2)n ≥因为数列{}n a 的各项均为正数,所以当2n ≥时,11n n a a +=+(2)由(1)得:422a a =+,826a a =+因为4a 是2a 与8a 等比中项,所以2428a a a =⋅,即2222(2)(6)a a a +=⋅+,解得22a =又21222a a +=,所以11a =所以211a a -=,从而11n n a a +-=对*N n ∈恒成立所以数列{}n a 是以1为首项,1为公差的等差数列,所以n a n =所以22n nn a n ⋅=⋅所以211222(1)22n nn T n n -=⨯+⨯+⋅⋅⋅+-⨯+⨯23121222(1)22n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+⨯两式相减得:212222nn n T n +-=++⋅⋅⋅+-⨯112(12)2(1)2212n n n n n ++-=-⨯=-⋅--所以1(1)22n n T n +=-⋅+20.(本小题满分12分)解:(1)设椭圆的半焦距为c ,由题意知:2c e a ====所以2a b =①因为双曲线2214x y -=的渐近线方程为12y x=±所以可设双曲线的渐近线与椭圆C 在第一象限的交点为(2,)P t t ,2=,所以212t =因为(2,)P t t 在椭圆上,所以222241t t a b +=,即222112a b+=②由①②解得:2,1a b ==,所以椭圆C 的标准方程为:2214x y +=中数学(2)由题知,M N 关于原点对称,则可设112222(,),(,),(,)D x y M x y N x y --(ⅰ)因为点,D M 在椭圆C 上,所以222212121,144x x y y +=+=,所以222212121,144x x y y =-=-所以22122212121212222212121212(1)(1)1444x x y y y y y y k k x x x x x x x x ----+-=⋅===--+--(ⅱ)由题,不妨设120,0k k ><,因为1214k k =-,120k k +=,所以1211,22k k ==-因为直线DM 过点(0,)m ,直线DN 过点(0,)n ,所以直线1:2DM y x m =+,12DN y x n =-+:,由221214y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩得:222220x mx m ++-=,所以21222x x m =-由221214y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得222220x nx n -+-=,所以21222x x n -=-所以221212+()2240x x x x m n -=+-=所以222m n +=为定值21.(本小题满分12分)解:(1)由题知0)0(,cos 2122)(='-++='f x xax x f 令)()(x f x h '=,则21()2(sin )(1)h x a x x '=-++若1≥a ,当2,0(π∈x 时,0)sin )1(11(2)sin )1(1(2)(22>++-≥++-='x x x x a x h 所以)(x h 在2,0(π上单调递增,所以0)0()(=>h x h ,所以)(x f 在2,0(π上单调递增;所以()(0)0f x f >=中数学(2)①若1a ≥,由(1)知:)(x f 在)2,0(π上单调递增;因此0x =不可能是()g x 的极大值点②若10<<a ,令21()()2(sin )(1)x h x a x x ϕ'==-++因为当(1,)2x π∈-时,0)1(4cos 2)(3>++='x x x ϕ所以)(x ϕ即)(x h '在(1,2π-上单调递增又因为(0)(0)2(1)0h a ϕ'==-<,21()()2[1]022(1)2h a ππϕπ'==+->+因此存在)2,0(πα∈满足:0)(='αh 所以当(1,)x α∈-时,()()0h x h α''<=所以()()f x h x '=在),1(α-上单调递减,(0)(0)0f h '==,所以当)0,1(-∈x 时,0)(>'x f ;当),0(α∈x 时,0)(<'x f ;所以)(x f 在)0,1(-上单调递增;在),0(α上单调递减;综上,当0x =是()f x 的极大值点时,10<<a 22.(本小题满分12分)解:(1)由已知可得:1234535x ++++==,640540420300200210042055y ++++===又因为515180i ii x y==∑,522222211234555i i x ==++++=∑,所以51522215518063001120ˆ1125553105iii ii x y xybxx ==--===-=--⨯-∑∑所以ˆ4201123756a y bx=-=+⨯=所以ˆˆ112756ybx a x =+=-+,当11275610x y +<=-*(N )x ∈时,7x ≥所以,可以预测从第7月份开始该大学体重超重的人数降至10人以下(2)(ⅰ)由题知X 的可能取值为:0,1,2;1211(0)2326P X ==⨯⨯=;1211121112111(1)2322332323218P X ==⨯⨯+⨯+⨯+⨯⨯=;中数学1211112(2)2322339P X ==⨯⨯+⨯⨯=;所以111219()012618918E X =⨯+⨯+⨯=(ⅱ)(法一)由11111111,2323n n n n n n b a c c a b ----=+=+两式相加得:1111()3n n n n n b c a b c ---+=++因为112233n n n a b c --=+,所以1132n n n b c a --+=,132n n n b c a ++=代入*式得113122n n n a a a +-=+,即111233n n n a a a +-=+所以1121222333n n n n a a a a a +-+=+==+ 因为10a =,21212223233a =⨯+⨯=,所以12233n n a a ++=,所以1222()535n n a a +-=--所以数列2{}5n a -是首项为25-,公比为23-的等比数列所以1222()()553n n a --=--,即122[1()]53n n a -=--因此经过200次传球后A 队员控制球的概率199200222[1()]535a =-->.(法二)由题知:111123n n n c a b --=+,所以112=23n n n b c a ---,所以11112222333n n n n n n a b c c a c ----=+=-+又因为1111123n n n n n b a c a c --=+=--,所以1111123n n n n c a a c --=---所以111222223n n n n n n a c a c a a ---=-+=--,所以12233n n a a -=-+所以1222()535n n a a --=--,又因为10a =,所以122055a -=-≠,所以数列2{}5n a -是首项为25-,公比为23-的等比数列所以1222()()553n n a --=--,即122[1()]53n n a -=--因此经过200次传球后A 队员控制球的概率199200222[1()]535a =-->.中数学。
山东省平度市高考数学模拟试题 文(二)

平 度 市 高 考 模 拟 试 题(二)数学(文)试题本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共10个小题,每小题5分,共50分,在四个选项中,只有一项是符合要求的)1.已知集合{}{}2|40,|2M x x x N x x =-<=≤,则M N ⋃= A .()2,4- B .[)2,4- C .()0,2 D .(]0,22.已知,t R i ∈为虚数单位,复数121234,z i z t i z z =+=+⋅,且是实数,则t 等于 A.34B.43C. 43-D. 34-3.命题p :∈∀a (0,1)∪(1,+∞),函数=)(x f )1(log -x a 的图象过点(2,0), 命题q :N x ∈∃,23x x <。
则( )A.p 假q 假B.p 真q 假C.p 假q 真D.p 真q 真4.平面向量a r 与b r 夹角为23π,()3,0,2a b ==rr ,则2a b +r r 等于A .13 B.35.已知x ,y 满足22y x x y z x y x a ≥⎧⎪+≤=+⎨⎪≥⎩,且的最大值是最小值的4倍,则a 的值是A. 4B.34C.211D.146.一个几何体的三视图如图所示,则该几何体的体积是 A.112 B.80 C.72 D.647.将函数()()f x x π=图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图像上所有的点向右平移1个单位长度,得到函数()g x 的图像,则函数()g x 的单调递减区间是A .[]()41,43k k k Z ++∈B .[]()21,23k k k Z ++∈C .[]()21,22k k k Z ++∈D .[]()21,22k k k Z -+∈8已知函数)(x f 是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,若实数m 满足)(log 3m f +)(log 31m f )1(2f ≤,则m 的取值范围是A.(0,3]B. [31 ,3] C. [31,3) D.[31,+∞) 9.已知函数()()21cos ,4f x x x f x '=+是函数()f x 的导函数,则()f x '的图象大致是10.已知椭圆12222=+b y a x ,双曲线12222=-by a x 和抛物线px y 22=(0>p ))的离心率分别为e 1,e 2,e 3,则A. 21e e <3eB. 21e e >3eC. 21e e =3eD. 21e e ≥3e第Ⅱ卷 非选择题 (共100分)二、填空题:(本题共5个小题,每小题5分,共25分. 把每小题的答案填在答题纸的相应位置)11.在ABC ∆中,若21,3,3b c C a π==∠==,则 ________.12.在某市“创建文明城市”活动中,对800名志愿者的年龄抽样调查统计后得到频率分布直方图(左下图),但是年龄组为[)25,30的数据不慎丢失,据此估计这800名志愿者年龄在[)25,30的人数为______.13. 双曲线19222=-bx y 的离心率为2,则双曲线的焦点到渐近线的距离是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年山东省青岛市平度市高考数学二模试卷(文科)一、选择题:(本题共10个小题,每小题5分,共50分,在四个选项中,只有一项是符合要求的)1.已知集合M={x|x2﹣4x<0},N={x||x|≤2},则M∪N=()A.(﹣2,4)B.[﹣2,4)C.(0,2)D.(0,2]2.在复平面内,复数z=﹣2i3(i为虚数单位)表示的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.命题p:∀a∈(0,1)∪(1,+∞),函数f(x)=log a(x﹣1)的图象过点(2,0),命题q:∃x∈N,x3<x2.则()A.p假q假B.p真q假C.p假q真D.p真q真4.如图中的三个直角三角形是一个体积为35cm3的几何体的三视图,则侧视图中的h()A.5cm B.6cm C.7cm D.8cm5.已知x,y满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A.4 B.C.D.6.在△ABC中,A,B,C所对的边分别为a,b,c,若A=60°,a=,b+c=3,则△ABC的面积为()A. B.C.D.27.将函数f(x)=cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位长度,得到函数g(x)的图象,则函数g(x)的单调区间是()A.[4k+1,4k+3](k∈Z)B.[2k+1,2k+3](k∈Z)C.[2k+1,2k+2](k∈Z)D.[2k﹣1,2k+2](k∈Z)8.若直线2mx﹣ny﹣2=0(m>0,n>0)过点(1,﹣2),则+最小值()A.2 B.6 C.12 D.3+29.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A. B.C.D.10.点F为双曲线C:﹣=1(a,b>0)的焦点,过点F的直线与双曲线的一条渐近线垂直且交于点A,与另一条渐近线交于点B.若3+=0,则双曲线C的离心率是()A. B.C.D.二、填空题:(本题共5个小题,每小题5分,共25分.把每小题的答案填在答题纸的相应位置)11.在△ABC中,若b=1,c=,∠C=,则a=.12.已知实数x,y满足不等式组,则2x+y的最大值为.13.双曲线的离心率为2,则双曲线的焦点到渐近线的距离是.14.已知长方形ABCD中,AB=4,BC=1,M为AB的中点,则在此长方形内随机取一点P,P与M的距离小于1的概率为.15.给出下列四个命题:①命题“∀x∈R,x2>0”的否定是“∃x∈R,x2≤0”;②函数y=f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),其图象上任一点P(x,y)满足x2﹣y2=1,则函数y=f(x)可能是奇函数;③若a,b∈[0,1],则不等式a2+b2<成立的概率是④函数y=log2(x2﹣ax+2)在[2,+∞)恒为正,则实数a的取值范围是(﹣∞,).其中真命题的序号是.(请填上所有真命题的序号)三、解答题(共6个题,共75分,把每题的答案填在答卷纸的相应位置)16.植树节期间我市组织义工参加植树活动,为方便安排任务将所有义工按年龄分组:第l组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的部分频率分布表如下:(2)现在要从年龄较小的第l,2,3组中用分层抽样的方法随机抽取6人担任联系人,在第l,2,3组抽取的义工的人数分别是多少?(3)在(2)的条件下,从这6人中随机抽取2人担任本次活动的宣传员,求至少有1人年龄在第3组的概率.17.现有A,B,C三种产品需要检测,产品数量如表所示:7件.(I)求三种产品分别抽取的件数;(Ⅱ)已知抽取的A,B,C三种产品中,一等品分别有1件,2件,2件.现再从已抽取的A,B,C三种产品中各抽取1件,求3件产品都是一等品的概率.18.如图所示,正三棱柱ABC﹣A1B1C1中,E,F分别是BC,CC1的中点.(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若该三棱柱所有的棱长均为2,求三棱锥B1﹣AEF的体积.19.已知数列{a n}中,a1=2,且.(I)求证:数列{a n﹣1}是等比数列,并求出数列{a n}的通项公式;(Ⅱ)设b n=n(a n﹣1),数列{b n}的前n项和为S n,求证:1≤S n<4.20.已知椭圆C:,离心率为.(I)求椭圆C的标准方程;(Ⅱ)设椭圆C的下顶点为A,直线l过定点,与椭圆交于两个不同的点M、N,且满足|AM|=|AN|.求直线l的方程.21.已知椭圆C: +=1(a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,过点F1的直线l交椭圆于A,B两点.当直线l经过椭圆C的一个短轴端点时,与以原点O为圆心,以椭圆的离心率e为半径的圆相切.(1)求椭圆C的方程;(2)是否在x轴上存在定点M,使•为定值?若存在,请求出定点M及定值;若不存在,请说明理由.2019年山东省青岛市平度市高考数学二模试卷(文科)参考答案与试题解析一、选择题:(本题共10个小题,每小题5分,共50分,在四个选项中,只有一项是符合要求的)1.已知集合M={x|x2﹣4x<0},N={x||x|≤2},则M∪N=()A.(﹣2,4)B.[﹣2,4)C.(0,2)D.(0,2]【考点】1D:并集及其运算.【分析】先求出集合M,N,再根据并集的定义求出即可.【解答】解:集合M={x|x2﹣4x<0}=(0,4),N={x||x|≤2}=[﹣2.2].∴M∪N=[﹣2,4),故选:B2.在复平面内,复数z=﹣2i3(i为虚数单位)表示的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A5:复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数z,求出z在复平面内对应的点的坐标,则答案可求.【解答】解:∵z=﹣2i3=,∴z在复平面内对应的点的坐标为:(1,3),位于第一象限.故选:A.3.命题p:∀a∈(0,1)∪(1,+∞),函数f(x)=log a(x﹣1)的图象过点(2,0),命题q:∃x∈N,x3<x2.则()A.p假q假B.p真q假C.p假q真D.p真q真【考点】2K:命题的真假判断与应用;4N:对数函数的图象与性质.【分析】根据指数函数的单调性及幂函数图象和性质,分析命题p,q的真假,可得答案.【解答】解:当x=2时,log a(x﹣1)=log a1=0恒成立,故命题p:∀a∈(0,1)∪(1,+∞),函数f(x)=log a(x﹣1)的图象过点(2,0),为真命题;∀x∈N,x3≥x2恒成立,故命题q:∃x∈N,x3<x2为假命题,故选:B4.如图中的三个直角三角形是一个体积为35cm3的几何体的三视图,则侧视图中的h()A.5cm B.6cm C.7cm D.8cm【考点】L7:简单空间图形的三视图.【分析】由已知中的三视图得几何体是三棱锥,计算出底面面积,由锥体体积公式,即可求出高.【解答】解:由几何体的三视图得该几何体是三棱锥,其底面面积为S=×5×6=15,高为h,所以该几何体的体积为S=Sh=×15h=35,解得h=7(cm).故选:C.5.已知x,y满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A.4 B.C.D.【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义,结合目标函数z=2x+y 的最大值是最小值的4倍,建立方程关系,即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线的截距最大,此时z最大,由,解得即A(1,1),此时z=2×1+1=3,当直线y=﹣2x+z经过点B时,直线的截距最小,此时z最小,由,解得,即B(a,a),此时z=2×a+a=3a,∵目标函数z=2x+y的最大值是最小值的4倍,∴3=4×3a,即a=.故选:D.6.在△ABC中,A,B,C所对的边分别为a,b,c,若A=60°,a=,b+c=3,则△ABC的面积为()A. B.C.D.2【考点】HR:余弦定理;HP:正弦定理.【分析】由余弦定理可得:a2=(b+c)2﹣2bc﹣2bccosA,代入已知从而解得:bc的值,由三=bcsinA即可求值.角形面积公式S△ABC【解答】解:由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA,∴代入已知有:3=9﹣3bc,从而解得:bc=2,=bcsinA==,∴S△ABC故选:B.7.将函数f(x)=cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位长度,得到函数g(x)的图象,则函数g(x)的单调区间是()A.[4k+1,4k+3](k∈Z)B.[2k+1,2k+3](k∈Z)C.[2k+1,2k+2](k∈Z)D.[2k ﹣1,2k+2](k∈Z)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】根据图象的变换规则逐步得出函数解析式,利用正弦函数的单调性即可得解.【解答】解:∵将函数f(x)=cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数解析式为:y=cos(πx);再把图象上所有的点向右平移1个单位长度,得到函数的解析式为:g(x)=cos[π(x﹣1)];∴可得:,∵由2k≤≤2kπ+,k∈Z,解得:4k+1≤x≤4k+3,k∈Z,可得函数g(x)的单调递减区间是:[4k+1,4k+3],k∈Z,由2kπ﹣≤≤2k,k∈Z,解得:4k﹣1≤x≤4k+1,k∈Z,可得函数g(x)的单调递增区间是:[4k﹣1,4k+1],k∈Z,对比各个选项,只有A正确.故选:A.8.若直线2mx﹣ny﹣2=0(m>0,n>0)过点(1,﹣2),则+最小值()A.2 B.6 C.12 D.3+2【考点】7G:基本不等式在最值问题中的应用.【分析】根据直线2mx﹣ny﹣2=0(m>0,n>0)过点(1,﹣2),建立m,n的关系,利用基本不等式即可求+的最小值.【解答】解:∵直线2mx﹣ny﹣2=0(m>0,n>0)过点(1,﹣2),∴2m+2n﹣2=0,即m+n=1,∵+=(+)(m +n )=3++≥3+2,当且仅当=,即n=m 时取等号,∴+的最小值为3+2,故选:D .9.已知函数f (x )=x 2+cosx ,f′(x )是函数f (x )的导函数,则f′(x )的图象大致是( )A .B .C .D .【考点】3O :函数的图象.【分析】由于f (x )=x 2+cosx ,得f′(x )=x ﹣sinx ,由奇函数的定义得函数f′(x )为奇函数,其图象关于原点对称,排除BD ,取x=代入f′()=﹣sin=﹣1<0,排除C ,只有A 适合.【解答】解:由于f (x )=x 2+cosx ,∴f′(x )=x ﹣sinx ,∴f′(﹣x )=﹣f′(x ),故f′(x )为奇函数,其图象关于原点对称,排除BD ,又当x=时,f′()=﹣sin=﹣1<0,排除C ,只有A 适合,故选:A .10.点F 为双曲线C :﹣=1(a ,b >0)的焦点,过点F 的直线与双曲线的一条渐近线垂直且交于点A ,与另一条渐近线交于点B .若3+=0,则双曲线C 的离心率是( )A.B .C .D .【考点】KC :双曲线的简单性质.【分析】联立直线方程解得A ,B 的坐标,再由向量共线的坐标表示,解得双曲线的a ,b ,c 和离心率公式计算即可得到所求值.【解答】解:双曲线C:﹣=1的渐近线方程为y=±x,设F(c,0),由OA⊥FA,且OA的方程为y=x,OB的方程为y=﹣x,直线AB的方程为y=﹣(x﹣c),由解得A(,),由解得B(,﹣)由3+=0,即3+=,即3(﹣c,)+(﹣c,﹣)=0可得3(﹣c)+﹣c=0,即3a2+=4c2,由b2=c2﹣a2,化简可得3a4﹣5a2c2+2c4=0,即(a2﹣c2)(3a2﹣2c2)=0,即a2=c2,(舍)或3a2=2c2,即c2=a2,c=a=a,可得e==.故选:B.二、填空题:(本题共5个小题,每小题5分,共25分.把每小题的答案填在答题纸的相应位置)11.在△ABC中,若b=1,c=,∠C=,则a=1.【考点】HT:三角形中的几何计算.【分析】先根据b,c,∠c,由正弦定理可得sinB,进而求得B,再根据正弦定理求得a.【解答】解:在△ABC中由正弦定理得,∴sinB=,∵b<c,故B=,则A=由正弦定理得∴a==1故答案为:112.已知实数x,y满足不等式组,则2x+y的最大值为5.【考点】7C:简单线性规划.【分析】作出可行域,平行直线可得直线过点A(3,0)时,z取最大值,代值计算可得.【解答】解:作出不等式组,所对应的可行域(如图阴影),变形目标函数z=2x+y可得y=﹣2x+z,由,可得A(2,1)平移直线y=﹣2x可知,当直线经过点A(2,1)时,z取最大值,代值计算可得z=2x+y的最大值为:5.故答案为:5.13.双曲线的离心率为2,则双曲线的焦点到渐近线的距离是3.【考点】KC:双曲线的简单性质.【分析】求得双曲线的a=3,由离心率公式可得c=6,解得b,求出渐近线方程和焦点,运用点到直线的距离公式,计算即可得到所求值.【解答】解:双曲线的a=3,c=,由e==2,即有c=2a=6,即=6,解得b=3.渐近线方程为y=±x,即为x±3y=0,则双曲线的焦点(0,6)到渐近线的距离是=3.故答案为:3.14.已知长方形ABCD中,AB=4,BC=1,M为AB的中点,则在此长方形内随机取一点P,P与M的距离小于1的概率为.【考点】CF:几何概型.【分析】本题利用几何概型解决,这里的区域平面图形的面积.欲求取到的点P到M的距离大于1的概率,只须求出圆外的面积与矩形的面积之比即可.【解答】解:根据几何概型得:取到的点到M的距离小1的概率:p====.故答案为:.15.给出下列四个命题:①命题“∀x∈R,x2>0”的否定是“∃x∈R,x2≤0”;②函数y=f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),其图象上任一点P(x,y)满足x2﹣y2=1,则函数y=f(x)可能是奇函数;③若a,b∈[0,1],则不等式a2+b2<成立的概率是④函数y=log2(x2﹣ax+2)在[2,+∞)恒为正,则实数a的取值范围是(﹣∞,).其中真命题的序号是①②④.(请填上所有真命题的序号)【考点】2K:命题的真假判断与应用.【分析】①根据含有量词的命题的否定进行判断.②根据函数奇偶性的定义和性质结合双曲线的图象进行判断.③根据几何概型的概率公式进行判断.④利用不等式恒成立,利用参数分离法进行求解判断即可.【解答】解:①命题“∀x∈R,x2>0”的否定是“∃x∈R,x2≤0”;故①正确,②函数y=f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),其图象上任一点P(x,y)满足x2﹣y2=1,则函数y=f(x)可能是奇函数;正确,当点P的坐标满足y=时,函数f(x)为奇函数.故②正确,③若a,b∈[0,1],则不等式成立的概率是.如图.所以③错误④因为函数y=log2(x2﹣ax+2)在[2,+∞)上恒为正,所以在[2,+∞)上x2﹣ax+2>1恒成立,即:在[2,+∞)上恒成立,令,因为x≥2,所以,所以g(x)在[2,+∞)上为增函数,所以:当x=2时,g(x)的最小值为g(2)=,所以.则实数a的取值范围是(﹣∞,).故④正确,故答案为:①②④三、解答题(共6个题,共75分,把每题的答案填在答卷纸的相应位置)16.植树节期间我市组织义工参加植树活动,为方便安排任务将所有义工按年龄分组:第l组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的部分频率分布表如下:(2)现在要从年龄较小的第l,2,3组中用分层抽样的方法随机抽取6人担任联系人,在第l,2,3组抽取的义工的人数分别是多少?(3)在(2)的条件下,从这6人中随机抽取2人担任本次活动的宣传员,求至少有1人年龄在第3组的概率.【考点】B7:频率分布表.【分析】(1)根据频率=求出参加活动的总人数,再求a、b的值;(2)计算分层抽样的抽取比例,用抽取比例乘以每组的频数,可得每组抽取人数;(3)利用列举法写出从6人中随机抽取2人的所有基本事件,再用对立事件的概率公式计算对应的概率即可.【解答】解:(1)根据题意知,50÷0.1=500,所以共有500人参加活动;a=500×0.4=200,b==0.3;(2)因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名员工中抽取6人,每组抽取的人数分别为:第1组的人数为6×=1,第2组的人数为6×=1,第3组的人数为6×=4,∴第1,2,3组分别抽取1人,1人,4人;(3)由(2)可设第1组的1人为A,第2组的1人为B,第3组的4人分别为C1,C2,C3,C4,则从6人中抽取2人的所有可能结果为:(A,B),(A,C1),(A,C2),(A,C3),(A,C4),(B,C1),(B,C2),(B,C3),(B,C4),(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4),共有15种.其中2人年龄都不在第3组的有:(A,B),共1种;所以至少有1人年龄在第3组的概率为P=1﹣=.17.现有A,B,C三种产品需要检测,产品数量如表所示:7件.(I)求三种产品分别抽取的件数;(Ⅱ)已知抽取的A,B,C三种产品中,一等品分别有1件,2件,2件.现再从已抽取的A,B,C三种产品中各抽取1件,求3件产品都是一等品的概率.【考点】CC:列举法计算基本事件数及事件发生的概率;B3:分层抽样方法.【分析】(I)设出A、B产品均抽取了x件,利用分层抽样时对应的比例相等,列出方程求出x的值即可;(Ⅱ)对抽取的样本进行编号,利用列举法求出对应的事件数,计算概率即可.【解答】解:(I)设A、B产品均抽取了x件,则C产品抽取了7﹣2x件,则有:=,解得x=2;所以A、B产品分别抽取了2件,C产品抽取了3件;(Ⅱ)记抽取的A产品为a1,a2,其中a1是一等品;抽取的B产品是b1,b2,两件均为一等品;抽取的C产品是c1,c2,c3,其中c1,c2是一等品;从三种产品中各抽取1件的所有结果是{a1b1c1},{a1b1c2},{a1b1c3},{a1b2c1},{a1b2c2},{a1b2c3},{a2b1c1},{a2b1c2},{a2b1c3},{a2b2c1},{a2b2c2},{a2b2c3}共12个;根据题意,这些基本事件的出现是等可能的;其中3件产品都是一等品的有:{a1b1c1},{a1b1c2},{a1b2c1},{a1b2c2}共4个;因此3件产品都是一等品的概率P==.18.如图所示,正三棱柱ABC﹣A1B1C1中,E,F分别是BC,CC1的中点.(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若该三棱柱所有的棱长均为2,求三棱锥B1﹣AEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;L Y:平面与平面垂直的判定.【分析】(I)由BB1⊥平面ABC可知BB1⊥AE,又AE⊥BC可得AE⊥平面BCC1B1,从而平面AEF⊥平面B1BCC1;(II)由(1)知AE为棱锥A﹣B1EF的高.于是V=V=.【解答】解:(I)∵BB1⊥面ABC,AE⊂平面ABC,∴AE⊥BB1,∵E是正三角形ABC的边BC的中点,∴AE⊥BC,又∵BC⊂平面B1BCC1,B1B⊂平面B1BCC1,BC∩BB1=B,∴AE⊥平面B1BCC1,∵AE⊂平面AEF,∴平面AEF⊥平面B1BCC1.(II)∵三棱柱所有的棱长均为2,∴AE=,∴S=2×2﹣﹣=,由(I)知AE⊥平面B1BCC1∴.19.已知数列{a n}中,a1=2,且.(I)求证:数列{a n﹣1}是等比数列,并求出数列{a n}的通项公式;(Ⅱ)设b n=n(a n﹣1),数列{b n}的前n项和为S n,求证:1≤S n<4.【考点】8E:数列的求和;88:等比数列的通项公式.【分析】(I)利用递推关系变形可得a n﹣1=,即可证明;(II)利用“错位相减法”、等比数列的前n项和公式、数列的单调性即可证明.【解答】证明:(I),又a1﹣1=1≠0∴数列{a n﹣1}是首项为1,公比为2的等比数列.∴,得.(II),设…①则…②①﹣②得:,∴,,又,∴数列{S n}是递增数列,故S n≥S1=1,∴1≤S n<4.20.已知椭圆C:,离心率为.(I)求椭圆C的标准方程;(Ⅱ)设椭圆C的下顶点为A,直线l过定点,与椭圆交于两个不同的点M、N,且满足|AM|=|AN|.求直线l的方程.【考点】K4:椭圆的简单性质.【分析】(I)由离心率公式和点满足椭圆方程,及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)讨论直线的斜率不存在和存在,设出直线的方程为y=kx+(k≠0),与椭圆方程联立,运用韦达定理,再由|AM|=|AN|,运用两点的距离公式,化简整理可得k的方程,解方程可得k,进而得到所求直线方程.【解答】解:(I)由题意可得e==,+=1,且a2﹣b2=c2,解得a=,b=1,即有椭圆的方程为+y2=1;(Ⅱ)若直线的斜率不存在,M,N为椭圆的上下顶点,即有|AM|=2,|AN|=1,不满足题设条件;设直线l:y=kx+(k≠0),与椭圆方程+y2=1联立,消去y,可得(1+3k2)x2+9kx+=0,判别式为81k2﹣4(1+3k2)•>0,化简可得k2>,①设M(x1,y1),N(x2,y2),可得x1+x2=﹣,y1+y2=k(x1+x2)+3=3﹣=,由|AM|=|AN|,A(0,﹣1),可得=,整理可得,x1+x2+(y1+y2+2)()=0,(y1≠y2)即为﹣+(+2)•k=0,可得k2=,即k=±,代入①成立.故直线l的方程为y=±x+.21.已知椭圆C: +=1(a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,过点F1的直线l交椭圆于A,B两点.当直线l经过椭圆C的一个短轴端点时,与以原点O为圆心,以椭圆的离心率e为半径的圆相切.(1)求椭圆C的方程;(2)是否在x轴上存在定点M,使•为定值?若存在,请求出定点M及定值;若不存在,请说明理由.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程.【分析】(1)求得抛物线的焦点坐标,可得c=,即a2﹣b2=3,求得直线经过(﹣c,0)和(0,b)的方程,运用直线和圆相切的条件:d=r,结合离心率公式可得b,a,进而得到椭圆方程;(2)假设直线l的斜率存在,设直线的方程为y=k(x+),代入椭圆方程x2+4y2=4,可得x 的方程,运用韦达定理,设出M(m,0),运用向量的数量积的坐标表示,化简整理,结合定值,可得m,以及向量数量积的值;再讨论直线l的斜率不存在,求得A,B,验证成立.【解答】解:(1)抛物线y2=﹣4x的焦点为(﹣,0),由题意可得c=,即a2﹣b2=3,由直线l经过(﹣c,0)和(0,b),可得直线l:bx﹣cy+bc=0,直线l与原点O为圆心,以椭圆的离心率e为半径的圆相切,可得=e==,解得b=1,则a=2,即有椭圆的方程为+y2=1;(2)当直线l的斜率存在时,设直线的方程为y=k(x+),代入椭圆方程x2+4y2=4,可得(1+4k2)x2+8k2x+12k2﹣4=0,设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,设M(m,0),=(m﹣x1,﹣y1),=(m﹣x2,﹣y2),•═(m﹣x)(m﹣x2)+y1y2=m2﹣m(x1+x2)+x1x2+k2(x1+)(x2+)1=m2+(k2﹣m)(x1+x2)+(1+k2)x1x2+3k2=m2+(k2﹣m)(﹣)+(1+k2)•+3k2=,要使•为定值,则=4,解得m=﹣,即有•=﹣.当直线l的斜率不存在时,A(﹣,﹣),B(﹣,),=(﹣,),=(﹣,﹣),可得•=﹣._.__._ 则在x 轴上存在定点M(﹣,0),使得•为定值﹣.。