2020-2021学年广东省高考数学二模试卷(理科)及答案解析
第7题 导数的几何意义及应用-2021年高考数学真题逐题揭秘与以例及类(新高考全国Ⅰ卷)(解析版)

第7题 导数的几何意义及应用一、原题呈现【原题】若过点(),a b 可以作曲线e x y =的两条切线,则( ) A. e b a < B. e a b < C. 0e b a << D. 0e a b <<【答案】D 【解析】解法一:设过点(),a b 的切线与曲线e x y =切于(),e tP t ,对函数e x y =求导得e x y '=,所以曲线e x y =在点P 处的切线方程为()e e t t y x t -=-,即()e 1e t t y x t =+-,由题意可知,点(),a b 在直线()e 1et ty x t =+-上,所以()()e 1e 1e tttb a t a t =+-=+-,过点(),a b 可以作曲线e x y =的两条切线,则方程()1etb a t =+-有两个不同实根,令()()1e t f t a t =+-,则()()e tf t a t '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,且()0f t >,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max e af t f a ==,如图所示,当直线y b =与曲线()y f t =的图象有两个交点时,当0e a b <<时,直线y b =与曲线()y f t =的图象有两个交点.故选D.解法二:画出函数曲线e x y =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0e a b <<.故选D.【就题论题】本题主要考查利用导数的几何意义研究确定的切线,注意等价转化思想的应用:切线有两条→切点(),ett 有2个t −−−−−−→整理出关于的方程关于t 的方程()1e t b a t =+-有2个不同实根→直线y b =与()()1e t f t a t =+-有2个交点.另外由解法二可知:点(),a b 在曲线下方且在x 轴上方时符合条件的切线有2条;点(),a b 在曲线上或在x 轴上或在x 轴下方时符合条件的切线有1条;点(),a b 在曲线上方时符合条件的切线不存在;若把题中的切线换成3y x =,点(),a b 位置与切线条数有何关系,有兴趣的同学可以探讨一下.二、考题揭秘【命题意图】本题考查导数几何意义的应用,考查直观想象与逻辑推理的核心素养.难度:中等.【考情分析】导数的几何意义是高考的一个高频考点,考查热点主要有:求曲线在某点处的切线;求两条曲线的公切线;确定满足条件的曲线的条数. 【得分秘籍】(1) 导数的几何意义是研究曲线的切线的基石,函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是()0f x '.求以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2) 研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使这两个方程表示同一条直线. (3) 求曲线切线的条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线条数问题转化为关于t 的方程的实根个数问题. 【易错警示】(1) 求导出错,如一下几个函数的导数比较容易出错:()211cos sin ,x x x x ''⎛⎫'==-=- ⎪⎝⎭; (2)混淆在某点处的切线与过某点的切线,注意求曲线过某点的切线,一般是设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程. (3)对曲线的切线理解失误,如误认为曲线的切线与曲线只有1个公共点,又如误认为0x =不是曲线3y x =在0x =处的切线方程.三、以例及类(以下所选试题均来自新高考Ⅰ卷地区2020年1-6月模拟试卷) 单选题1.(2021广东省肇庆市高三二模)曲线()1ln f x x x=-在()()1,1f 处的切线方程为( ) A .230x y --= B .210x y --= C .230x y +-=D .210x y +-=【答案】A 【解析】()211x f x x=+',()11f =-,()12f '=,故切线方程为()()121y x --=-,即230x y --=. 故选A.2.(2021湖南省部分学校高三下学期联考)函数32()71f x x x =-+的图象在点(4,(4))f 处的切线斜率为( ) A .8- B .7- C .6- D .5-【答案】A【解析】因为()2314f x x x '=-,所以所求切线的斜率为()43161448f '=⨯-⨯=-.故选A3.(2021山东省滨州市高三二模)设曲线2ax y e =(e =2.718…为自然对数的底数)在点()0,1处的切线及直线210x y --=和两坐标轴的正半轴所围成的四边形有外接圆,则a =( )A .1-B .14-C .14D .1【答案】B【解析】由题意,函数()2axf x e=,可得()22axf x ae'=,则()02f a '=,即曲线2ax y e =在点()0,1处的切线的斜率为2k a =,所以切线方程为12y ax -=,即21y ax =+,要使得切线与直线210x y --=和两坐标轴的正半轴所围成的四边形有外接圆,则满足两直线垂直,即221a ⨯=-,解得14a =-.故选B. 4.(2021江苏省盐城市高三5月第三次模拟)韦达是法国杰出的数学家,其贡献之一是发现了多项式方程根与系数的关系,如:设一元三次方程)(3200ax bx cx d a +++=≠的3个实数根为1x ,2x ,3x ,则123b x x x a ++=-,122331c x x x x x x a++=,123d x x x a =-.已知函数)(321f x x x =-+,直线l 与)(f x 的图象相切于点)()(11,P x f x ,且交)(f x 的图象于另一点)()(22,Q x f x ,则( ) A .1220x x -= B .12210x x --= C .12210x x ++= D .1220x x +=【答案】D【解析】)(261f x x ='-,211()61k f x x '∴==-,又直线过点)()(22,Q x f x ,332221211221212121()()222()1f x f x x x x x k x x x x x x x x --+-∴===++---222212112()161x x x x x ∴++-=-,化简得22212120x x x x +-=,即2121(2)()0x x x x +-=,12x x ≠,2120x x ∴+=,故选D5.(2021湖南省永州市高三下学期二模)曲线()2ln f x x =在x t =处的切线l 过原点,则l 的方程是( ) A .20x ey -= B .20x ey += C .20ex y -= D .20ex y +=【答案】A【解析】曲线()2ln f x x =,2()f x x'=,切点为(),2ln t t ,所以切线l 的斜率(2)k f t t '==,又直线l 过原点,所以0220lnt k t t -==-,得1lnt =,t e =.所以2k e=,故切线l 的方程为()22y x e e -=-即20x ey -=.故选A .6.(2021广东省肇庆市高三下学期5月模拟)函数1()cos f x x x=-的图像的切线斜率可能为( ) A .13-B .2-C .53-D .4-【答案】A【解析】由1()cos f x x x=-,得'21()sin f x x x =-+,因为210x >,sin [1,1]x ∈-,所以'()1f x >-,所以函数1()cos f x x x=-的图像的切线斜率大于1-,故选A7.(2021河北省衡水中学高三第一次联考)已知M 为抛物线2:4C x y =上一点,C 在点M 处的切线11:2l y x a =+交C 的准线于点P ,过点P 向C 再作另一条切线2l ,则2l 的方程为( ) A .1124y x =-- B .122y x =-+ C .24y x =-+ D .24y x =--【答案】D【解析】设()00,M x y ,由题意知,214y x =,则12y x '=,C 在点M 处的切线11:2l y x a =+,所以001122x x y x =='=,所以01x = ,则11,4M ⎛⎫ ⎪⎝⎭,将11,4M ⎛⎫⎪⎝⎭代入11:2l y x a =+的方程可得14a =-,即111:24l y x =-,抛物线2:4C x y =的准线方程为:1y =- ,则3,12P ⎛⎫-- ⎪⎝⎭.设2l 与曲线C 的切点为()00,N x y ,则20000011(1)433222x x y x x +--==⎛⎫+-- ⎪⎝⎭,解得04x =-或01x =(舍去), 则(4,4)N -,所以2l 的方程为24y x =--.故选D8.(2021湖南省衡阳市高三下学期联考)若函数()()210f x ax a =->与()1ln g x x =-的图象存在公切线,则实数a 的最小值为( ) A .12eB .21eC .2eD .1【解析】法一:设公切线与()f x ,()g x 图象分别切于点()()1122,,A B x y x y ,, 则()f x 图象在A 处的切线方程为:()()211112y ax ax x x --=--,即21121y ax x ax =-++,同理:()g x 图象在B 处的切线方程为:()()22211ln y x x x x --=--, 即2212ln y x x x =-+-,由上述两直线重合,122121212ln ax x ax x⎧=⎪⎨⎪+=-⎩消元1x 可得,()22211ln 4x x a =-,令()()()21ln 0h x x x x =->,则()()12ln h x x '=-,当(x ∈时,()0h x '>,当)x ∈+∞时,()0h x '<,所以()h x 在(单调递增,在)+∞单调递减,则()max 142e h x h a≤==,解得12a e≥, 方法二:在同一坐标系中作出()f x ,()g x 的图象如图所示:由图象知:()f x ,()g x 分别为上凸和下凸函数,要使()f x ,()g x 存在公切线, 只须()()f x g x ≤在()0,∞+上恒成立即可,即2ln xa x≥在()0,∞+上恒成立 令()2ln x h x x =,求导得()312ln xh x x-'=,当(x ∈时,()0h x '>,当)x ∈+∞时,()0h x '<,所以当x =,()h x 取得最大值为12e ,所以12a e≥故选A 9.(2021江苏省南通等七市2021届高三下学期2月调研)已知曲线ln y x =在()11,A x y ,()22,B x y ,两点处的切线分别与曲线x y e =相切于()33,C x y ,()44,D x y ,则1234x x y y +的值为( )A .1B .2C .52D .174【答案】B【解析】由题设有33111311ln 1x x e x x e x x x ⎧=⎪⎪⎨-⎪=⎪-⎩,化简可得111311ln 1x x x x x -=-即31111ln ln x x x x x =+-=-, 整理得到1111ln 1x x x +=-,同理2221ln 1x x x +=-,不妨设12x x <,令12ln ln 111x y x x x x +=-=----,因为当()0,1x ∈时,2ln ,1y x y x ==--均为增函数,故1ln 1x y x x +=--为增函数, 同理当()1,x ∈+∞时,故1ln 1x y x x +=--为增函数,故12,x x 分别为1ln 1x y x x +=--在()0,1、()1,+∞上的唯一解,又1111111111lnln ,111x x x x x x ++=-=---,故111111ln 11x x x +=-, 故11x 为1ln 1x y x x +=--在()1,+∞的解,故211x x =即121=x x . 所以34123412121212x x x x y y x x ex x x x ++=+=+=,故选B. 10.(2021江苏省苏州市常熟市高三抽测)已知两曲线()2sin f x x =,()cos g x a x =,0,2x π⎛⎫∈ ⎪⎝⎭相交于点P ,若两曲线在点P 处的切线互相垂直,则实数a 的值为( ) A .2 BC .2± D.±【答案】B【解析】设切点(P m ,)(0)2n m π<<,由()2sin f x x =的导数()2cos f x x '=,()cos g x a x =的导数()sin g x a x '=-, 可得2cos (sin )1m a m ⋅-=-,所以1sin cos 2m m a=, 又2sin cos m a m =, 即sin tan (0)cos 2m am a m ==>,则2222sin cos tan 12sin cos 1214a m m m m m a sin m cos m tan m a====+++,即为2314a =,解得3a =,故选B11.(2021山东省高考考前热身押题)若x ,y R ∈,0x >,求()()2224ln 21x y x x y -+---的最小值为( ) ABC .165D【答案】C【解析】问题可以转化为:()2,4ln A x x x-是函数24ln y x x =-图象上的点,(),21B y y +是函数21y x =+上的点,()()22224ln 21AB x y x x y =-+---.当与直线21y x =+平行且与()f x 的图象相切时,切点到直线21y x =+的距离为AB 的最小值.()2422,20,1f x x x x x x=-=+-==',舍去负值, 又()11f =-,所以()1,1M -到直线21y x =+的距离即为AB 的最小值.min AB =,2min 165AB =.故选C.12.(2021河北省邢台市高考模拟)若曲线()11xmy xe x x =+<-+存在两条垂直于y 轴的切线,则m 的取值范围为( ) A .427,0e ⎛⎫-⎪⎝⎭B .427,0e -⎡⎫⎪⎢⎣⎭C .427,e ⎛⎫-+∞ ⎪⎝⎭D .4271,e ⎛⎫--⎪⎝⎭【答案】A【解析】∵曲线()11xmy xe x x =+<-+存在两条垂直于y 轴的切线, ∴函数()11xmy xe x x =+<-+的导函数存在两个不同的零点, 又()()'2101x my x e x =+-=+,即()31xm x e =+在(),1-∞-上有两个不同的解,设()()()311x f x x e x =+<-,()()()2'14xf x x e x =++,当4x <-时,()'0fx <;当41x -≤<-时,()'0f x >,所以()()4min 274f x f e =-=-, 又当x →-∞时,()0f x →,当1x →-时,()0f x →, 故427,0m e ⎛⎫∈-⎪⎝⎭.故选A. 13.(2021福建省龙岩市高三三模)若直线y kx b =+是曲线2x y e -=的切线,也是曲线1x y e =-的切线,则k b +=( )A .ln22- B .1ln22- C .ln212- D .ln22【答案】D【解析】设曲线2x y e -=上的点11(,)P x y ,2x y e -'=,121x k e -=; 曲线1x y e =-上的点22(,)Q x y ,e x y '=,22xk e =;11122211x x x l y e x e x e ---∴=+-:,222221x x x l y e x e x e ∴=+--:121122222121x x x x x x e e e x e e x e ---⎧=∴⎨-=--⎩,2ln 2x ∴=-, 2222111ln 21(ln 2)2222x x x k b e e x e ∴+=+-+=+--=.故选D . 二、多选题14.(2021广东省深圳市高三下学期二模)设函数()xf x e ex =-和()()()21ln 122g x x kx k x k =-+-+∈R ,其中e 是自然对数的底数()2.71828e =,则下列结论正确的为( )A .()f x 的图象与x 轴相切B .存在实数0k <,使得()g x 的图象与x 轴相切C .若12k =,则方程()()f x g x =有唯一实数解 D .若()g x 有两个零点,则k 的取值范围为10,2⎛⎫ ⎪⎝⎭【答案】ACD【解析】()x f x e e '=-,若()f x 的图象与x 轴相切,则()01xf x e e x '=-=⇒=,又(1)0f =,则切点坐标为(1,0),满足条件,故A 正确;()()212(12)1(1)(12)212kx k x x kx g x kx k x x x-+-++-'=-+-==,()0x >, 当0k <时,易知()0g x '>恒成立,不存在为0的解,故不存在实数0k <,使得()g x 的图象与x 轴相切,B 错误; 由上所述,()f x 在(0,1)x ∈上单减,(1,)x ∈+∞上单增,则()(1)0f x f ≥=; 若12k =,()211ln 22g x x x =-+,()(1)(1)x x g x x+-'=,()g x 在(0,1)x ∈上单增,(1,)x ∈+∞上单减,()(1)0g x g ≤=,故方程()()f x g x =有唯一实数解1x =,故C 正确;()(1)(12)x kx g x x+-'=,()0x >,当0k ≤时,()0g x '>恒成立,()g x 单增,不存在2个零点,故舍去; 当0k >时,()g x 在1(0,)2k 上单增,在1(,)2k+∞上单减,且0x →时,()g x →-∞,x →+∞时,()g x →-∞,故若()g x 有两个零点,则应使最大值102g k ⎛⎫>⎪⎝⎭, 即()21111111ln ()12ln 202222242g k k k k k k k k ⎛⎫=-+-+=-->⎪⎝⎭, 令11()ln 242h k k k =--,易知()h k 单调递减,且1()02h =, 因此()0h k >的解集为1(0,)2k ∈,D 正确;故选ACD15.(2021河北省邯郸市高三三模)英国数学家牛顿在17世纪给出了一种求方程近似根的方法——牛顿迭代平法,做法如下:如图,设r 是()0f x =的根,选取0x 作为r 的初始近似值,过点()()00,x f x 作曲线()y f x =的切线()()()000:'l y f x f x x x -=-,则l 与x 轴的交点的横坐标()()()()01000'0'f x x x f x f x =-≠,称1x 是r的一次近似值;过点()()11,x f x 作曲线()y f x =的切线,则该切线与x 轴的交点的横坐标为x 2,称x 2是r 的二次近似值;重复以上过程,得r 的近似值序列,其中()()()()1'0'n n n n n f x x x f x f x +=-≠,称1n x +是r 的n +1次近似值,这种求方程()0f x =近似解的方法称为牛顿迭代法.若使用该方法求方程22x =的近似解,则( )A .若取初始近似值为1,则该方程解的二次近似值为1712 B .若取初始近似值为2,则该方程解的二次近似值为1712C .()()()()()()()()0123400123''''f x f x f x f x x x f x f x f x f x =----D .()()()()()()()()0123400123''''f x f x f x f x x x f x f x f x f x =-+-+【答案】ABC【解析】构造函数2()2f x x =-,则'()2f x x =,取初始近似值01x =,则()()01001231'212f x x x f x -=-=-=⨯,()()12119231743'21222f x x x f x -=-=-=⨯,则A 正确;取初始近似值02x =,则()()0100423222'2f x x x f x -=-=-=⨯,()()12119231743'21222f x x x f x -=-=-=⨯,则B 正确;根据题意,可知()()0100'f x x x f x =-,()()1211'f x x x f x =-,()()2322'f x x x f x =-,()()3433'f x x x f x =-,上述四式相加,得()()()()()()()()0123400123''''f x f x f x f x x x f x f x f x f x =----,则D 不正确,C 正确,故选ABC.16.(2021河北省唐山市高三下学期第二次模拟)若直线y ax =与曲线()x f x e =相交于不同两点()11,A x y ,()22,B x y ,曲线()x f x e =在A ,B 点处切线交于点()00,M x y ,则( )A .a e >B .1201x x x +-=C .2AM BM AB k k k +>D .存在a ,使得135AMB ∠=︒【答案】ABC【解析】对于A :当0a ≤时,直线y ax =与曲线()x f x e =没有两个不同交点,所以>0a ,如图1所示, 当直线y ax =与曲线()x f x e =相切时,设切点为()(),P t f t ,则'()x f x e =,所以切线方程为:()t ty e e x t -=-,代入点()00,解得1t =,此时a e =,所以直线y ex =与曲线()x f x e =相切,所以当a e >时直线y ax =与曲线()x f x e =有两个不同的交点, 当0a e <<时,直线y ax =与曲线()x f x e =没有交点,故A 正确; 对于B :由已知得11x ax e =,22xax e =,不妨设12x x <,则1201x x <<<,又()x f x e =在点A 处的切线方程为:()111+xxy e x x e =-,在点B 处的切线方程为()222+x xy ex x e =-,两式相减得()()121212+1+0x xx x e e x x ex e --=,将11x ax e =,22x ax e =代入得()()()()121122+1+0x x ax ax x x x a a --⋅⋅=,因为()120a x x -≠,所以121x x x +-=,即1201x x x +-=,故B 正确;对于C :要证2AM BM AB k k k +>,即证12+>2x x e e a ,即证12+>2a ax x a ,因为>a e ,所以需证12+>2x x .令xax e =,则x e a x =,令()x e g x x =,则点A 、B 是y a =与e xy x=的两个交点,令()()()()201G x g x g x x =--<<,所以()()()2'2212x x e x x x e G x -⎛⎫=-- ⎝-⎪⎪⎭,令()()2>0x e x h x x =,则()()'32x e x h x x -=,所以当()0,2x ∈时,()'0h x <,()h x 单调递减,而01x <<,0122x x <<<-<,所以 ()()>2h x h x -,所以01x <<时,()'0G x <,所以()G x 单调递减,所以()()>10G x G =,即()()112>0g x g x --,又()()12g x g x a ==,所以()()21>2g x g x -, 而()()2'1x x g e xx -=,所以当>1x 时,()'>0g x ,()g x 单调递增,又2>1x ,12>1x -,所以21>2x x -,即12+>2x x ,故C 正确;对于D :设直线AM 交x 轴于C ,直线BM 交x 轴于点D ,作ME x ⊥轴于点E .若135AMB ∠=︒,则45AMD ∠=,即45MDE MCD ∠-∠=,所以()tan tan tan 11tan tan 1BM AM AM BMk k MDE MCDMDE MCD +MDE MCD +k k -∠-∠∠-∠===∠⨯∠⨯,化简得1BM AM AM BM k k +k k -=⨯,即21121211x x x x x +x e e e e ++e -=⨯=,所以21121ax ax +ax ax -=⨯,即()21121a x x x x --=,令2112m x x x x =--,则()()211212111m x x x x x x ++=--=--,又1201x x <<<,所以()()2112121111m x x x x x x ++>=--=--,而a e >,所以方程()21121a x x x x --=无解,所以不存在a ,使得135AMB ∠=︒,故D 不正确, 故选ABC .三、填空题17.(2021山东省百所名校高三下学期4份联考)已知函数()3xf x e mx =-,曲线()y f x =在不同的三点()()11,x f x ,()()22,x f x ,()()33,x f x 处的切线均平行于x 轴,则m 的取值范围是______.【答案】2e ,12⎛⎫+∞ ⎪⎝⎭【解析】因为函数()3xf x e mx =-,所以()23xf x e mx '=-,又曲线()y f x =在不同的三点()()11,x f x ,()()22,x f x ,()()33,x f x 处的切线均平行于x 轴,所以230xe mx -=有3个不同的解,即23xe m x=,令()2xe g x x =,则()()32x e x g x x-'=,当()0g x '>时,0x <或2x >;当()0g x '<时,02x <<,所以()g x 在2x =时有极小值为()24xe g =,结合函数()2x e g x x =图象可知,234e m >,即212e m >.18.(2021江苏省南京市高三下学期5月第三次模拟)已知直线y kx b =+与曲线2cos y x x =+相切,则2k b π+的最大值为______. 【答案】24π 【解析】由2cos y x x =+得:2sin y x x '=-,设直线y kx b =+与曲线2cos y x x =+相切与点()2000,cos x x x +,则002sin k x x =-,又2000cos x x kx b +=+,则20000cos sin b x x x x =-+,()20000002sin cos sin 22k b x x x x x x ππ∴+=-+-+200000sin cos 2x x x x x ππ⎛⎫=+-+- ⎪⎝⎭,令()2sin cos 2f x x x x x x ππ⎛⎫=+-+- ⎪⎝⎭,()sin cos sin 22cos 22f x x x x x x x x x ππππ⎛⎫⎛⎫'∴=++---=-+- ⎪ ⎪⎝⎭⎝⎭()cos 22x x π⎛⎫=-- ⎪⎝⎭,1cos 1x -≤≤,cos 20x ∴-<,∴当,2x π⎛⎫∈-∞ ⎪⎝⎭时,()0f x '>;当,2x π⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<;()f x ∴在,2π⎛⎫-∞ ⎪⎝⎭上单调递增,在,2π⎛⎫+∞ ⎪⎝⎭上单调递减,()222maxcos 22244f x f πππππ⎛⎫∴==+-=⎪⎝⎭,即2k b π+的最大值为24π. 四、解答题18.(2021广东省惠州市高三调研)已知实数0a >,函数()22ln f x a x a x x=++,(0,10)x ∈. (1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点11(,())P x f x 、22(,())Q x f x (12x x <)处的切线分别为12l l ,,且12l l ,在y 轴上的截距分别为1b 、2b .若12l l //,求12b b -的取值范围. 【解析】(1)()()()()222212010ax ax a f x a x x x x+-'=-++=<<. 0a >,010x <<, 20ax ∴+>.①当110a ≥,即当10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<, ()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当1,10x a ⎛⎫∈⎪⎝⎭时,()0f x '>,()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫⎪⎝⎭上单调递增.综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减; 当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫⎪⎝⎭上单调递增.(2)1x =是()f x 的极值点,()10f '∴=,即()()210a a +-=, 解得:1a =或2a =-(舍), 此时()2ln f x x x x =++, ()2211f x x x'=-++.1l ∴方程为:()1112111221ln 1y x x x x x x x ⎛⎫⎛⎫-++=-++-⎪ ⎪⎝⎭⎝⎭, 令0x =,得:1114ln 1b x x =+-; 同理可得:2224ln 1b x x =+-. 12//l l ,221122212111x x x x ∴-++=-++, 整理得:()12122x x x x =+,12122x x x ∴=-, 又12010x x <<<,则1112102x x x <<-, 解得:1542x <<, ()1212211111211221222221244ln ln ln 1x x x x x x x x xb b x x x x x x x x x ⎛⎫- ⎪--⎝⎭∴-=+=+=+++.令12x t x =, 则1111211,1224x x t x x -⎛⎫=⋅=-∈ ⎪⎝⎭, 设()()21ln 1t g t t t-=++, ()()()()222141011t g t t t t t -'∴=-+=>++, ()g t ∴在1,14⎛⎫ ⎪⎝⎭上单调递增,又()10g =,16ln 445g ⎛⎫=- ⎪⎝⎭,()6ln 4,05g t ⎛⎫∴∈- ⎪⎝⎭,即12b b -的取值范围为6ln 4,05⎛⎫- ⎪⎝⎭.。
2019年广东省深圳市高考数学二模试卷(理科)解析版

2019年广东省深圳市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |x >0},N ={x |x 2-4≥0},则M ∪N =( )A. (−∞,−2]∪(0,+∞)B. (−∞,−2]∪[2,+∞)C. [3,+∞)D. (0,+∞) 2. 在复平面内,复数z =i(1+i)1−2i所对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 2019年是中国成立70周年,也是全面建成小康社会的关键之年.为了迎祖国70周年生日,全民齐心奋力建设小康社会,某校特举办“喜迎国庆,共建小康”知识竞赛活动.如图的茎叶图是参赛两组选手答题得分情况,则下列说法正确的是( )A. 甲组选手得分的平均数小于乙组选手的平均数B. 甲组选手得分的中位数大于乙组选手的中位数C. 甲组选手得分的中位数等于乙组选手的中位数D. 甲组选手得分的方差大于乙组选手的方差4. 已知等比数列{a n }满足a 1=12,且a 2a 4=4(a 3-1),则a 5=( )A. 8B. 16C. 32D. 645. 已知函数f(x)=ax 2+(1−a)x +2x 是奇函数,则曲线y =f (x )在x =1处的切线得倾斜角为( )A. π4B. 3π4C. π3D. 2π36. 在平行四边形ABCD 中,E 为CD 的中点,F 为AE 的中点,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,则FB⃗⃗⃗⃗⃗ =( ) A. −34a⃗ +12b ⃗ B. 12a⃗ +34b ⃗ C. 12a⃗ −34b ⃗ D. 34a⃗ −12b ⃗ 7. 如图所示,网格上小正方形的边长为1,粗实线和粗虚线画出的是某几何体的三视图,则该几何体的表面积为( ) A. (8+4√2)π B. (9+4√2)π C. (8+8√2)π D. (9+8√2)π 8. 十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A 为圆O 上一个定点,在圆周上随机取一点B ,连接AB ,所得弦长AB 大于圆O 的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )A. 15B. 14C. 13D. 129. 已知函数f(x)=ax +lnx −1有且仅有一个零点,则实数a 的取值范围为( )A. (−∞,0]∪{1}B. [0,1]C. (−∞,0]∪{2}D. [0,2]10. 设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点,点A ,B 分别为椭圆C 的右顶点和下顶点,且点F 1关于直线AB 的对称点为M .若MF 2⊥F 1F 2,则椭圆C 的离心率为( )A. √3−12 B. √3−13 C. √5−12D. √2211. 已知函数f(x)=√3sinωx +cosωx(ω>0)在区间[−π4,π3]上恰有一个最大值点和最小值点,则实数ω的取值范围为( )A. [83,7)B. [83,4)C. [4,203)D. (203,7)12. 如图,在四面体ABCD 中,AB =CD =2,AC =BD =√3,AD =BC =√5,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A. √6B. √62C. 52D. 54二、填空题(本大题共4小题,共20.0分)13. 设实数x ,y 满足{2≤x ≤3,1≤y ≤2,x +y ≤4,则yx−1的最大值为______.14. 已知双曲线C :x 2a 2−y 2b 2=1,且圆E :(x -2)2+y 2=1的圆心是双曲线C 的右焦点.若圆E 与双曲线C的渐近线相切,则双曲线C 的方程为______.15. 精准扶贫是全国建成小康社会、实现中华民族伟大“中国梦”的重要保障.某单位拟组成4男3女共7人的扶贫工作队,派驻到3个扶贫地区A 、B 、C 进行精准扶贫工作.若每一个地区至少派驻1男1女两位工作人员,且男性甲必须派驻到A 地区,则不同的派驻方式有______种.16. 设S n 是数列{a n }的前n 项和,且a 1=3,当n ≥2时,有S n +S n -1-2S n S n -1=2na n ,则使得S 1S 2…S m ≥2019成立的正整数m 的最小值为______.三、解答题(本大题共7小题,共82.0分)17. 已知△ABC 中,AB =√2BC ,AC =2√5,点D 在边AC 上,且AD =2CD ,∠ABD =2∠CBD .(1)求∠ABC 的大小; (2)求△ABC 的面积.18. 在边长为4的正方形ABCD 中,点E 、F 分别为边AB 、AD 的中点,以CE ,CF 为折痕将△DFG 和△BCE 折起,使点B 、D 重合于点P ,连结PA ,得到如图所示的四棱锥P -AEF .(1)求证:EF ⊥PC ;(2)求直线PA 与平面PEC 所成角的正弦值.19. 某网店销售某种商品,为了解该商品的月销量y (单位:千件)与月售价x (单位:元/件)之间的关系,对近几年的月销售量y i 和月销售价x i (i =1,2,3,-..10)数据进行了统计分析,得到了下面的散点图(1)根据散点图判断,y =c +d ln x 与y =bx +a 哪一个更适宜作为月销量y 关于月销售价x 的回归方程类型?(给出判断即可,不需说明理由),并根据判断结果及表中数据,建立y 关于x 的回归方程; (2)利用(1)中的结果回答问题:已知该商品的月销售额为Z (单位:千元),当月销售量为何值时,商品的月销售额预报值最大?(月销售额=月销售量x 当月售价) 参考公式、参考数据及说明:①对一组数据(v 1,w 1),(v 2,w 2),…(v n ,w n ),其回归直线w =α+βv 的斜率和截距的最小二乘估计分别为=∑(n i=1w i −w −)(v i −v −)∑(n i=1v i −v −)2,=w−v −.②参考数据:x −y −u −∑10i=1(x i −x −)2 ∑10i=1(u i −u −)2∑10i=1(x i −x −)(y i −y −)∑10i=1(u i −u −)(y i −y −) 6.506.601.75 82.502.70-143.25-27.54表中u i =ln x i ,u −=110∑10i=1u i .③计算时,所有的小数都精确到0.01,如ln4.0≈1.40.20. 己知抛物线C :x 2=4y ,过点(2,3)的直线l 交C 于A 、B 两点,抛物线C 在点A 、B 处的切线交于点P .(l )当点A 的横坐标为4时,求点P 的坐标;(2)若Q 是抛物线C 上的动点,当|PQ |取最小值时,求点Q 的坐标及直线l 的方程.21. 已知函数f (x )=e x -ae -x -(a +1)x (a ∈R ).(其中常数e =2.71828…,是自然对数的底数).(1)求函数f (x )极值点;(2)若对于任意0<a <1,关于x 的不等式[f (x )]2<λ(e a -1-a )在区间(a -1,+∞)上存在实数解,求实数λ的取值范围.22. 在平面直角坐标系xOy 中,曲线C 1的参数方程为{y =sinαx=2cosα(α为参数).圆C 2的方程为(x -2)2+y 2=4,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,射线l 的极坐标方程为θ=θ0(ρ≥0).(l )求曲线C 1和圆C 2的极坐标方程:(2)当0<θ0<π2时,射线l 与曲线C 1和圆C 2分别交于异于点O 的M 、N 两点,若|ON |=2|OM |,求△MC 2N 的面积.23. 已知函数f(x)=|x −m|+|x +1m |(m >1).(Ⅰ)当m =2时,求不等式f (x )>3的解集; (Ⅱ)证明:f(x)+1m(m−1)≥3.答案和解析1.【答案】A【解析】解:∵集合M={x|x>0},N={x|x2-4≥0}={x|x≥2或x≤-2},∴M∪N={x|x≤-2或x>0}=(-∞,-2]∪(0,+∞).故选:A.先分别求出集合M,N,再利用并集定义求解.本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:在复平面内,复数==--i所对应的点(-,-)位于第三象限.故选:C.利用复数的运算法则、几何意义即可得出.本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.【答案】D【解析】解:由茎叶图可知:①==84,==84,即=,故选项A错误,②甲组选手得分的中位数为83,乙组选手得分的中位数为84,即甲组选手得分的中位数小于乙组选手的中位数,即选项B正确,③由选项B可知,选项C错误,④因为S甲2=[(75-84)2+(82-84)2+(83-84)2+(87-84)2+(93-84)2]=,S乙2=[(77-84)2+(83-84)2+(84-84)2+(85-84)2+(91-84)2]=,即S甲2>S乙2,即选项D 正确,故选:D.先分析处理茎叶图的信息,再结合平均数、中位数、方差的概念进行运算即可得解本题考查了茎叶图及平均数、中位数、方差的运算,属中档题4.【答案】A【解析】解:等比数列{a n}满足,且a2a4=4(a3-1),则×q××q3=4(×q2-1),解得q2=4,∴a5=a1q4=×42=8,故选:A.先由题意求出公比,再根据等比数列的通项公式公式即可求出a5的值本题考查了等比数列的通项公式,考查了运算求解能力,属于基础题5.【答案】B【解析】解:函数是奇函数,可得f(-x)=-f(x),可得a=0,f(x)=x+,f′(x)=1-,即有曲线y=f(x)在x=1处的切线斜率为k=1-2=-1,可得切线的倾斜角为,故选:B.由奇函数的定义可得a=0,求得f(x)的导数,求得切线的斜率,由斜率公式可得倾斜角.本题考查函数的奇偶性和导数的运用:求切线斜率,考查化简运算能力和推理能力,属于基础题.6.【答案】D【解析】解:由题可知,═=.故选:D.由题可知,∵,可求出.本题考查了平面向量的线性运算,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用7.【答案】A【解析】解:根据三视图,该几何体是由一个圆锥和一个圆柱构成,圆锥的求半径为2,高为2,圆柱的底面半径为1,高为2.所以:S==.故选:A.首先根据三视图,把几何体复原,进一步利用表面积公式求出结果.本题考查的知识要点:三视图的应用,锥体和球体的体积公式的应用.8.【答案】C【解析】解:设“弦AB的长超过圆内接正三角形边长”为事件M,以点A为一顶点,在圆中作一圆内接正三角形ACD,如所示,则要满足题意点B只能落在劣弧CD上,又圆内接正三角形ACD恰好将圆周3等分,故P(M)=,故选:C.由题意画出图形,求出满足条件的B的位置,再由测度比是弧长比得答案.本题考查几何概型的意义,关键是要找出满足条件弦AB的长度超过圆内接正三角形边长的图形测度,再代入几何概型计算公式求解,是基础题.9.【答案】A【解析】解:∵函数,∴f′(x)=+=,x>0,当a≤0时,f′(x)=>0恒成立,f(x)是增函数,x→+∞时,f(x)→+∞,f(1)=a-1<0,函数有且仅有一个零点;当a>0时,令f′(x)>0,解得:x>a,令f′(x)<0,解得:x<a,故f(x)在(0,a)递减,在(a,+∞)递增,故只需f(x)min=f(a)=lna=0,解得:a=1,综上:实数a的取值范围为(-∞,0]∪{1}.故选:A.求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而确定满足条件的a的范围即可.本题考查函数的单调性,最值问题,考查导数的应用以及函数零点问题,考查利用导数研究函数极值点问题、利用导数研究函数的单调性与极值、最值问题等基础知识,考查分类讨论思想、化归与转化思想,考查运算求解能力,是中档题.10.【答案】C【解析】解:F1、F2分别是椭圆C :的左、右焦点,点A,B分别为椭圆C的右顶点和下顶点,点F1关于直线AB:bx-ay=ab的对称点M,且MF2⊥F1F2,可得MF2的方程为x=c,MF1的方程y=,可得M(c,-),MF1的中点为(0,-),代入直线bx+ay=ab,可得:ac=b2=c2-a2,e=>1,可得e2-e-1=0,解得e=.故选:C.画出图形,利用已知条件求出A的坐标,然后求解MF1的中点,代入直线方程,即可求解椭圆的离心率.本题考查椭圆的简单性质的应用,是基本知识的考查.11.【答案】B【解析】解:函数,=2sin(ωx+).令:,所以:f(x)=2sint,在区间上恰有一个最大值点和最小值点,则:函数y=2sint恰有一个最大值点和一个最小值点在区间[],则:,解得:,即:.故选:B.首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.12.【答案】B【解析】解:补成长,寛,高分别为,,1的长方体(如下图)由于EF⊥α,故截面为平行四边形MNKL,可得KL+KN=,设异面直线BC与AD所成的角为θ,则sinθ=sin∠HFB=sin∠LKN,算得sinθ=,∴S四边形MNKL=NK•KL•sin∠NKL≤()2=,当且仅当NK=KL时取等号.故选:B.补成长,寛,高分别为,,1的长方体,在长方体中可解决.本题考查了平面的基本性质及推论,属中档题.13.【答案】2【解析】解:由实数x,y满足作出可行域如图,联立,得A(2,2),由z=,而k DA ==2.∴目标函数的最大值为2.故答案为:2.由约束条件作出可行域,再由目标函数的几何意义,即可行域内的点与定点D(1,0)连线的斜率求解.本题考查简单的线性规划,考查数形结合的解题思想方法和数学转化思想方法,是中档题.14.【答案】x23−y2=1【解析】解:根据题意得:圆E:(x-2)2+y2=1的圆心F(2,0),半径为1,双曲线渐近线方程为y=±x,即±bx-ay=0,∵以点F为圆心,半径为1的圆与双曲线C的渐近线相切,且4=a2+b2,∴圆心F到渐近线的距离d==b=1,可得a=,所以双曲线方程为:=1.故答案为:=1.根据双曲线方程表示出F坐标,以及渐近线方程,由以点F为圆心,半径为1的圆与双曲线C 的渐近线相切,得到圆心F到渐近线距离d=1,整理得到a,b,即可求解双曲线方程.此题考查了双曲线的简单性质,直线与圆相切的性质,熟练掌握双曲线的简单性质是解本题的关键.15.【答案】72【解析】解:根据题意,分2种情况讨论:①,只有甲一名男性工作人员派到A地区:需要在3名女性工作人员中任选1人,与甲一起派到A地区,将剩下的3名男性工作人员分成2组,与剩下的2名女性工作人员一起全排列,对应B、C两个地区,此时有C31×C32×A22×A22=36种派驻方法;②,甲与另外一名男性工作人员一起派到A地:需要在3名男性工作人员中任选1人,在3名女性工作人员中任选1人,与甲一起派到A地区,将剩下的2名男性工作人员与剩下的2名女性工作人员一起全排列,对应B、C两个地区,此时有C31×C31×A22×A22=36种派驻方法;则一共有36+36=72种派驻方法;故答案为:72.根据题意,分2种情况讨论:①,只有甲一名男性工作人员派到A地区:②,甲与另外一名男性工作人员一起派到A地,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,属于基础题.16.【答案】1009【解析】解:∵S n+S n-1-2S n S n-1=2na n,∴S n+S n-1-2S n S n-1=2n(S n-S n-1),∴2S n S n-1=(2n+1)S n-1-(2n-1)S n,∴.令,则b n-b n-1=2(n≥2).∴数列{b n}是以为首项,以2为公差的等差数列.∴b n=2n-1.即,得.∴S1S2…S m =.由2m+1≥2019,解得m≥1009.即正整数m的最小值为1009.故答案为:1009.把已知数列递推式变形,得到,令,则b n-b n-1=2(n≥2),可知数列{b n}是以为首项,以2为公差的等差数列,求其通项公式,得到S n,再由累积法求得S1S2…S m,求解不等式得答案.本题考查数列递推式,考查了等比关系的确定,训练了利用累积法求数列的通项公式,是中档题.17.【答案】(本题满分为12分)解:(1)∵AD=2CD,设∠ABD=2∠CBD=2θ.∴S△BDCS△ABD=CDAD=12,∵S△BDC=12BC⋅BD⋅sinθ,S△BDA =12AB⋅BD⋅sin2θ,AB =√2BC,∴解得:cosθ=√22,可得:θ=π4,∴∠ABC=∠ABD+∠CBD=3θ=3π4…8分(2)在△ABC中,由余弦定理,可得:AC2=AB2+AC2-2AB•BC•cos3θ,因为AC=2√5,AB=√2BC,可得(2√5)2=(√2BC)2+BC2-2√2BC•BC•cos3π4,解得BC=2,…10分可得S△ABC=12AB•BC•sin3θ=12×√2BC2×√22=2…12分【解析】(1)由已知设∠ABD=2∠CBD=2θ.利用三角形的面积公式可求==,结合S△BDC=,,AB=BC,可求cosθ=,解得,可求∠ABC=∠ABD+∠CBD=3θ=.(2)在△ABC中,由余弦定理可求得BC=2,根据三角形的面积公式即可计算得解.本题主要考查了三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:(1)连接AC ,BD ,EF ,设EF ∩AC =O ,连接OP . ∵PC ⊥PE ,PC ⊥PF ,PE ∩PF =P ,∴PC ⊥平面PEF ,∴PC ⊥EF .∵四边形ABCD 是正方形,∴AC ⊥BD , ∵E ,F 分别是AB ,AD 的中点, ∴EF ∥BD ,∴EF ⊥AC ,又PC ∩AC =C ,∴EF ⊥平面PAC ,又PC ⊂平面PAC , ∴EF ⊥PC .(2)由(1)可知EF ⊥平面PAC ,PC ⊥平面PEF . ∵OC =34AC =3√2,PC =4,∴PO =√OC 2−PC 2=√2,∴sin ∠PCA =PO OC =13,cos ∠PCA =2√23,∴S △PAC =12×4×4√2×13=8√23.PA =√16+32−2×4×4√2×2√23=4√33, 又OE =12EF =√2,∴V E -PAC =13×8√23×√2=169,又S △PCE =12×2×4=4,设A 到平面PCE 的距离为h , 则V A -PCE =13×4×h =169,解得h =43. ∴直线PA 与平面PEC 所成角的正弦值为ℎPA =√33.【解析】(1)连接AC ,BD ,EF ,通过证明PC ⊥平面PEF 得出PC ⊥EF ,根据中位线定理得出EF ⊥AC ,故而可得EF ⊥平面PAC ,于是EF ⊥PC ;(2)根据V E-PAC =V A-PCE 计算A 到平面PCE 的距离,再计算线面角的正弦值; 本题考查了线面垂直的判定与性质,考查直线与平面所成角的计算,属于中档题. 19.【答案】解:(1)y =c +d ln x 更适合销量y 关于月销售价格x 的回归方程类型,令u =ln x ,先建立y 关于u 的线性回归方程,=−27.542.70=-10.20,=6.6+10.20×1.75=24.45,∴y 关于u 的线性回归方程为, 因此y 关于x 的回归方程为.(2)由题意得z =xy =x (24.45-10.20ln x ),则z ′=[x (24.45-10.20ln x )]′=14.25-10.20ln x , 令z ′=0得14.25-10.20ln x =0,得ln x ≈1.40, 得x ≈4.06,当x ∈(0,4.06)时,z ′>0,此时z 单调递增,当x ∈(4.06,+∞)时,z 单调递减, 故当x =4.06时,z 取得最大值,即月销售量y =10.17(千件)时,月销售额预报值最大. 【解析】(1)根据散点图得到y=c+dlnx 更适合销量y 关于月销售价格x 的回归方程类型,结合表格数据进行计算即可.(2)求出z 的表达式,求z 的导数,结合函数的单调性最值之间的关系进行判断即可. 本题主要考查回归方程的应用,结合数据进行计算,求出相应的系数是解决本题的关键.考查学生的计算能力.20.【答案】解:(1)∵点A 的横坐标为4,∴A (4,4),易知此时直线l 的方程为y =12x +2, 联立{x 2=4yy =12x +2,解得{y =1x=−2,或{y =4x=4,∴B (-2,1).由y =x 24得y ′=x2,所以k PA =2,直线PA 的方程为y =2x -4,同理可得直线PB 的方程为y =-x -1,联立;{y =−x −1y=2x−4,可得{y =−2x=1,故点P 的坐标为(1,-2). (2)设A (x 1,x 14),B (x 2,x 24),由y =x 24得y ′=x2,所以k PA =x 12,所以直线PA 的方程为y -x 124=x 12(x -x 1),即y =x12x -x 124,同理PB 的方程为y =x 22x -x 224,联立解得P (x 1+x 22,x 1x 24),依题意直线l 的斜率存在,不妨设直线l 的方程为y -3=k (x -2),由{y −2=k(x −2)x 2=4y得x 2-4kx +8k -12=0,易知△>0,因此x 1+x 2=4k ,x 1x 2=8k -12,∴P (2k ,2k -3),∴点P 在直线x -y -3=0上,当|PQ |取得最小值时,即抛物线C :x 2=4y 上的点Q 到直线x -y -3=0的距离最小. 设Q (x 0,x 024),Q 到直线x -y -3=0的距离d =|x 0−x 024−3|√2=|(x 02−1)2+1|√2=√2+(x 02−1)2√2,所以当x 0=2时,d 取最小值√2,此时Q (2,1),易知过点Q 且垂直于x -y -3=0的直线方程为y =-x +3,由{x −y −3=0y=−x+3解得P (3,0),k =32,所以直线l 的方程为y =32x , 综上,点Q 的坐标为(2,1),直线l 的方程为y =32x . 【解析】(1)通过导数的几何意义求得PA,PB的斜率,再求得PA,PB的方程,再联立解得P的坐标:(2)设出A,B的坐标后利用导数的几何意义求得PA,PB的方程,联立解得P的坐标,得点P 在定直线x-y-3=0上,∴点P在直线x-y-3=0上,当|PQ|取得最小值时,即抛物线C:x2=4y上的点Q到直线x-y-3=0的距离最小.再利用点到直线距离公式求出Q到直线x-y-3=0 的距离及其最小值的条件,可得Q的坐标,从而可得直线l的方程.本题考查了直线与抛物线的综合,属难题.21.【答案】解:(1)∵函数f(x)=e x-ae-x-(a+1)x(a∈R).∴f′(x)=e x+ae-x-(a+1)=(e x−1)(e x−a)e x,①当a≤0时,x(-∞,0) 0(0,+∞)f′(x)- 0+f(x)↓极小值↑∴函数f(x)的极小值点为x=0,无极大值点.②当0<a<1时,x(-∞,ln a) ln a(ln a,0) 0(0,+∞)f′(x)+ 0- 0+f(x)↑极大值↓极小值↑∴函数f(x)的极大值点为x=ln a,极小值点为x=0.③当a=1时,f′(x)=(e x−1)2e x≥0,∴函数f(x)单调递增,即f(x)无极值点.④当a>1时,x(-∞,0) 0(0,ln a) ln a(ln a,+∞)f′(x)+ 0- 0+f(x)↑极大值↓极小值↑∴函数f(x)的极大值点为x=0,极小值点为x=ln a.综上:当a≤0时,函数f(x)的极小值点为x=0,无极大值点.当0<a<1时,函数f(x)的极大值点为x=ln a,极小值点为x=0.当a=1时,函数f(x)无极值点.当a>1时,函数f(x)的极大值点为x=0,极小值点为x=ln a.(2)e x≥1+x,当且仅当x=0时取等号,∵当0<a<1时,ln a<a-1<0,∴当0<a<1时,e a-1>1+a-1=a,∴ln a<a-1<0,令g(a)=ln a-a+1,则g′(a)=1a−1,当0<a<1时,g′(a)>0,∴g(a)<g(1)=0,即a-1>ln a,∵a-1<0,∴ln a<a-1<0,∴由(1)知0<a<1时,f(x)在区间(a-1,0)上递减,在(0,+∞)上递增,∴f(x)在区间(a-1,+∞)上的最小值为f(0)=1-a,∵关于x的不等式[f(x)]2<λ(e a-1-a)在区间(a-1,+∞)上存在实数解,∴只需当0<a<1时,关于a的不等式(1-a)2<λ(e a-1-a)恒成立,∴当0<a<1时,e a-1-a>0,∴只需当0<a<1时,不等式λ>(1−a)2e a−1−a恒成立即可,令函数F(x)=(1−x)2e x−1−x,0≤x<1,则F′(x)=(1−x)2e x−1−x,∵0≤x<1,∴F′(x)=(x−1)(3ex−1−x−1)(e x−1−x)2,令函数μ(x)=(3-x)e x-1在点T(1,2)处的切线方程为y-2=x-1,即y=x+1,如图所示,由题意得(3-x)e x-1≥x+1,当且仅当x=1时,取等号,∴当0<x<1时,G(x)>0,∴当0<x<1时,F′(x)<0,∴F(x)<F(0)=e,即F(x)<e,∴当0<a<1时,不等式λ>(1−a)2e a−ea恒成立,只需λ≥e.综上,实数λ的取值范围是[e,+∞).【解析】(1)求出f′(x)=e x+ae-x-(a+1)=,根据a≤0,0<a<1,a=1,a>1,进行分类讨论,利用导数性质能求出函数f(x)的极值点.(2)令g(a)=lna-a+1,则,当0<a<1时,g′(a)>0,a-1>lna,f(x)在区间(a-1,+∞)上的最小值为f(0)=1-a,只需当0<a<1时,关于a的不等式(1-a)2<λ(e a-1-a)恒成立,只需当0<a<1时,不等式恒成立即可,令函数F(x)=,0≤x<1,则F′(x)=,求出F′(x)=,利用导数性质能求出实数λ的取值范围.本题考查利用导数研究函数极值点问题,利用导数研究函数的单调性与极值、最值问题,运用分类讨论思想、数形结合思想求解,是难题.22.【答案】解:(1)由{y=sinαx=2cosα,得C1的普通方程为x24+y2=1,把x=ρcosθ,y=ρsinθ代入,得(ρcosθ)24+(ρsinθ)2=1,即ρ2=4cos2θ+4sin2θ=41+3sin2θ,所以C1的极坐标方程为ρ2=41+3sin2θ,由(x-2)2+y2=4,把x=ρcosθ,y=ρsinθ代入,得ρ=4cosθ,所以C2的极坐标方程为ρ=4cosθ.(2)把θ=θ0代入ρ2=41+3sin 2θ,得ρM 2=41+3sin 2θ0,把θ=θ0代入ρcosθ,得ρN 2=4cosθ0,则|ON |=2|OM |,得ρN =2ρM ,则ρN 2=4ρM 2,即(4cosθ0)2=161+3sin 2θ0,解得sin 2θ0=23,cos 2θ0=13,又0<θ0<π2,所以ρM =√41+3sin 2θ0=2√33,ρN =4cosθ0=4√33,所以△MC 2N 的面积S MC 2N =S △OC 2N -S△OC 2M =12|OC 2|(ρN -ρM )sinθ0=12×2×2√33×√63=2√23.【解析】(1)由,得C 1的普通方程为+y 2=1;把x=ρcosθ,y=ρsinθ代入,得+(ρsinθ)2=1,再化简可得;(2)利用极径的几何意义和三角形的面积公式可得. 本题考查了简单曲线的极坐标方程,属中档题. 23.【答案】解:(Ⅰ)当m =2时,f (x )=|x -2|+|x +12|;①当x ≤-12时,原不等式等价于(2-x )-(x +12)>3,解得x <−34; ②当-12<x <2时,原不等式等价于52>3,不等式无解; ③当x ≥2时,原不等式等价于(x -2)+(x +12)>3,解得x >94, 综上,不等式f (x )>3的解集为(-∞,-34)∪(94,+∞). (Ⅱ)证明:由题f (x )=|x -m |+|x +1m |, ∵m >0,∴|m +1m |=m +1m ,所以f (x )≥m +1m ,当且仅当x ∈[-1m ,m ]时等号成立, ∴f (x )+1m(m−1)≥m +1m +1m(m−1)=m +1m−1=(m -1)+1m−1+1, ∵m >1,m -1>0,∴(m -1)+1m−1+1≥2√(m −1)⋅1m−1+1=3,∴f (x )+1m(m−1)≥3.当m =2,且x ∈[-12,2]时等号成立. 【解析】(Ⅰ)分3段去绝对值解不等数组,在相并; (Ⅱ)由题f (x )=|x-m|+|x+|,∵m >0,∴|m+|=m+,所以f (x )≥m+,当且仅当x ∈[-,m]时等号成立,再利用基本不等式可证. 本题考查了绝对值不等式的解法,属中档题.。
三湘名校2025届高考数学二模试卷含解析

三湘名校2025届高考数学二模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()222ln 02x x e f x e x x e⎧<≤=⎨+->⎩,,,存在实数123x x x <<,使得()()()123f x f x f x ==,则()12f x x 的最大值为( ) A .1eB .1eC .12eD .21e2.已知函数()cos 23sin 21f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 3.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .154.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .5.函数()cos2xf x π=与()g x kx k =-在[]6,8-上最多有n 个交点,交点分别为(),x y (1i =,……,n ),则()1nii i xy =+=∑( )A .7B .8C .9D .106.已知()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,当30,2x ⎛⎫∈ ⎪⎝⎭时, ()()2ln 1f x x x =-+,则函数()f x 在区间[]0,6上的零点个数是( ) A .3B .5C .7D .97.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S8.已知集合U ={1,2,3,4,5,6},A ={2,4},B ={3,4},则()()UU A B =( )A .{3,5,6}B .{1,5,6}C .{2,3,4}D .{1,2,3,5,6}9.等差数列{}n a 的前n 项和为n S ,若13a =,535S =,则数列{}n a 的公差为( ) A .-2B .2C .4D .710.复数()1z i i -=(i 为虚数单位),则z 的共轭复数在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限11.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .2n n a =C .21nn S =-D .121n n S -=-12.设1tan 2α=,4cos()((0,))5πββπ+=-∈,则tan 2()αβ-的值为( )A .724-B .524-C .524D .724二、填空题:本题共4小题,每小题5分,共20分。
广东省高考数学二模试卷(理科)

广东省高考数学二模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·广西模拟) 设复数的共轭复数为,且,则复数在复平面内对应点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分) (2018高二下·黄陵期末) 若集合,则集合()A .B .C .D .3. (2分)向量,若与共线(其中),则A .B .C . -2D . 24. (2分) (2016高二下·安吉期中) “a≥4”是“∃x∈[﹣1,2],使得x2﹣2x+4﹣a≤0”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分) (2019高三上·武汉月考) 若函数满足,则的单调递增区间为()A . (-∞,2]B . (-∞,1]C . [1,+∞)D . [2,+∞)6. (2分)(2019·泉州模拟) 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积等于()A .B .C .D .7. (2分) (2018高二下·普宁月考) 抛物线的准线方程为()A .B .C .D .8. (2分) (2016高一下·承德期中) 投掷两枚骰子,则点数之和是8的概率为()A .B .C .D .9. (2分)(2017·北京) 已知函数f(x)=3x﹣()x ,则f(x)()A . 是偶函数,且在R上是增函数B . 是奇函数,且在R上是增函数C . 是偶函数,且在R上是减函数D . 是奇函数,且在R上是减函数10. (2分) (2015高二下·集宁期中) 已知双曲线kx2﹣2ky2=4的一条准线是y=1,则实数k的值是()A .B . ﹣C . 1D . ﹣1二、填空题 (共5题;共5分)11. (1分)(2017·自贡模拟) 设f(x)= (x>0),计算观察以下格式:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…根据以上事实得到当n∈N*时,fn(1)=________.12. (1分) (2016高二下·安徽期中) 小明、小红等4位同学各自申请甲、乙两所大学的自主招生考试资格,则每所大学恰有两位同学申请,且小明、小红没有申请同一所大学的可能性有________种.13. (1分)(2017·淄博模拟) 执行如图所示的程序框图,则输出的结果是________.14. (1分) (2018高二上·湖州月考) 设,,表示三条不同的直线,,,表示三个不同的平面,给出下列四个命题:①若,则;②若,是在内的射影,,则;③若是平面的一条斜线,点,为过点的一条动直线,则可能有且;④若,则 .其中正确的序号是________.15. (1分)(2020·郑州模拟) 设函数的图象上存在两点,使得是以为直角顶点的直角三角形(其中为坐标原点),且斜边的中点恰好在轴上,则实数的取值范围是________.三、解答题 (共6题;共50分)16. (10分)(2017·红河模拟) 在△ABC中,角A,B,C所对的边分别为a,b,c,且 asinA=( b ﹣c)sinB+( c﹣b)sinC.(1)求角A的大小;(2)若a= ,cosB= ,D为AC的中点,求BD的长.17. (5分)在一次突击检查中,某质检部门对某超市A、B、C、D,共4个品牌的食用油进行了检测,其中A 品牌抽检到2个不合格的批次,另外三个品牌军备抽检到1个批次.(1)若从这这4个品牌共5个批次的食用油中任选3个批次进行某项检测,求抽取的3个批次的食用油至少有一个是A品牌的概率.(2)若对这4个品牌共5个批次的食用油进行综合检测,其检测结果如下(综合评估满分为10分):品牌A1A2B C D得分888.89.69.8若检测的这5个批次食用油得分的平均值为a,从这5个批次中随机抽取2个,记这2个批次食用油中得分超过a的个数为ξ.求ξ的分布列及数学期望.18. (5分)(2017·山东模拟) 在如图所示的直三棱柱ABC﹣A1B1C1中,面AA1B1B和面AA1C1C都是边长为1的正方形且互相垂直,D为AA1的中点,E为BC1的中点.(Ⅰ)证明:DE∥平面A1B1C1;(Ⅱ)求平面C1BD和平面CBD所成的角(锐角)的余弦值.19. (10分) (2019高二上·温州期中) 已知是递增的等差数列,,是方程x2-5x+6=0的根.(1)求的通项公式;(2)求数列的前项和.20. (10分) (2019高二上·寿光月考) 已知椭圆:的左焦点为,为椭圆上一点,交轴于点,且为的中点.(1)求椭圆的方程;(2)直线与椭圆有且只有一个公共点,平行于的直线交于,交椭圆于不同的两点,,问是否存在常数,使得,若存在,求出的值,若不存在,请说明理由.21. (10分)(2019·四川模拟) 已知函数,其中.(1)若是函数的极值点,求实数a的值;(2)若对任意的为自然对数的底数,都有成立,求实数a的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共50分) 16-1、16-2、17-1、19-1、19-2、20-1、20-2、21-1、21-2、。
广东省2023年高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)

广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)一.命题的真假判断与应用(共1小题)(多选)1.(2023•茂名二模)如图所示,有一个棱长为4的正四面体P﹣ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是( )A.若E是CD的中点,则直线AE与PB所成角为B.△ABE的周长最小值为C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为D.如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为二.函数的最值及其几何意义(共1小题)2.(2023•茂名二模)黎曼函数R(x)是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R(x)在[0,1]上的定义为:当(p>q,且p,q为互质的正整数)时,;当x=0或x=1或x为(0,1)内的无理数时,R(x)=0,则下列说法错误的是( )A.R(x)在[0,1]上的最大值为B.若a,b∈[0,1],则R(a•b)≥R(a)•R(b)C.存在大于1的实数m,使方程有实数根D.∀x∈[0,1],R(1﹣x)=R(x)三.抽象函数及其应用(共1小题)(多选)3.(2023•高州市二模)已知定义在R上的函数f(x)满足f(﹣1﹣x)=f(7+x),函数f(x+2)﹣1为奇函数,且对∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af(b)+bf(a).函数与函数f(x)的图象交于点(x1,y1),(x2,y2),…,(x m,y m),给出以下结论,其中正确的是( )A.f(2022)=2022B.函数f(x+1)为偶函数C.函数f(x)在区间[4,5]上单调递减D.四.对数值大小的比较(共1小题)4.(2023•广东二模)已知,,,则(参考数据:ln2≈0.7)( )A.a>b>c B.b>a>c C.b>c>a D.c>a>b五.三角函数的周期性(共1小题)(多选)5.(2023•广东二模)已知f(x)=cos x+tan x,则下列说法正确的是( )A.f(x)是周期函数B.f(x)有对称轴C.f(x)有对称中心D.f(x)在上单调递增六.正弦函数的图象(共1小题)6.(2023•佛山二模)已知函数f(x)=sin(2x+φ)(|φ|<),若存在x1,x2,x3∈(0,),且x3﹣x2=2(x2﹣x1)=4x1,使f(x1)=f(x2)=f(x3)>0,则φ的值为( )A.B.C.D.七.函数的零点与方程根的关系(共1小题)(多选)7.(2023•茂名二模)已知f(x)=,若关于x的方程4ef2(x)﹣af(x)+=0恰好有6个不同的实数解,则a的取值可以是( )A.B.C.D.八.函数与方程的综合运用(共2小题)8.(2023•韶关二模)定义||x ||(x ∈R )为与x 距离最近的整数(当x 为两相邻整数算术平均数时,||x ||取较大整数),令函数f (x )=||x ||,如:,,,,则=( )A .17B .C .19D .9.(2023•潮州二模)已知函数f (x )=|sin x |,g (x )=kx (k >0),若f (x )与g (x )图像的公共点个数为n ,且这些公共点的横坐标从小到大依次为x 1,x 2,…,x n ,则下列说法正确的是( )A .若n =1,则k >1B .若n =3,则C .若n =4,则x 1+x 4>x 2+x 3D .若,则n =2023九.数列递推式(共1小题)(多选)10.(2023•高州市二模)已知数列{p n }和{q n }满足:p 1=1,q 1=2,p n +1=p n +3q n ,q n +1=2p n +q n ,n ∈N *,则下列结论错误的是( )A .数列是公比为的等比数列B .仅有有限项使得C .数列是递增数列D .数列是递减数列一十.利用导数研究函数的单调性(共3小题)11.(2023•广州二模)已知偶函数f (x )与其导函数f '(x )的定义域均为R ,且f '(x )+e ﹣x +x也是偶函数,若f (2a ﹣1)<f (a +1),则实数a 的取值范围是( )A .(﹣∞,2)B .(0,2)C .(2,+∞)D .(﹣∞,0)∪(2,+∞)12.(2023•深圳二模)已知ε>0,,且e x +εsin y =e y sin x ,则下列关系式恒成立的为( )A .cos x ≤cos yB .cos x ≥cos yC .sin x ≤sin yD .sin x ≥sin y(多选)13.(2023•佛山二模)已知函数f(x)=e x﹣﹣1,对于任意的实数a,b,下列结论一定成立的有( )A.若a+b>0,则f(a)+f(b)>0B.若a+b>0,则f(a)﹣f(﹣b)>0C.若f(a)+f(b)>0,则a+b>0D.若f(a)+f(b)<0,则a+b<0一十一.利用导数研究函数的最值(共1小题)14.(2023•湛江二模)对于两个函数与,若这两个函数值相等时对应的自变量分别为t1,t2,则t2﹣t1的最小值为( )A.﹣1B.﹣ln2C.1﹣ln3D.1﹣2ln2一十二.平面向量数量积的性质及其运算(共1小题)(多选)15.(2023•潮州二模)设向量,则( )A.B.C.D.在上的投影向量为(1,0)一十三.三角形中的几何计算(共1小题)(多选)16.(2023•汕头二模)在△ABC中,已知AB=2,AC=5,∠BAC=60°,BC,AC 边上的两条中线AM,BN相交于点P,下列结论正确的是( )A.B.C.∠MPN的余弦值为D.一十四.棱柱、棱锥、棱台的体积(共1小题)(多选)17.(2023•汕头二模)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,B.V存在最大值C.当r在区间(0,2)内变化时,V逐渐减小D.当r在区间(0,2)内变化时,V先增大后减小一十五.空间中直线与平面之间的位置关系(共1小题)(多选)18.(2023•广东二模)已知直线m与平面α有公共点,则下列结论一定正确的是( )A.平面α内存在直线l与直线m平行B.平面α内存在直线l与直线m垂直C.存在平面γ与直线m和平面α都平行D.存在过直线m的平面β与平面α垂直一十六.直线与平面所成的角(共1小题)(多选)19.(2023•潮州二模)在正方体ABCD﹣A1B1C1D1中,AB=1,点P满足,其中λ∈[0,1],μ∈[0,1],则下列结论正确的是( )A.当B1P∥平面A1BD时,B1P与CD1可能为B.当λ=μ时,的最小值为C.若B1P与平面CC1D1D所成角为,则点P的轨迹长度为D.当λ=1时,正方体经过点A1、P、C的截面面积的取值范围为一十七.二面角的平面角及求法(共1小题)(多选)20.(2023•佛山二模)四面体ABCD中,AB⊥BD,CD⊥BD,AB=3,BD=2,CD =4,平面ABD与平面BCD的夹角为,则AC的值可能为( )A.B.C.D.一十八.点、线、面间的距离计算(共2小题)(多选)21.(2023•梅州二模)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AD 的中点,点P为线段D1B上的动点,设D1P=λD1B,则( )A.当时,EP∥平面AB1CB.当时,|PE|取得最小值,其值为C.|PA|+|PC|的最小值为D.当C1∈平面CEP时,(多选)22.(2023•广州二模)已知正四面体A﹣BCD的长为2,点M,N分别为△ABC和△ABD的重心,P为线段CN上一点,则下列结论正确的是( )A.若AP+BP取得最小值,则CP=PNB.若CP=3PN,则DP⊥平面ABCC.若DP⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为D.直线MN到平面ACD的距离为一十九.直线与圆的位置关系(共1小题)23.(2023•潮州二模)已知圆M:x2+y2﹣4x+3=0,则下列说法正确的是( )A.点(4,0)在圆M内B.若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则a=9C.直线与圆M相离D.圆M关于4x+3y﹣2=0对称二十.椭圆的性质(共3小题)24.(2023•高州市二模)若椭圆的离心率为,两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),M为椭圆C上异于顶点的任意一点,点P是△MF1F2的内心,连接MP并延长交F1F2于点Q,则=( )A.2B.C.4D.25.(2023•韶关二模)韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段AB,且AB过椭圆的下焦点,AB=44米,桥塔最高点P距桥面110米,则此椭圆的离心率为( )A.B.C.D.26.(2023•深圳二模)设椭圆C:)的左、右焦点分别为F1,F2,直线l过点F1.若点F2关于l的对称点P恰好在椭圆C上,且,则C 的离心率为( )A.B.C.D.二十一.抛物线的性质(共1小题)(多选)27.(2023•深圳二模)设抛物线C:y=x2的焦点为F,过抛物线C上不同的两点A,B分别作C的切线,两条切线的交点为P,AB的中点为Q,则( )A.PQ⊥x轴B.PF⊥AB C.∠PFA=∠PFB D.|AF|+|BF|=2|PF|二十二.直线与抛物线的综合(共1小题)(多选)28.(2023•高州市二模)阿波罗尼奥斯是古希腊著名的数学家,与欧几里得、阿基米德齐名,他的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.其中给出了抛物线一条经典的光学性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.此性质可以解决线段和的最值问题,已知抛物线C:y2=2px(p>0),M是抛物线C上的动点,焦点,N(4,2),下列说法正确的是( )A.C的方程为y2=x B.C的方程为y2=2xC.|MF|+|MN|的最小值为D.|MF|+|MN|的最小值为二十三.直线与双曲线的综合(共1小题)(多选)29.(2023•广州二模)已知双曲线Γ:x2﹣y2=a2(a>0)的左,右焦点分别为F1,F2,过F2的直线l与双曲线Γ的右支交于点B,C,与双曲线Γ的渐近线交于点A,D(A,B在第一象限,C,D在第四象限),O为坐标原点,则下列结论正确的是( )A.若BC⊥x轴,则△BCF1的周长为6aB.若直线OB交双曲线Γ的左支于点E,则BC∥EF1C.△AOD面积的最小值为4a2D.|AB|+|BF1|的取值范围为(3a,+∞)二十四.正态分布曲线的特点及曲线所表示的意义(共1小题)(多选)30.(2023•湛江二模)廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量M(单位:g)服从正态分布N(165,σ2),且P (M<162)=0.15,P(165<M<167)=0.3.下列说法正确的是( )A.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167g的概率为0.7 B.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167g~168g的概率为0.05C.若从种植园成熟的红橙中随机选取600个,则质量大于163g的个数的数学期望为480D.若从种植园成熟的红橙中随机选取600个,则质量在163g~168g的个数的方差为136.5广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)参考答案与试题解析一.命题的真假判断与应用(共1小题)(多选)1.(2023•茂名二模)如图所示,有一个棱长为4的正四面体P﹣ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是( )A.若E是CD的中点,则直线AE与PB所成角为B.△ABE的周长最小值为C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为D.如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为【答案】ACD【解答】A选项,连接AD,如图所示:在正四面体P﹣ABC中,D是PD的中点,所以PB⊥AD,PB⊥CD,因为AD⊂平面ACD,CD⊂平面ACD,AD∩CD=D,所以直线PB⊥平面ACD,因为AE⊆平面ACD,所以PB⊥AE,所以直线AE与PB所成角为;故A选项正确;B选项,把△ACD沿着CD展开与面BCD同一平面内,由AD=CD=,AC=4,,所以cos∠ADB=cos()=﹣sin∠ADC=﹣,所以×,所以△ABC的周长最小值为不正确,故B选项错误;C选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设半径为r,由等体积法可知,,所以半径r=,故C选项正确;D选项,10个小球分三层,(1个,3个,6个)放进去,要使小球半径最大,则外层小球与四个面相切,设小球半径为r,四个角小球球心连线M﹣NGF是棱长为4r的正四面体,其高为,由正四面体内切球的半径为高的得,如图正四面体P﹣HIJ,则MP=3r,正四面体P﹣ABC的高为3r+r+r=,得r=,故D选项正确.故选:ACD.二.函数的最值及其几何意义(共1小题)2.(2023•茂名二模)黎曼函数R(x)是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R(x)在[0,1]上的定义为:当(p>q,且p,q为互质的正整数)时,;当x=0或x=1或x为(0,1)内的无理数时,R(x)=0,则下列说法错误的是( )A.R(x)在[0,1]上的最大值为B.若a,b∈[0,1],则R(a•b)≥R(a)•R(b)C.存在大于1的实数m,使方程有实数根D.∀x∈[0,1],R(1﹣x)=R(x)【答案】C【解答】解:对于A,由题意,R(x)的值域为,其中p是大于等于2的正整数,选项A正确;对于B,①若a,b∈(0,1],设(p,q互质,m,n互质),,则R(a•b)≥R(a)•R(b),②若a,b有一个为0,则R(a•b)≥R(a)•R(b)=0,选项B正确;对于C,若n为大于1的正数,则,而R(x)的最大值为,所以该方程不可能有实根,选项C错误;对于D,x=0,1或(0,1)内的无理数,则R(x)=0,R(1﹣x)=0,R(x)=R(1﹣x),若x为(0,1)内的有理数,设(p,q为正整数,为最简真分数),则,选项D正确.故选:C.三.抽象函数及其应用(共1小题)(多选)3.(2023•高州市二模)已知定义在R上的函数f(x)满足f(﹣1﹣x)=f(7+x),函数f(x+2)﹣1为奇函数,且对∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af (b)+bf(a).函数与函数f(x)的图象交于点(x1,y1),(x2,y2),…,(x m,y m),给出以下结论,其中正确的是( )A.f(2022)=2022B.函数f(x+1)为偶函数C.函数f(x)在区间[4,5]上单调递减D.【答案】BCD【解答】解:因为f(﹣1﹣x)=f(7+x),所以f(x)=f(6﹣x),f(x)的图象关于x=3对称,因为函数f(x+2)﹣1为奇函数,所以f(x)的图象关于点(2,1)对称,且f(0+2)﹣1=0⇒f(2)=1,又f(﹣x+2)﹣1=1﹣f(x+2)⇒f(x+2)=2﹣f(2﹣x),所以f(x)=2﹣f(4﹣x)=2﹣f[6﹣(2+x)]=2﹣f(2+x)=2﹣[2﹣f(2﹣x)]=f(2﹣x)=f[6﹣(2﹣x)]=f(x+4),即f(x)=f(x+4),所以f(x)的周期为4,所以f(2022)=f(2)=1,故A错误;由上可知,f(x)=f(2﹣x),f(x+1)=f[2﹣(x+1)]=f(1﹣x),故B正确;因为∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af(b)+bf(a),即(a﹣b)[f(a)﹣f(b)]>0,所以f(x)在区间[2,3]单调递增,因为f(x)的图象关于点(2,1)对称,所以f(x)在区间[1,2]单调递增,又f(x)的图象关于x=3对称,所以f(x)在区间[4,5]单调递减,C正确;因为,所以g(x)的图象关于点(2,1)对称,所以f(x)与g(x)的交点关于点(2,1)对称,不妨设x1<x2<x3<•<x m,则x1+x m=x2+x m﹣1=x3+x m﹣2=⋅⋅⋅=4,y1+y m=y2+y m﹣1=y3+y m﹣2=⋅⋅⋅=2,所以x1+x2+⋯+x m=2m,y1+y2+⋯+y m=m,所以,D正确.故选:BCD.四.对数值大小的比较(共1小题)4.(2023•广东二模)已知,,,则(参考数据:ln2≈0.7)( )A.a>b>c B.b>a>c C.b>c>a D.c>a>b【答案】B【解答】解:因为,,考虑构造函数,则,当0<x<e时,f′(x)>0,函数f(x)在(0,e)上单调递增,当x>e时,f′(x)<0,函数f(x)在(e,+∞)上单调递减,因为ln2≈0.7,所以e0.7≈2,即,所以,所以,即,又,所以,故b>a>c.故选:B.五.三角函数的周期性(共1小题)(多选)5.(2023•广东二模)已知f(x)=cos x+tan x,则下列说法正确的是( )A.f(x)是周期函数B.f(x)有对称轴C.f(x)有对称中心D.f(x)在上单调递增【答案】ACD【解答】解:因为f(x)=cos x+tan x,所以f(x+2π)=cos(x+2π)+tan(x+2π)=cos x+tan x=f(x),所以函数f(x)为周期函数,A正确;因为,,所以,所以函数为奇函数,故函数的图象关于原点对称,所以为函数f(x)的中心对称,C正确;当时,,因为0<cos x<1,0<sin x<1,所以f′(x)>0,所以函数f(x)在上单调递增,D正确;由可得,当时,由0<cos x≤1,﹣1<sin x<1,可得f′(x)>0,函数f(x)在上单调递增,当,由﹣1≤cos x<0,﹣1<sin x<1,可得f′(x)>0,函数f(x)在上单调递增,又f(0)=1,f(π)=﹣1,作出函数f(x)在的大致图象可得:结合函数f(x)是一个周期为2π的函数可得函数f(x)没有对称轴,B错误.故选:ACD.六.正弦函数的图象(共1小题)6.(2023•佛山二模)已知函数f(x)=sin(2x+φ)(|φ|<),若存在x1,x2,x3∈(0,),且x3﹣x2=2(x2﹣x1)=4x1,使f(x1)=f(x2)=f(x3)>0,则φ的值为( )A.B.C.D.【答案】A【解答】解:∵x3﹣x2=2(x2﹣x1)=4x1,∴x2=3x1,x3=7x1,又f(x1)=f(x2)=f(x3)>0,且x1,x2,x3∈(0,),∴x3﹣x1=6x1=π,,,∴π﹣2x1﹣φ=2x2+φ,即,∴.故选:A.七.函数的零点与方程根的关系(共1小题)(多选)7.(2023•茂名二模)已知f(x)=,若关于x的方程4ef2(x)﹣af(x)+=0恰好有6个不同的实数解,则a的取值可以是( )A.B.C.D.【答案】AB【解答】解:令g(x)=,则g'(x)=,所以g(x)在[0,1)上单调增,在(1,+∞)上单调减,所以f(x)的大致图像如下所示:令t=f(x),所以关于x的方程4ef2(x)﹣af(x)+=0有6个不同实根等价于关于t方程4et2﹣at+=0在t∈(0,)内有2个不等实根,即h(t)=4et+与y=a在t∈(0,)内有2个不同交点,又因为h′(t)=4e﹣=,令h′(t)=0,则t=±,所以当t∈(0,)时,h′(t)<0,h(t)单调递减;当t∈(,+∞)时,h′(t)>0,h(t)单调递增;所以h(t)=4et+的大致图像如下所示:又h()=4,h()=5,所以a∈(4,5).对照四个选项,AB符合题意.故选:AB.八.函数与方程的综合运用(共2小题)8.(2023•韶关二模)定义||x||(x∈R)为与x距离最近的整数(当x为两相邻整数算术平均数时,||x||取较大整数),令函数f(x)=||x||,如:,,,,则=( )A.17B.C.19D.【答案】C【解答】解:根据题意,函数f(x)=||x||,当1≤n≤2时,有0.5<<1.5,则f()=1,则有=1,当3≤n≤6,有1.5<<2.5,则f()=2,则有=,当7≤n≤12,有2.5<<3.5,则f()=3,则有=,……,由此可以将重新分组,各组依次为(1,1)、(、、、)、(、、、、、)、……,第n组为2n个,则每组中各个数之和为2n×=1,前9组共有=90个数,则是第10组的第10个数,则=2×9+10×=19.故选:C.9.(2023•潮州二模)已知函数f(x)=|sin x|,g(x)=kx(k>0),若f(x)与g(x)图像的公共点个数为n,且这些公共点的横坐标从小到大依次为x1,x2,…,x n,则下列说法正确的是( )A.若n=1,则k>1B.若n=3,则C.若n=4,则x1+x4>x2+x3D.若,则n=2023【答案】B【解答】解:对于A:当k=1时,令y=sin x﹣x,则y′=cos x﹣1<0,即函数y=sin x﹣x在定义域上单调递减,又当x=0时,y=0,所以函数y=sin x﹣x有且仅有一个零点为0,同理易知函数y=﹣sin x﹣x有且仅有一个零点为0,即f(x)与g(x)也恰有一个公共点,故A错误;对于B:当n=3时,如下图:2易知在x=x3,且x3∈(π,2π),f(x)与g(x)图象相切,由当x∈(π,2π)时,f(x)=﹣sin x,则f′(x)=﹣cos x,g′(x)=k,故,从而x3=tan x3,所以+x3=tan x3+===,故B 正确;对于C:当n=4时,如下图:则x1=0,π<x4<2π,所以x1+x4<2π,又f(x)图象关于x=π对称,结合图象有x3﹣π>π﹣x2,即有x2+x3>2π>x1+x4,故C错误;对于D:当时,由f()=g()=1可得,f(x)与g(x)的图象在y轴右侧的前1012个周期中,每个周期均有2个公共点,共有2024个公共点,故D错误.故选:B.九.数列递推式(共1小题)(多选)10.(2023•高州市二模)已知数列{p n}和{q n}满足:p1=1,q1=2,p n+1=p n+3q n,q n+1=2p n+q n,n∈N*,则下列结论错误的是( )A.数列是公比为的等比数列B.仅有有限项使得C.数列是递增数列D.数列是递减数列【答案】ABD【解答】解:由题意可知,第二个式子乘以λ后与第一和式子相加可得,令,解得,取可得,因为p1=1,q1=2,所以,所以,所以数列是公比为的等比数列,选项A说法错误;因为p1=1,q1=2,所以,所以当n为正奇数时,,即,当n为正偶数时,,即,选项B说法错误;由p1=1,q1=2,p n+1=p n+3q n,q n+1=2p n+q n,可知p n>0,q n>0,且数列{p n}和{q n}均为递增数列,而,所以数列是递增数列,选项C说法正确;因为,所以数列是递增数列,选项D说法错误.故选:ABD.一十.利用导数研究函数的单调性(共3小题)11.(2023•广州二模)已知偶函数f(x)与其导函数f'(x)的定义域均为R,且f'(x)+e﹣x+x也是偶函数,若f(2a﹣1)<f(a+1),则实数a的取值范围是( )A.(﹣∞,2)B.(0,2)C.(2,+∞)D.(﹣∞,0)∪(2,+∞)【答案】B【解答】解:因为f(x)为偶函数,则f(x)=f(﹣x),等式两边求导可得f′(x)=﹣f′(﹣x),①因为函数f'(x)+e﹣x+x为偶函数,则f′(x)+e﹣x+x=f′(﹣x)+e x﹣x,②联立①②可得f′(x)=﹣x,令g(x)=f′(x),则g′(x)=﹣1≥﹣1=0,且g′(x)不恒为零,所以函数g(x)在R上为增函数,即函数f′(x)在R上为增函数,故当x>0时,f′(x)>f′(0)=0,所以函数f(x)在[0,+∞)上为增函数,由f(2a﹣1)<f(a+1),可得f(|2a﹣1|)<f(|a+1|),所以|2a﹣l|<|a+1|,整理可得a2﹣2a<0,解得0<a<2.故选:B.12.(2023•深圳二模)已知ε>0,,且e x+εsin y=e y sin x,则下列关系式恒成立的为( )A.cos x≤cos y B.cos x≥cos y C.sin x≤sin y D.sin x≥sin y【答案】A【解答】解:构造函数f(x)=,x∈,则f′(x)=,当x∈时,cos x>sin x,f′(x)=>0,因为0<e x,0<e y,当=,eɛ>1,0<sin x<sin y时,则>>0,所以>x>y>0,y=cos x,x∈(0,)单调递增,所以cos x<cos y,当=<0,eɛ>1,sin x<sin y<0时,则<<0,所以﹣<x<y<0,y=cos x,x∈(﹣,0)单调递减,所以cos x<cos y.当=,eɛ>1,sin x=sin y=0时,则x=y=0,此时cos x=cos y,综上,cos x≤cos y.故选:A.(多选)13.(2023•佛山二模)已知函数f(x)=e x﹣﹣1,对于任意的实数a,b,下列结论一定成立的有( )A.若a+b>0,则f(a)+f(b)>0B.若a+b>0,则f(a)﹣f(﹣b)>0C.若f(a)+f(b)>0,则a+b>0D.若f(a)+f(b)<0,则a+b<0【答案】ABD【解答】解:f(x)=e x﹣﹣1,则f′(x)=e x﹣x,f″(x)=e x﹣1,当x∈(0,+∞)时,f″(x)>0,f′(x)单调递增,当x∈(﹣∞,0)时,f″(x)<0,f′(x)单调递减,所以f′(x)≥f′(0)=1,所以f(x)在R上单调递增,且f(0)=0,若a+b>0,则a>﹣b,所以f(a)>f(﹣b),则f(a)﹣f(﹣b)>0,故B正确;f(b)+f(﹣b)=e b﹣b2﹣1+(e﹣b﹣b2﹣1)=e b+e﹣b﹣b2﹣2,令h(b)=e b+e﹣b﹣b2﹣2,h′(b)=e b﹣e﹣b﹣2b,令h′(b)=u(b),u′(b)=e b+e﹣b﹣2≥0,u(b)在R上单调递增,而h′(0)=u(0)=0,故h(b)在(0,+∞)上单调递增,在(﹣∞,0)上单调递减,故h(b)≥h(0)=0,所以f(b)+f(﹣b)≥0⇒f(a)+f(b)≥f(a)﹣f(﹣b)>0,故A正确;对于D,若f(a)+f(b)<0⇒f(a)<﹣f(b)≤f(﹣b)⇒a<﹣b,即a+b<0,故D 正确;设f(c)=﹣f(b),若c<a<﹣b,则f(c)=﹣f(b)<f(a),满足f(a)+f(b)>0,但a+b<0,故C错误.故选:ABD.一十一.利用导数研究函数的最值(共1小题)14.(2023•湛江二模)对于两个函数与,若这两个函数值相等时对应的自变量分别为t1,t2,则t2﹣t1的最小值为( )A.﹣1B.﹣ln2C.1﹣ln3D.1﹣2ln2【答案】B【解答】解:由题意可得=ln(2t2﹣1)+2,∴t1=1+ln(ln(2t2﹣1)+2),t1,t2>,∴t2﹣t1=t2﹣1﹣ln(ln(2t2﹣1)+2)=ln(),令h(x)=,x∈(,+∞),h′(x)=,令u(x)=ln(2x﹣1)+2﹣在x∈(,+∞)上单调递增,且u(1)=0,∴x∈(,1)时,h′(x)<0,函数h(x)单调递减;x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增.∴x=1时,函数h(x)取得极小值即最小值,h(1)=,∴函数y=ln()取得最小值ln,即﹣ln2.即t2﹣t1的最小值为﹣ln2,故选:B.一十二.平面向量数量积的性质及其运算(共1小题)(多选)15.(2023•潮州二模)设向量,则( )A.B.C.D.在上的投影向量为(1,0)【答案】ACD【解答】解:因为,所以=(﹣1,﹣1),对A:||=,||=,所以||=||,故A正确;对B:因为1×(﹣1)﹣(﹣1)×(﹣1)=﹣2≠0,所以与不平行,故B错误;对C:()•=﹣1+1=0,所以()⊥,故C正确;对D:在上的投影为==1,则在上的投影向量为(1,0),故D正确;故选:ACD.一十三.三角形中的几何计算(共1小题)(多选)16.(2023•汕头二模)在△ABC中,已知AB=2,AC=5,∠BAC=60°,BC,AC 边上的两条中线AM,BN相交于点P,下列结论正确的是( )A.B.C.∠MPN的余弦值为D.【答案】ABD【解答】解:连接PC,并延长交AB于Q,△ABC中,AB=2,AC=5,∠BAC=60°,BC,AC边上的两条中线AM,BN相交于点P,则,,,,,,,====,故A正确;===,故B正确;===.故C错误;,故D正确.故选:ABD.一十四.棱柱、棱锥、棱台的体积(共1小题)(多选)17.(2023•汕头二模)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,B.V存在最大值C.当r在区间(0,2)内变化时,V逐渐减小D.当r在区间(0,2)内变化时,V先增大后减小【答案】BD【解答】解:设圆台的上底面的圆心为O1,下底面的圆心为O,点A为上底面圆周上任意一点,圆台的高为h,球的半径为R,如图所示,则=,对选项不正确;,设f(r)=﹣3r3﹣4r2+4r+8,则f'(r)=﹣9r2﹣8r+4,令f'(r)=0可得9r2+8r﹣4=0,解得,,易知r2∈(0,2),且当r∈(0,r2),f'(r)>0;r∈(r2,2),f'(r)<0,f(r)在(0,r2)单调递增,在(r2,2)单调递减,由f(0)=8,f(1)=5,f(2)=﹣24,∃r0∈(1,2),使得f(r0)=0,当r∈(0,r0),f(r)>0,即V'>0;当r∈(r0,2),f(r)<0,即V'<0,所以V在(0,r0)单调递增,在(r0,2)单调递减,则B,D正确,C错误.故选:BD.一十五.空间中直线与平面之间的位置关系(共1小题)(多选)18.(2023•广东二模)已知直线m与平面α有公共点,则下列结论一定正确的是( )A.平面α内存在直线l与直线m平行B.平面α内存在直线l与直线m垂直C.存在平面γ与直线m和平面α都平行D.存在过直线m的平面β与平面α垂直【答案】BD【解答】解:对于A选项,若直线m与α相交,且平面α内存在直线l与直线m平行,由于m⊄α,则m∥α,这与直线m与α相交矛盾,假设不成立,A错;对于B选项,若m⊂α,则在平面α内必存在l与直线m垂直,若直线m与α相交,设m⋂α=A,如下图所示:若m⊥α,且l⊂α,则m⊥l,若m与α斜交,过直线m上一点P(异于点A)作PB⊥α,垂足点为B,过点A作直线l,使得l⊥AB,因为PB⊥α,l⊂α,则l⊥PB,又因为l⊥AB,PB∩AB=B,PB、AB⊂平面PAB,所以l⊥平面PAB,因为m⊂平面PAB,所以l⊥m,综上所述,平面α内存在直线l与直线m垂直,B正确;对于C选项,设直线l与平面α的一个公共点为点A,假设存在平面γ,使得α∥β且m∥β,过直线m作平面γ,使得γ⋂β=l,因为m∥γ,m⊂β,γ⋂β=l,则l∥m,因为γ∥α,记β⋂α=n,又因为γ⋂β=l,则n∥l,因为在平面β内有且只有一条直线与直线l平行,且A∈n,故m、n重合,所以,m⊂α,但m不一定在平面α内,当m与α相交时,则m与γ也相交,C错误;对于D选项,若m⊥α,则过直线m的任意一个平面都与平面α垂直,若m与α不垂直,设直线m与平面的一个公共点为点A,则过点A有且只有一条直线l与平面α垂直,记直线l、m所确定的平面为γ,则α⊥β,D正确.故选:BD.一十六.直线与平面所成的角(共1小题)(多选)19.(2023•潮州二模)在正方体ABCD﹣A1B1C1D1中,AB=1,点P满足,其中λ∈[0,1],μ∈[0,1],则下列结论正确的是( )A.当B1P∥平面A1BD时,B1P与CD1可能为B.当λ=μ时,的最小值为C.若B1P与平面CC1D1D所成角为,则点P的轨迹长度为D.当λ=1时,正方体经过点A1、P、C的截面面积的取值范围为【答案】AC【解答】解:建立如图所示的空间直角坐标系A﹣xyz,则根据题意可得:A(0,0,0),B(1,0,0),D(0,1,0),C(1,1,0),A1(0,0,1),C1(1,1,1),D1(0,1,1),B1(1,0,1),∴,,设平面A1BD的一个法向量为,则,取,若B1P∥平面A1BD,则,∴(﹣λ,1,μ﹣1)⋅(1,1,1)=﹣λ+1+μ﹣1=0,∴λ=μ,故,其中,令,解得λ=0或1,∴B1P与CD1可能是,∴A正确;对B选项,∵λ=μ,∴P点在棱CD1上,将平面CDD1与平面A1BCD1沿着CD1展成平面图形,如图所示,线段A1D=≥A1D,由余弦定理可得:,∴,∴B错误;对C选项,∵B1C1⊥平面CC1D1D,连接C1P,则∠B1PC1即为B1P与平面CC1D1D所成角,若B1P与平面CC1D1D所成角为,则,所以C1P=B1C1=1,即点P的轨迹是以C1为圆心,以1为半径的个圆,于是点P的轨迹长度为,C正确;D选项,当λ=1时,P点在DD1上,过点A1作A1H∥CP交BB1于点H,连接CH,则CH∥A1P,所以平行四边形CHA1P即为正方体过点A1、P、C的截面,设P(0,1,t),∴,∴,,∴点P到直线A1C的距离为,∴当时,,△PA1C的面积取得最小值,此时截面面积最小为,当t=0或1时,,△PA1C的面积取得最大值,此时截面面积最大为,故截面面积的取值范围为,D错误.故选:AC.一十七.二面角的平面角及求法(共1小题)(多选)20.(2023•佛山二模)四面体ABCD中,AB⊥BD,CD⊥BD,AB=3,BD=2,CD =4,平面ABD与平面BCD的夹角为,则AC的值可能为( )A.B.C.D.【答案】AD【解答】解:由AB⊥BD,CD⊥BD,平面ABD与平面BCD的夹角为,∴与所成角为或,=++,∴2=2+2+2+2•+2•+2•,当与所成角为,∴2=2+2+2+2•+2•+2•=9+4+16﹣2×3×4×cos=17,∴AC=,当与所成角为,∴2=2+2+2+2•+2•+2•=9+4+16﹣2×3×4×cos=41,∴AC=,综上所述:AC=或.故选:AD.一十八.点、线、面间的距离计算(共2小题)(多选)21.(2023•梅州二模)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AD 的中点,点P为线段D1B上的动点,设D1P=λD1B,则( )A.当时,EP∥平面AB1CB.当时,|PE|取得最小值,其值为C.|PA|+|PC|的最小值为D.当C1∈平面CEP时,【答案】BC【解答】解:在棱长为2的正方体ABCD﹣A1B1C1D1中,建立如图所示的空间直角坐标系,则A(2,0,0),B(2,2,0),C(0,2,0),D1(0,0,2),B1(2,2,2),E(1,0,0),所以,则点P(2λ,2λ,2﹣2λ),对于A,,,,而,显然,即是平面AB1C 的一个法向量,而,因此不平行于平面AB1C,即直线EP 与平面AB1C不平行,A错误;对于B,,则,因此当时,|PE|取得最小值,B正确;对于C,,于是,当且仅当时取等号,C正确;对于D,取A1D1的中点F,连接EF,C1F,CE,如图,因为E为边AD的中点,则EF∥DD1∥CC1,当C1∈平面CEP时,P∈平面CEFC1,连接B1D1∩C1F=Q,连接BD∩CE=M,连接MQ,显然平面CEFC1∩平面BDD1B1=MQ,因此MQ∩D1B=P,BB1∥CC1,CC1⊂平面CEFC1,BB1⊄平面CEFC1,则BB1∥平面CEFC1,即有MQ∥BB1,而,所以,D错误.故选:BC.(多选)22.(2023•广州二模)已知正四面体A﹣BCD的长为2,点M,N分别为△ABC和△ABD的重心,P为线段CN上一点,则下列结论正确的是( )A.若AP+BP取得最小值,则CP=PNB.若CP=3PN,则DP⊥平面ABCC.若DP⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为D.直线MN到平面ACD的距离为【答案】BCD【解答】解:易得DE⊥AB,CE⊥AB,又DE∩CE=E,则AB⊥面CDE,又CN⊂面CDE,则AB⊥CN,同理可得CN⊥BD,AB∩BD=B,则CN⊥平面ABD,又AN,BN⊂平面ABD,所以CN⊥BN,CN⊥AN,则当点P与点N重合时,AP+BP取得最小值,又AN=BN=DN=DE=×=,则最小值为AN+BN=,故A错误;在正四面体ABCD中,因为DP⊥平面ABC,易得P在DM上,所以DM∩CN=P,又点M,N也是△ABC和△ABD的内心,则点P为正四面体ABCD内切球的球心,CM=CE=,DM==,设正四面体ABCD内切球的半径为r,因为V D﹣ABC=V P﹣ABC+V P﹣ABD+V P﹣BCD+V P﹣ACD,所以S△ABC•DM=S△ABC•r+S△ABD•r+S△BCD•r+S△ACD•r,解得r=MP=DM=,即DP=DM,故CP=3PN,故B正确;设三棱锥P﹣ABC外接球的球心为O,半径为R,易得球心O在直线DN上,且ON⊥NC,则R2=OC2=CN2+(OP﹣NP)2,解得R=,故三棱锥P﹣ABC外接球的表面积为4πR2=,故C正确;∵DM==,即D到平面ABC的距离为,则B到平面ACD的距离为,∵E是AB的中点,∴E到平面ACD的距离为×,∵CM=CE,∴M到平面ACD的距离为××=,∴直线MN到平面ACD的距离为,故D正确.故选:BCD.一十九.直线与圆的位置关系(共1小题)23.(2023•潮州二模)已知圆M:x2+y2﹣4x+3=0,则下列说法正确的是( )A.点(4,0)在圆M内B.若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则a=9C.直线与圆M相离D.圆M关于4x+3y﹣2=0对称【答案】B【解答】解:∵圆M:x2+y2﹣4x+3=0可化为:(x﹣2)2+y2=1,∴圆心为O1(2,0),半径为r1=1,对于A:因为(4﹣2)2+02>1,所以点(4,0)在圆M外,故A错误;对于B:若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则两圆外切,圆x2+y2﹣4x﹣6y+a=0可化为(x﹣2)2+(y﹣3)2=13﹣a,圆心为O2(2,3),半径为,因为|O1O2|=r1+r2,所以,解得a=9,故B正确;对于C:∵O1(2,0)到直线的距离为,∴直线与圆M相切,故C错误;对于D:显然圆心O1(2,0)不在直线4x+3y﹣2=0上,则圆M不关于4x+3y﹣2=0对称,故D错误;故选:B.二十.椭圆的性质(共3小题)24.(2023•高州市二模)若椭圆的离心率为,两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),M为椭圆C上异于顶点的任意一点,点P是△MF1F2的内心,连接MP并延长交F1F2于点Q,则=( )A.2B.C.4D.【答案】A【解答】解:如图,连接PF1,PF2,设P到x轴距离为d P,M到x轴距离为d M,则设△PF1F2内切圆的半径为r,则,===(c+a)r∴不妨设|PQ|=cm,则|MQ|=(c+a)m(m>0),∴|PM|=|MQ|﹣|PQ|=am(m>0),因为椭圆的离心率为,∴,故选:A.25.(2023•韶关二模)韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段AB,且AB过椭圆的下焦点,AB=44米,桥塔最高点P距桥面110米,则此椭圆的离心率为( )A.B.C.D.【答案】D【解答】解:按椭圆对称轴所在直线建立直角坐标系,则椭圆方程为,令y=﹣c,有一个,所以有,所以,所以=,所以e==.故选:D.。
考点3复数—2021届高考数学(理科旧高考)二轮专题复习首选卷

考点三 复数一、选择题1.(2020·新高考卷Ⅰ)2-i1+2i=( ) A .1 B .-1 C .iD .-i2.(2020·云南昆明三模)在复平面内,复数z =2i1+i所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(2020·青海西宁检测(一))已知a +b i(a ,b ∈R )是1-i1+i的共轭复数,则a +b =( )A .-1B .-12C .12D .14.(2020·全国卷Ⅰ)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C . 2D .25.(2020·陕西咸阳一模)设z ·i=2i +1,则z =( ) A .2+i B .2-i C .-2+iD .-2-i6.(2020·浙江宁波二模)已知复数z 是纯虚数,满足z (1-i)=a +2i(i 为虚数单位),则实数a 的值是( )A .1B .-1C .2D .-27.(2020·江西6月大联考)若复数z=1+2i1-i,则|z-|=( )A.10 B. 5C.105D.1028.(2020·北京高考)在复平面内,复数z对应的点的坐标是(1,2),则i·z =( )A.1+2i B.-2+iC.1-2i D.-2-i9.(2020·湖南师大附中高三摸底考试)满足条件|z+4i|=2|z+i|的复数z 对应点的轨迹是( )A.直线B.圆C.椭圆D.双曲线10.(2020·湖南长沙长郡中学高三下学期第一次高考模拟)在复平面内与复数z=2i1+i所对应的点关于虚轴对称的点为A,则A对应的复数为( )A.-1-i B.1-iC.1+i D.-1+i11.(2020·福建厦门高三毕业班5月质量检查)已知i是虚数单位,复数z 满足(1-i)z=2i,则复平面内与z对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限12.(2020·湖南长沙长郡中学二模)下面是关于复数z=2-1+i(i为虚数单位)的命题,其中假命题为( )A.|z|= 2 B.z2=2iC.z的共轭复数为1+i D.z的虚部为-113.(2020·陕西西安中学高三下学期仿真考试(一))已知复数z满足z-+i i=-1+i,则复数z=( )A.-1-2i B.-1+2iC.1-2i D.1+2i14.(2020·贵州贵阳高三6月适应性考试二)已知复数z满足z(1+i)=|-1+3i|,则复数z的共轭复数为( )A.-1+i B.-1-iC.1+i D.1-i15.(2020·山西太原五中高三3月模拟)已知复数z=23-i,则|z|=( )A.1 B.2C. 3 D. 216.(2020·陕西咸阳三模)设复数z满足|z-1+i|=1,z在复平面内对应的点为P(x,y),则点P的轨迹方程为( )A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.(x-1)2+(y+1)2=117.(2020·吉林长春高三质量监测二)若z=1+(1-a)i(a∈R),|z|=2,则a=( )A.0或2 B.0C.1或2 D.118.下面四个命题中,①复数z=a+b i(a,b∈R)的实部、虚部分别是a,b;②复数z满足|z+1|=|z-2i|,则z对应的点构成一条直线;③由向量a的性质|a|2=a2,可类比得到复数z的性质|z|2=z2;④i为虚数单位,则1+i+i2+…+i2020=1.正确命题的个数是( )A.0 B.1C.2 D.3二、填空题19.(2020·江苏高考)已知i是虚数单位,则复数z=(1+i)(2-i)的实部是________.20.(2020·广州高三综合测试一)已知复数z=22-22i,则z2+z4=________.21.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数z1-2i的共轭复数是________.22.(2020·全国卷Ⅱ)设复数z1,z2满足|z1|=|z2|=2,z1+z2=3+i,则|z1-z2|=________.一、选择题1.(2020·全国卷Ⅲ)若z-(1+i)=1-i,则z=( )A.1-i B.1+iC.-i D.i2.(2020·吉林东北师大附中第四次模拟)在复平面内,复数z对应的点与3+i对应的点关于实轴对称,则zi=( )A.-1-3i B.-3+iC.-1+3i D.-3-i3.(2020·山西太原一模)已知i是虚数单位,复数m+1+(2-m)i在复平面内对应的点在第二象限,则实数m的取值范围是( )A.(-∞,-1) B.(-1,2)C.(2,+∞) D.(-∞,-1)∪(2,+∞)4.(2020·河南洛阳第三次统一考试)已知复数z满足|z|=1,则|z-1+3 i|的最小值为( )A.2 B.1C. 3 D. 25.(2020·辽宁丹东二模)已知复数z=a2+1+i1-i-ai-1为纯虚数,则实数a=( )A.0 B.±1C.1 D.-16.(2020·山西大同模拟)如图,在复平面内,复数z1,z2对应的向量分别是OA→,OB→,若z1=zz2,则z的共轭复数z-=( )A.12+32i B.12-32iC.-12+32i D.-12-32i7.(2020·广州综合测试)若复数z满足方程z2+2=0,则z3=( )A.±2 2 B.-2 2C.-22i D.±22i8.(2020·吉林长春质量监测四模)设复数z=x+y i(x,y∈R),下列说法正确的是( )A.z的虚部是y iB.z2=|z|2C.若x=0,则复数z为纯虚数D.若z满足|z-i|=1,则z在复平面内对应点(x,y)的轨迹是圆二、填空题9.(2020·河南开封3月模拟)若z=1+2i,则4iz z--1=________.10.若2-i是关于x的实系数方程x2+bx+c=0的一个复数根,则bc=________.11.(2020·浙江杭州高三下学期仿真模拟)复数z满足:z1+i=a-i(其中a>0,i为虚数单位),|z|=10,则a=________;复数z的共轭复数z-在复平面上对应的点在第________象限.12.定义复数的一种新运算z1@z2=|z1|+|z2|2(等式右边为普通运算).若复数z=x+y i,i为虚数单位,且实数x,y满足x+y=22,则z-@z的最小值为________.三、解答题13.已知z1=cosα+isinα,z2=cosβ-isinβ,且z1-z2=513+1213i,求cos(α+β)的值.14.设z+1为关于x的方程x2+mx+n=0,m,n∈R的虚根,i为虚数单位.(1)当z=-1+i时,求m,n的值;(2)若n=1,在复平面上,设复数z所对应的点为P,复数2+4i所对应的点为Q,试求|PQ|的取值范围.考点三复数一、选择题1.(2020·新高考卷Ⅰ)2-i1+2i=( )A.1 B.-1 C.i D.-i 答案 D解析2-i1+2i =2-i 1-2i 1+2i 1-2i=-5i5=-i ,故选D. 2.(2020·云南昆明三模)在复平面内,复数z =2i1+i所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A 解析 ∵z =2i1+i=2i 1-i 1+i 1-i=1+i ,∴复数z 所对应的点的坐标为(1,1),位于第一象限.故选A.3.(2020·青海西宁检测(一))已知a +b i(a ,b ∈R )是1-i1+i的共轭复数,则a +b =( )A .-1B .-12C .12D .1答案 D 解析 1-i1+i=1-i 21+i 1-i=-2i2=-i ,∴a +b i =-(-i)=i ,∴a=0,b =1,∴a +b =1.故选D.4.(2020·全国卷Ⅰ)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C . 2 D .2答案 D解析 z 2=(1+i)2=2i ,则z 2-2z =2i -2(1+i)=-2,故|z 2-2z |=|-2|=2.故选D.5.(2020·陕西咸阳一模)设z ·i=2i +1,则z =( ) A .2+i B .2-i C .-2+i D .-2-i 答案 B解析 ∵z ·i=2i +1,∴z =2i +1i =2i -i 2i=2-i.故选B.6.(2020·浙江宁波二模)已知复数z 是纯虚数,满足z (1-i)=a +2i(i 为虚数单位),则实数a 的值是( )A .1B .-1C .2D .-2答案 C解析 设z =b i(b ∈R 且b ≠0),则z (1-i)=b i(1-i)=b +b i =a +2i ,所以⎩⎨⎧b =a ,b =2,解得a =2.故选C.7.(2020·江西6月大联考)若复数z =1+2i1-i ,则|z -|=( ) A.10 B . 5 C .105D .102答案 D解析 因为z =1+2i1-i =1+2i 1+i 1-i1+i=1+i +2i +2i 22=-1+3i 2,所以z -=-12-3i 2,则|z -|=14+94=102.故选D. 8.(2020·北京高考)在复平面内,复数z 对应的点的坐标是(1,2),则i·z =( )A .1+2iB .-2+iC .1-2iD .-2-i答案 B解析 由题意得z =1+2i ,∴i·z =i -2.故选B.9.(2020·湖南师大附中高三摸底考试)满足条件|z +4i|=2|z +i|的复数z 对应点的轨迹是( )A .直线B .圆C .椭圆D .双曲线 答案 B解析设复数z=x+y i(x,y∈R),则|z+4i|=|x+(y+4)i|=x2+y+42,|z+i|=|x+(y+1)i|=x2+y+12,结合题意有x2+(y +4)2=4x2+4(y+1)2,整理可得x2+y2=4.即复数z对应点的轨迹是圆.故选B.10.(2020·湖南长沙长郡中学高三下学期第一次高考模拟)在复平面内与复数z=2i1+i所对应的点关于虚轴对称的点为A,则A对应的复数为( ) A.-1-i B.1-iC.1+i D.-1+i 答案 D解析由题意得z=2i1+i=2i1-i1+i1-i=2i+22=1+i,在复平面内对应的点为(1,1),关于虚轴对称的点为(-1,1),所以其对应的复数为-1+i.故选D.11.(2020·福建厦门高三毕业班5月质量检查)已知i是虚数单位,复数z 满足(1-i)z=2i,则复平面内与z对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 B解析∵(1-i)z=2i,∴z=2i1-i=2i1+i2=-1+i,∴复平面内与z对应的点在第二象限,故选B.12.(2020·湖南长沙长郡中学二模)下面是关于复数z=2-1+i(i为虚数单位)的命题,其中假命题为( )A.|z|= 2 B.z2=2iC.z的共轭复数为1+i D.z的虚部为-1 答案 C解析因为z=2-1+i=2-1-i-1+i-1-i=-2-2i2=-1-i,所以|z|=2,A为真命题;z2=2i,B为真命题;z的共轭复数为-1+i,C为假命题;z的虚部为-1,D为真命题.故选C.13.(2020·陕西西安中学高三下学期仿真考试(一))已知复数z 满足z -+i i=-1+i ,则复数z =( )A .-1-2iB .-1+2iC .1-2iD .1+2i答案 B解析 已知复数z 满足z -+i i=-1+i ,则z -=i(-1+i)-i =-1-2i ,故z =-1+2i ,故选B.14.(2020·贵州贵阳高三6月适应性考试二)已知复数z 满足z (1+i)=|-1+3i|,则复数z 的共轭复数为( )A .-1+iB .-1-iC .1+iD .1-i答案 C解析 由z (1+i)=|-1+3i|=-12+32=2,得z =21+i=21-i1+i 1-i=1-i ,∴z -=1+i.故选C.15.(2020·山西太原五中高三3月模拟)已知复数z =23-i,则|z |=( ) A .1 B .2 C . 3 D . 2答案 A 解析 因为z =23-i=23+i 3-i 3+i=3+i 2=32+12i ,所以|z |=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=1.故选A. 16.(2020·陕西咸阳三模)设复数z 满足|z -1+i|=1,z 在复平面内对应的点为P (x ,y ),则点P 的轨迹方程为( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .(x -1)2+(y +1)2=1答案 D解析由题意得z=x+y i,则由|z-1+i|=1得|(x-1)+(y+1)i|=1,即x-12+y+12=1, 则(x-1)2+(y+1)2=1.故选D.17.(2020·吉林长春高三质量监测二)若z=1+(1-a)i(a∈R),|z|=2,则a=( )A.0或2 B.0C.1或2 D.1答案 A解析因为z=1+(1-a)i(a∈R),|z|=2,所以12+1-a2=2,解得a=0或a=2.故选A.18.下面四个命题中,①复数z=a+b i(a,b∈R)的实部、虚部分别是a,b;②复数z满足|z+1|=|z-2i|,则z对应的点构成一条直线;③由向量a的性质|a|2=a2,可类比得到复数z的性质|z|2=z2;④i为虚数单位,则1+i+i2+…+i2020=1.正确命题的个数是( )A.0 B.1C.2 D.3答案 D解析①复数z=a+b i(a,b∈R)的实部为a,虚部为b,故正确;②设z=a+b i(a,b∈R),由|z+1|=|z-2i|计算得2a+4b-3=0,故正确;③设z=a +b i(a,b∈R),当b≠0时,|z|2=z2不成立,故错误;④1+i+i2+…+i2020=1,故正确.二、填空题19.(2020·江苏高考)已知i是虚数单位,则复数z=(1+i)(2-i)的实部是________.答案 3解析∵复数z=(1+i)(2-i)=2-i+2i-i2=3+i,∴复数z的实部为3.20.(2020·广州高三综合测试一)已知复数z =22-22i ,则z 2+z 4=________.答案 -1-i解析 ∵z 2=⎝ ⎛⎭⎪⎫22-22i 2=12-i -12=-i ,∴z 4=(z 2)2=(-i)2=-1,∴z 2+z 4=-1-i.21.若i 为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z 表示复数z ,则复数z 1-2i的共轭复数是________.答案 -i解析 由题图可得z =2+i ,复数z1-2i =2+i 1-2i =-2i 2+i1-2i=i ,其共轭复数为-i.22.(2020·全国卷Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.答案 2 3解析 解法一:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ), ∵|z 1|=|z 2|=2, ∴a 2+b 2=4,c 2+d 2=4,∵z 1+z 2=a +b i +c +d i =3+i , ∴a +c =3,b +d =1,∴(a +c )2+(b +d )2=a 2+c 2+2ac +b 2+d 2+2bd =4, ∴2ac +2bd =-4,∵z 1-z 2=a +b i -(c +d i)=a -c +(b -d )i , ∴|z 1-z 2|=a -c2+b -d2=a 2+c 2-2ac +b 2+d 2-2bd =a 2+b 2+c 2+d 2-2ac +2bd=4+4--4=2 3.解法二:∵|z 1|=|z 2|=2,可设z 1=2cos θ+2sin θ·i,z 2=2cos α+2sin α·i, ∴z 1+z 2=2(cos θ+cos α)+2(sin θ+sin α)·i=3+i , ∴⎩⎨⎧2cos θ+cos α=3,2sin θ+sin α=1.两式平方作和,得4(2+2cos θcos α+2sin θsin α)=4, 化简得cos θcos α+sin θsin α=-12.∴|z 1-z 2|=|2(cos θ-cos α)+2(sin θ-sin α)·i| =4cos θ-cos α2+4sin θ-sin α2=8-8cos θcos α+sin θsin α=8+4 =2 3.一、选择题1.(2020·全国卷Ⅲ)若z -(1+i)=1-i ,则z =( ) A .1-i B .1+i C .-i D .i答案 D解析 因为z -=1-i 1+i=1-i 21+i 1-i=-2i2=-i ,所以z =i.故选D. 2.(2020·吉林东北师大附中第四次模拟)在复平面内,复数z 对应的点与3+i 对应的点关于实轴对称,则zi=( )A .-1-3iB .-3+iC .-1+3iD .-3-i答案 A解析 ∵复数3+i 在复平面内对应的点为(3,1),复数z 在复平面内对应的点与3+i 对应的点关于实轴对称,∴复数z 在复平面内对应的点为(3,-1),∴z =3-i ,∴zi =3-ii=3-i·ii 2=-1-3i.故选A.3.(2020·山西太原一模)已知i 是虚数单位,复数m +1+(2-m )i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2)C .(2,+∞)D .(-∞,-1)∪(2,+∞)答案 A解析 因为复数m +1+(2-m )i 在复平面内对应的点在第二象限,所以⎩⎨⎧m +1<0,2-m >0,解得m <-1.所以实数m 的取值范围为(-∞,-1).故选A.4.(2020·河南洛阳第三次统一考试)已知复数z 满足|z |=1,则|z -1+3i|的最小值为( )A .2B .1C . 3D . 2答案 B解析 设z =x +y i(x ∈R ,y ∈R ),由|z |=1得x 2+y 2=1,又|z -1+3i|=x -12+y +32表示定点(1,-3)与圆上任一点(x ,y )间的距离.则由几何意义得|z -1+3i|min =0-12+[0--3]2-1=2-1=1,故选B.5.(2020·辽宁丹东二模)已知复数z =a 2+1+i 1-i -ai-1为纯虚数,则实数a =( )A .0B .±1C .1D .-1答案 C解析 ∵z =a 2+1+i 1-i -ai -1=a 2+1+i 21-i 1+i-a i i2-1=a 2-1+(a +1)i 为纯虚数,∴⎩⎨⎧a 2-1=0,a +1≠0,解得a =1.故选C.6.(2020·山西大同模拟)如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,若z 1=zz 2,则z 的共轭复数z -=( )A.12+32i B .12-32i C .-12+32iD .-12-32i答案 A解析 由题图可知z 1=1+2i ,z 2=-1+i ,所以z =z 1z 2=1+2i -1+i=1+2i -1-i -1+i-1-i=1-3i 2,所以z -=12+32i.故选A. 7.(2020·广州综合测试)若复数z 满足方程z 2+2=0,则z 3=( ) A .±2 2 B .-2 2 C .-22i D .±22i答案 D解析 z 2+2=0,即z 2=-2,解得z =±2i.所以z 3=z ·z 2=(±2i)·(-2)=±22i ,故选D.8.(2020·吉林长春质量监测四模)设复数z =x +y i(x ,y ∈R ),下列说法正确的是( )A .z 的虚部是y iB .z 2=|z |2C .若x =0,则复数z 为纯虚数D .若z 满足|z -i|=1,则z 在复平面内对应点(x ,y )的轨迹是圆 答案 D解析 z 的实部为x ,虚部为y ,所以A 错误;z 2=x 2-y 2+2xy i ,|z |2=x 2+y 2,所以B 错误;当x =0,y =0时,z 为实数,所以C 错误;由|z -i|=1得|x +y i -i|=1,所以|x +(y -1)i|=1,所以x 2+(y -1)2=1,所以D 正确.故选D.二、填空题9.(2020·河南开封3月模拟)若z =1+2i ,则4iz z --1=________. 答案 i 解析4iz z --1=4i1+2i1-2i-1=i.10.若2-i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则bc =________.答案 -20解析 把复数根2-i 代入方程中,得(2-i)2+b (2-i)+c =0,即3+2b +c -(4+b )i =0,所以⎩⎨⎧3+2b +c =0,4+b =0,解得⎩⎨⎧b =-4,c =5,故bc =-20.11.(2020·浙江杭州高三下学期仿真模拟)复数z 满足:z 1+i=a -i(其中a >0,i 为虚数单位),|z |=10,则a =________;复数z 的共轭复数z -在复平面上对应的点在第________象限.答案 2 四 解析 由z 1+i=a -i 可得,z =(a -i)(1+i)=a +1+(a -1)i ,所以|z |=a +12+a -12=10,左右同时平方得,a 2+2a +1+a 2-2a +1=10,所以a 2=4.又因为a >0,所以a =2.所以z =3+i ,z -=3-i ,所以z -在复平面上对应的点为(3,-1),位于第四象限.12.定义复数的一种新运算z 1@z 2=|z 1|+|z 2|2(等式右边为普通运算).若复数z =x +y i ,i 为虚数单位,且实数x ,y 满足x +y =22,则z -@z 的最小值为________.答案 2解析 z -@z =|z -|+|z |2=2|z |2=|z |=x 2+y 2.因为x +y =22,所以z -@z = 2x -22+4,故当x =2时,z -@z 取最小值2. 三、解答题13.已知z 1=cos α+isin α,z 2=cos β-isin β,且z 1-z 2=513+1213i ,求cos(α+β)的值.解 ∵z 1=cos α+isin α,z 2=cos β-isin β, ∴z 1-z 2=(cos α-cos β)+i(sin α+sin β)=513+1213i. ∴⎩⎪⎨⎪⎧cos α-cos β=513, ①sin α+sin β=1213. ②由①2+②2,得2-2cos(α+β)=1. ∴cos(α+β)=12.14.设z +1为关于x 的方程x 2+mx +n =0,m ,n ∈R 的虚根,i 为虚数单位. (1)当z =-1+i 时,求m ,n 的值;(2)若n =1,在复平面上,设复数z 所对应的点为P ,复数2+4i 所对应的点为Q ,试求|PQ |的取值范围.解 (1)因为z =-1+i ,所以z +1=i , 则i 2+m i +n =0,易得⎩⎨⎧m =0,n =1.(2)设z =a +b i(a ,b ∈R ),则(a +1+b i)2+m (a +1+b i)+1=0,于是⎩⎨⎧a +12-b 2+m a +1+1=0, ①2a +1b +mb =0, ②因为z +1为虚数根,所以b 不为零,所以由②得m =-2(a +1),代入①得,(a +1)2+b 2=1,则点P 是以(-1,0)为圆心,1为半径的圆(去掉b =0对应的两点)上任意一点.又复数2+4i 对应的点为Q ,所以|PQ |的最大值为2+12+42+1=6,|PQ |的最小值为4.所以|PQ |的取值范围是[4,6].。
广东省2023年高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-02填空题(提升题)

广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-02填空题(提升题)一.抽象函数及其应用(共1小题)1.(2023•深圳二模)已知函数f(x)的定义域为R,若f(x+1)﹣2为奇函数,且f(1﹣x)=f(3+x),则f(2023)= .二.正弦函数的单调性(共1小题)2.(2023•湛江二模)若函数在上具有单调性,且为f(x)的一个零点,则f(x)在上单调递 (填增或减),函数y=f(x)﹣lgx的零点个数为 .三.函数的零点与方程根的关系(共1小题)3.(2023•高州市二模)已知函数,若存在实数k,使得方程f(x)=k有6个不同实根x1,x2,x3,x4,x5,x6,且x1<x2<x3<x4<x5<x6,则a的取值范围是 ;的值为 .四.根据实际问题选择函数类型(共1小题)4.(2023•茂名二模)修建栈道是提升旅游观光效果的一种常见手段.如图,某水库有一个半径为1百米的半圆形小岛,其圆心为C且直径MN平行坝面.坝面上点A满足AC⊥MN,且AC长度为3百米,为便于游客到小岛观光,打算从点A到小岛建三段栈道AB、BD与BE,水面上的点B在线段AC上,且BD、BE均与圆C相切,切点分别为D、E,其中栈道AB、BD、BE和小岛在同一个平面上.此外在半圆小岛上再修建栈道、以及MN,则需要修建的栈道总长度的最小值为 百米.五.利用导数研究曲线上某点切线方程(共2小题)5.(2023•梅州二模)已知函数f(x)=x2+alnx的图象在x=1处的切线在y轴上的截距为2,则实数a= .6.(2023•广东二模)已知f(x)=x3﹣x,若过点P(m,n)恰能作两条直线与曲线y=f (x)相切,且这两条切线关于直线x=m对称,则m的一个可能值为 .六.平面向量的基本定理(共1小题)7.(2023•广州二模)在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且,当λ= 时,则有最小值为 .七.解三角形(共1小题)8.(2023•深圳二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的B底线宽AB =72码,球门宽EF=8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P,使得∠EPF最大,这时候点P就是最佳射门位置.当攻方球员甲位于边线上的点O处(OA=AB,OA⊥AB)时,根据场上形势判断,有、两条进攻线路可供选择.若选择线路,则甲带球 码时,APO到达最佳射门位置;若选择线路,则甲带球 码时,到达最佳射门位置.八.棱柱、棱锥、棱台的体积(共1小题)9.(2023•广东二模)已知直四棱柱ABCD﹣A1B1C1D1的棱长均为2,∠BAD=60°,除面ABCD外,该四棱柱其余各个面的中心分别为点E,F,G,H,Ⅰ,则由点E,F,G,H,Ⅰ构成的四棱锥的体积为 .九.球的体积和表面积(共1小题)10.(2023•韶关二模)将一个圆心角为、面积为2π的扇形卷成一个圆锥,则此圆锥内半径最大的球的表面积为 .一十.点、线、面间的距离计算(共1小题)11.(2023•高州市二模)已知球O与正四面体A﹣BCD各棱相切,且与平面α相切,若AB =1,则正四面体A﹣BCD表面上的点到平面α距离的最大值为 .一十一.轨迹方程(共1小题)12.(2023•广州二模)在平面直角坐标系xOy中,定义d(A,B)=|x1﹣x2|+|y1﹣y2|为A (x1,y1),B(x2,y2)两点之间的“折线距离”.已知点Q(1,0),动点P满足d(Q,P)=,点M是曲线y=上任意一点,则点P的轨迹所围成图形的面积为 ,d(P,M)的最小值为 .一十二.椭圆的性质(共3小题)13.(2023•梅州二模)如图,一个装有某种液体的圆柱形容器固定在墙面和地面的角落内,容器与地面所成的角为30°,液面呈椭圆形状,则该椭圆的离心率为 .14.(2023•汕头二模)阿波罗尼奥斯在其著作《圆锥曲线论》中提出:过椭圆上任意一点P(x0,y0)的切线方程为.若已知△ABC内接于椭圆E:,且坐标原点O为△ABC的重心,过A,B,C分别作椭圆E的切线,切线分别相交于点D,E,F,则= .15.(2023•佛山二模)已知F1、F2分别为椭圆的左、右焦点,P是过椭圆右顶点且与长轴垂直的直线上的动点,则sin∠F1PF2的最大值为 .一十三.抛物线的性质(共1小题)16.(2023•韶关二模)已知抛物线C:y2=4x的焦点为F,过F且斜率为﹣1的直线l交抛物线C于A,B两点,则以线段AB为直径的圆D的方程为 ;若圆D上存在两点P,Q,在圆T:(x+2)2+(y+7)2=a2(a>0)上存在一点M,使得∠PMQ =90°,则实数a的取值范围为 .一十四.古典概型及其概率计算公式(共1小题)17.(2023•佛山二模)有n个编号分别为1,2,…,n的盒子,第1个盒子中有2个白球1个黑球,其余盒子中均为1个白球1个黑球,现从第1个盒子中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n个盒子中取到白球的概率是 .一十五.离散型随机变量的期望与方差(共1小题)18.(2023•汕头二模)某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者,假设携带病毒的人占5%,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验,如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.按照这种化验方法,平均每个人需要化验 次.(结果保留四位有效数字)(0.955≈0.7738,0.956≈0.735,0.957≈0.6983).一十六.正态分布曲线的特点及曲线所表示的意义(共1小题)19.(2023•佛山二模)佛山被誉为“南国陶都”,拥有上千年的制陶史,佛山瓷砖享誉海内外.某企业瓷砖生产线上生产的瓷砖某项指标X~N(800,σ2),且P(X<801)=0.6,现从该生产线上随机抽取10片瓷砖,记Y表示800≤X<801的瓷砖片数,则E(Y)= .一十七.归纳推理(共1小题)20.(2023•广州二模)如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法为:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,将图①,图②,图③,图④中的图形周长依次记为C1,C2,C3,C4,则= .广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-02填空题(提升题)参考答案与试题解析一.抽象函数及其应用(共1小题)1.(2023•深圳二模)已知函数f(x)的定义域为R,若f(x+1)﹣2为奇函数,且f(1﹣x)=f(3+x),则f(2023)= 2 .【答案】2.【解答】解:由于f(x+1)﹣2为奇函数,则f(x+1)﹣2=﹣[f(﹣x+1)﹣2],即f(x+1)+f(1﹣x)=4,所以函数f(x)关于点(1,2)对称,则f(1)=2,又f(1﹣x)=f(3+x),则f(x+1)+f(x+3)=4,则f(x)+f(x+2)=4,则f(x+2)+f(x+4)=4,所以f(x)=f(x+4),则函数f(x)的周期为4,所以f(2023)=f(505×4+3)=f(3)=f(1)=2.故答案为:2.二.正弦函数的单调性(共1小题)2.(2023•湛江二模)若函数在上具有单调性,且为f(x)的一个零点,则f(x)在上单调递 增 (填增或减),函数y=f(x)﹣lgx的零点个数为 9个 .【答案】增;9个.【解答】解:∵函数在上具有单调性,∴﹣(﹣)≤T,即≤,∴0<ω≤,又∵f()=sin(ω+)=0,∴ω+=kπ(k∈Z),即ω=﹣,k∈Z,只有k=1时,ω=3符合要求,此时f(x)=sin(3x+),当x∈时,3x+∈(﹣,),∴f(x)在上单调递增,作出函数y=f(x)与y=lgx的图象,由图可知,这两个函数的图象共有9个交点,∴函数y=f(x)﹣lgx的零点个数为9个.故答案为:增;9个.三.函数的零点与方程根的关系(共1小题)3.(2023•高州市二模)已知函数,若存在实数k,使得方程f(x)=k有6个不同实根x1,x2,x3,x4,x5,x6,且x1<x2<x3<x4<x5<x6,则a的取值范围是 (2,+∞) ;的值为 2 .【答案】(2,+∞);2.【解答】解:当x∈(﹣∞,0)时,,当且仅当即x=﹣1时取等号,且根据对勾函数可得f(x)在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,当x∈(0,e﹣a]时,lnx∈(﹣∞,﹣a],|lnx|=﹣lnx∈[a,+∞),则|lnx|﹣a=﹣lnx﹣a∈[0,+∞),所以f(x)=﹣lnx﹣a∈[0,+∞);当x∈(e﹣a,1]时,lnx∈(﹣a,0],|lnx|=﹣lnx∈[0,a),则|lnx|﹣a=﹣lnx﹣a∈[﹣a,0),所以f(x)=lnx+a∈(0,a];当x∈(1,e a]时,lnx∈(0,a],|lnx|=lnx∈(0,a],则|lnx|﹣a=lnx﹣a∈(﹣a,0],所以f(x)=a﹣lnx∈[0,a);当x∈(e a,+∞)时,lnx∈(a,+∞),|lnx|=lnx∈(a,+∞),则|lnx|﹣a=lnx﹣a∈(0,+∞),所以f(x)=lnx﹣a∈(0,+∞),所以f(x)的大致图象如图所示,当a>2时,存在实数k,使得方程f(x)=k有6个不同实根,故a的取值范围是(2,+∞),由题意得x1,x2是方程的两个根,即方程x2+kx+1=0的两个根,所以x1x2=1,x1x2=1,﹣lnx3﹣a=lnx6﹣a=k,所以lnx3+lnx6=ln(x3x6)=0,解得x3x6=1,lnx4+a=a﹣lnx5=k,lnx4+lnx5=ln(x4x5)=0,解得x4x5=1所以,故答案为:(2,+∞);2.四.根据实际问题选择函数类型(共1小题)4.(2023•茂名二模)修建栈道是提升旅游观光效果的一种常见手段.如图,某水库有一个半径为1百米的半圆形小岛,其圆心为C且直径MN平行坝面.坝面上点A满足AC⊥MN,且AC长度为3百米,为便于游客到小岛观光,打算从点A到小岛建三段栈道AB、BD与BE,水面上的点B在线段AC上,且BD、BE均与圆C相切,切点分别为D、E,其中栈道AB、BD、BE和小岛在同一个平面上.此外在半圆小岛上再修建栈道、以及MN,则需要修建的栈道总长度的最小值为 +5 百米.【答案】+5.【解答】解:连接CD,CE,由半圆半径为1得:CD=CE=1,由对称性,设∠CBE=∠CBD=θ,又CD⊥BD,CE⊥BE,所以BE=BD==,BC==,易知∠MCE=∠NCD=θ,所以,的长为θ,又AC=3,故AB=AC﹣BC=3﹣∈(0,2),故sinθ∈(,1),令sinθ0=,且θ0∈(0,),则f(θ)=5﹣++2θ,θ∈(θ0,),所以f′(θ)=,θ(θ0,)(,)f′(θ)﹣0+f(θ)单调递减极小值单调递增所以栈道总长度最小值f(θ)min=f()=+5.故答案为:+5.五.利用导数研究曲线上某点切线方程(共2小题)5.(2023•梅州二模)已知函数f(x)=x2+alnx的图象在x=1处的切线在y轴上的截距为2,则实数a= ﹣3 .【答案】﹣3.【解答】解:由f(x)=x2+alnx,得f′(x)=2x+,则f′(1)=2+a,又f(1)=1,∴函数f(x)=x2+alnx的图象在x=1处的切线方程为y﹣1=(2+a)(x﹣1),取x=0,可得y=﹣2﹣a+1=﹣a﹣1=2,可得a=﹣3.故答案为:﹣3.6.(2023•广东二模)已知f(x)=x3﹣x,若过点P(m,n)恰能作两条直线与曲线y=f (x)相切,且这两条切线关于直线x=m对称,则m的一个可能值为 (或或或) .【答案】(或或或).【解答】解:设切点坐标为(t,t3﹣t),因为f(x)=x3﹣x,则f'(x)=3x2﹣1,切线斜率为f'(t)=3t2﹣1,所以,曲线y=f(x)在x=t处的切线方程为y﹣(t3﹣t)=(3t2﹣1)(x﹣t),将点P的坐标代入切线方程可得2t3﹣3mt2+m+n=0,设过点P且与曲线y=f(x)相切的切线的切点的横坐标分别为x1、x2,且x1≠x2,因为这两条切线关于直线x=m对称,则,所以,易知x1、x2关于t的方程2t3﹣3mt2+m+n=0的两个根,设该方程的第三个根为x3,则2t3﹣3mt2+m+n=2(t﹣x1)(t﹣x2)(t﹣x3),则,所以,因为过点P(m,n)恰能作两条直线与曲线y=f(x)相切,则关于t的方程2t3﹣3mt2+m+n=0只有两个不等的实根,不妨设x3=x1,则,若x1=0,则,可得,解得;若2x2+x1=0,则x1=﹣2x2,所以,,可得,x1=m,所以,解得.综上所述,或.故答案为:(或或或).六.平面向量的基本定理(共1小题)7.(2023•广州二模)在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且,当λ= 时,则有最小值为 .【答案】;.【解答】解:在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,则,又,则===(1﹣),,则=+4λ+4()=,又=,当且仅当,即时取等号,即当λ=时,则有最小值为,故答案为:;.七.解三角形(共1小题)8.(2023•深圳二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的B底线宽AB =72码,球门宽EF=8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P,使得∠EPF最大,这时候点P就是最佳射门位置.当攻方球员甲位于边线上的点O处(OA=AB,OA⊥AB)时,根据场上形势判断,有、两条进攻线路可供选择.若选择线路,则甲带球 72﹣16 码时,APO到达最佳射门位置;若选择线路,则甲带球 72﹣16 码时,到达最佳射门位置.【答案】72﹣16;72﹣16.【解答】解:若选择线路,设AP=t,其中0<t≤72,AE=32,AF=32+8=40,则tan∠APE==,tan∠APF==,所以,tan∠EPF=tan(∠APF﹣∠APE)====≤=,当且仅当t=时,即当t=16时,等号成立,此时OP=OA﹣AP=72﹣16,所以,若选择线路,则甲带球72﹣16码时,APO到达最佳射门位置;若选择线路,以线段EF的中点N为坐标原点,、的方向分别为x、y轴的正方向建立如下图所示的空间直角坐标系,则B(﹣36,0)、O(36,72)、F(﹣4,0)、E(4,0),k OB==1,直线OB的方程为y=x+36,设点P(x,x+36),其中﹣36<x≤36,tan∠AFP=k PF=,tan∠AEP=k PE=,所以,tan∠EPF=tan(∠AEP﹣∠AFP)====,令m=x+36∈(0,72],则x=m﹣36,所以x+36+=m+=2m+﹣72≥2﹣72=32﹣72,当且仅当2m=时,即当m=8,即当x=8﹣36时,等号成立,所以,tan∠EPF=≤=,当且仅当x=8﹣36时,等号成立,此时,|OP|=|36﹣(8﹣36)|=72﹣16,所以,若选择线路,则甲带球72﹣16码时,到达最佳射门位置,故答案为:72﹣16;72﹣16.八.棱柱、棱锥、棱台的体积(共1小题)9.(2023•广东二模)已知直四棱柱ABCD﹣A1B1C1D1的棱长均为2,∠BAD=60°,除面ABCD外,该四棱柱其余各个面的中心分别为点E,F,G,H,Ⅰ,则由点E,F,G,H,Ⅰ构成的四棱锥的体积为 .【答案】.【解答】解:连接AC,BD,由题意可得,分别过E,F,G,H作底面ABCD的垂线,垂足分别为E1,F1,G1,H1,可得E1,F1,G1,H1分别为AB,BC,CD,AD的中点,连接E1F1,F1G1,G1H1,H1E1,可得,由题意可得:EFGH﹣E1F1G1H1为四棱柱,则,四棱锥的高为直四棱柱ABCD﹣A1B1C1D1的高的一半,即为1,所以四棱锥的体积.故答案为:.九.球的体积和表面积(共1小题)10.(2023•韶关二模)将一个圆心角为、面积为2π的扇形卷成一个圆锥,则此圆锥内半径最大的球的表面积为 π .【答案】π.【解答】解:设圆锥底面半径为R,母线长为L,则,解得R=,L=,易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中,,且点M为BC边上的中点,设内切圆的圆心为O,由于,故S△ABC=××=,设内切圆半径为r,则:S△ABC=S△AOB+S△BOC+S△AOC=AB•r×2+BC•r,解得:,其表面积:.故答案为:π.一十.点、线、面间的距离计算(共1小题)11.(2023•高州市二模)已知球O与正四面体A﹣BCD各棱相切,且与平面α相切,若AB =1,则正四面体A﹣BCD表面上的点到平面α距离的最大值为 .【答案】.【解答】解:将正四面体A﹣BCD补形成正方体,因为球O与正四面体A﹣BCD各棱相切,所以球O即为正方体的内切球,易知,球心O为正方体体对角线的中点,记正四面体A﹣BCD表面上的点到球心O的距离为d,球的半径为r,则正四面体A﹣BCD表面上的点到平面α距离的最大值即为d+r的最大值,设正方体棱长为a,则a2+a2=1,解得,所以,易知,,所以正四面体A﹣BCD表面上的点到平面α距离的最大值为.故答案为:.一十一.轨迹方程(共1小题)12.(2023•广州二模)在平面直角坐标系xOy中,定义d(A,B)=|x1﹣x2|+|y1﹣y2|为A (x1,y1),B(x2,y2)两点之间的“折线距离”.已知点Q(1,0),动点P满足d(Q,P)=,点M是曲线y=上任意一点,则点P的轨迹所围成图形的面积为 ,d(P,M)的最小值为 (﹣1) .【答案】;(﹣1).【解答】解:设P(x,y),d(Q,P)=|x﹣1|+|y|=,当x≥1,y≥0时,则x﹣1+y=,即x+y﹣=0,当x≥1,y<0时,则x﹣1﹣y=,即x﹣y﹣=0,当x<1,y<0时,则1﹣x﹣y=,即x+y﹣=0,当x<1,y≥0时,则1﹣x+y=,即x﹣y﹣=0,故点P的轨迹所围成图形如下图阴影部分四边形ABCD的面积:则S=×××4=,如下图,设P(x0,y0),M(x1,y1),又求d(P,M)的最小值,显然x1>x0,y1>y0,d(P,M)=|x1﹣x0|+|y1﹣y0|=x1﹣x0+y1﹣y0=x1+y1﹣(x0+y0),求d(P,M)的最小值,即x1+y1的最小值,x0+y0的最大值,又(x0+y0)=,下面求x1+y1的最小值,令y=x1+y1=x1+,y'=1﹣=0,即x1=,令y'>0,解得:x1>,令y'<0,解得:x1<,所以y在(﹣∞,)上单调递减,在(,+∞)上单调递增,所以x1=时,y有最小值,且y min=,所以d(P,M)min=﹣=(﹣1).故答案为:;(﹣1).一十二.椭圆的性质(共3小题)13.(2023•梅州二模)如图,一个装有某种液体的圆柱形容器固定在墙面和地面的角落内,容器与地面所成的角为30°,液面呈椭圆形状,则该椭圆的离心率为 .【答案】.【解答】解:设圆柱的底面半径为r,因为一个装有某种液体的圆柱形容器固定在墙面和地面的角落内,容器与地面所成的角为30°,液面呈椭圆形状,则2b=2r,,即,因此该椭圆的离心率为.故答案为:.14.(2023•汕头二模)阿波罗尼奥斯在其著作《圆锥曲线论》中提出:过椭圆上任意一点P(x0,y0)的切线方程为.若已知△ABC内接于椭圆E:,且坐标原点O为△ABC的重心,过A,B,C分别作椭圆E的切线,切线分别相交于点D,E,F,则= 4 .【答案】4.【解答】解:设A(x1,y1)、B(x2,y2)、C(x3,y3),由中点坐标公式可得、、,∵O为△ABC的重心,∴,,,∴x1y3﹣x3y1=x3y2﹣x2y3=x2y1﹣x1y2,由题意可知,过A,B,C切线分别为,,,∴,,,∴,同理,即O也是△DEF的重心,又∵,,,∴,,,∴,同理可得k OE=k OB,k OF=k OA,∴D,O,C、E,O,B、F,O,A共线,综上,C,B,A分别是EF,DF,DE的中点,则.故答案为:4.15.(2023•佛山二模)已知F1、F2分别为椭圆的左、右焦点,P是过椭圆右顶点且与长轴垂直的直线上的动点,则sin∠F1PF2的最大值为 .【答案】.【解答】解:由椭圆的方程可知右顶点为M(2,0),左右焦点F1、F2的坐标为(﹣1,0),(1,0),设P(2,t)为过椭圆右顶点且与长轴垂直的直线上的动点,(不妨设t>0),tan∠F1PF2=tan(∠F1PM﹣∠F2PM)====≤=,当且仅当t=,即t=时取等号,∵0≤∠F1PF2<,∴0≤∠F1PF2≤,∴sin∠F1PF2的最大值为.故答案为:.一十三.抛物线的性质(共1小题)16.(2023•韶关二模)已知抛物线C:y2=4x的焦点为F,过F且斜率为﹣1的直线l交抛物线C于A,B两点,则以线段AB为直径的圆D的方程为 (x﹣3)2+(y+2)2=16 ;若圆D上存在两点P,Q,在圆T:(x+2)2+(y+7)2=a2(a>0)上存在一点M,使得∠PMQ=90°,则实数a的取值范围为 [,9] .【答案】(x﹣3)²+(y+2)²=16,[,9].【解答】解:过抛物线C:y2=4x的焦点为F(1,0)且斜率为﹣1的直线l为y=﹣x+1,由消去x,得x2﹣6x+1=0,所以AB的中点为D(3,﹣2),|AB|=x1+x2+p,所以以线段AB为直径的圆D的半径r=4,方程为(x﹣3)²+(y+2)²=16,对圆D内任意一点M,必可作相互垂直的两直线相交,故存在圆D上两点P,Q,使∠PMQ=90°;对圆D外任意一点M,P,Q是圆D上两点.当MP,MQ与圆D相切时,∠PMQ最大,此时DPMQ为柜形,T:(x﹣a)2+y2=1上存在一点M,使得∠PMQ=90°,等价于以D为因心以为半径的圆与圆T:(x+2)2+(y+7)2=a2(a>0)在公共点,所以,解得,所以实数a的取值范围为[,9].故答案为:(x﹣3)²+(y+2)²=16,[,9].一十四.古典概型及其概率计算公式(共1小题)17.(2023•佛山二模)有n个编号分别为1,2,…,n的盒子,第1个盒子中有2个白球1个黑球,其余盒子中均为1个白球1个黑球,现从第1个盒子中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n个盒子中取到白球的概率是 .【答案】;.【解答】解:记事件A i表示从第i(i=1,2,•,n)个盒子里取出白球,则P(A1)=,P()=,P(A2)=P(A1A2)+P()=P(A1)P(A2|A1)+P()P(A2|)==,P(A 3)=P(A2)P(A3|A2)+P()P(A3|)==,P(A 4)=P(A3)P(A4|A3)+P()P(A4|)=,进而得P(A n)=,P(A n)﹣=[P(A n﹣1)﹣],又P(A1)﹣=,P(A2)﹣=,P(A2)﹣=[P(A1)﹣],∴{P(A n)﹣}是首项为,公比为的等比数列,∴P(A n)﹣==,∴P(A n)=.故答案为:;.一十五.离散型随机变量的期望与方差(共1小题)18.(2023•汕头二模)某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者,假设携带病毒的人占5%,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验,如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.按照这种化验方法,平均每个人需要化验 0.4262 次.(结果保留四位有效数字)(0.955≈0.7738,0.956≈0.735,0.957≈0.6983).【答案】0.4262.【解答】解:设每个人需要的化验次数为X,若混合血样呈阴性,则X=;若混合血样呈阳性,则X=;因此,X的分布列为P(X=)=0.955,P(X=)=1﹣0.955,所以E(X)=≈0.4262,说明每5个人一组,平均每个人需要化验0.4262次.故答案为:0.4262.一十六.正态分布曲线的特点及曲线所表示的意义(共1小题)19.(2023•佛山二模)佛山被誉为“南国陶都”,拥有上千年的制陶史,佛山瓷砖享誉海内外.某企业瓷砖生产线上生产的瓷砖某项指标X~N(800,σ2),且P(X<801)=0.6,现从该生产线上随机抽取10片瓷砖,记Y表示800≤X<801的瓷砖片数,则E(Y)= 1 .【答案】1.【解答】解:由题意,X~N(800,σ2),所以正态曲线关于直线X=800对称,所以P(X<800)=0.5,因为P(X<801)=P(X<800)+P(800≤X<801)=0.6,所以P(800≤X<801)=0.6﹣0.5=0.1,由题意,Y~B(10,0.1),所以E(Y)=10×0.1=1.故答案为:1.一十七.归纳推理(共1小题)20.(2023•广州二模)如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法为:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,将图①,图②,图③,图④中的图形周长依次记为C1,C2,C3,C4,则= .【答案】.【解答】解:观察图形知,各个图形的周长依次排成一列构成数列{∁n},从第二个图形开始,每一个图形的边数是相邻前一个图形的4倍,边长是相邻前一个图形的,因此从第二个图形开始,每一个图形的周长是相邻前一个图形周长的,即有,因此数列{∁n}是首项C1=3,公比为的等比数列,所以,,故答案为:.。
高中高考数学二模试卷 理(含解析)-人教版高三全册数学试题

2016年某某省某某市扶沟县包屯高中高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则(∁U A)∩B=()A.[﹣1,0] B.[﹣1,2] C.(1,2] D.(﹣∞,1]∪[2,+∞)2.设复数z=1+i(i是虚数单位),则|+z|=()A.2 B.C.3 D.23.不等式|2x﹣1|>x+2的解集是()A.(﹣,3)B.(﹣∞,﹣)∪(3,+∞)C.(﹣∞,﹣3)∪(,+∞)D.(﹣3,+∞)4.若函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.﹣2或2 C.0 D.﹣2或05.一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1 B.0 C.1 D.56.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=17.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①② B.②③ C.①④ D.②④8.设点M(x,y)是不等式组所表示的平面区域Ω中任取的一点,O为坐标原点,则|OM|≤2的概率为()A. B.C. D.9.已知等差数列{a n}的前n项和为S n,若S17=170,则a7+a9+a11的值为()A.10 B.20 C.25 D.3010.已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值X围为()A.<α≤B.<α<πC.≤α<πD.<α≤11.已知f(x)=在x=0处取得最小值,则a的最大值是()A.4 B.1 C.3 D.212.若对∀x,y∈[0,+∞),不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1 C.2 D.二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.命题“对任意x≤0,都有x2<0”的否定为_______.14.若(ax2+)6的展开式中x3项的系数为20,则ab的值为_______.15.设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为_______.16.已知||=1,||=, =0,点C在∠AOB内,且∠AOC=30°,设=m+n (m、n∈R),则等于_______.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),则数列{b n}中,b1=1,点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若=a n•b n,求数列{}的前n项和S n.18.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求平面AEF与平面ABC所成角α的余弦值;(2)若G为BC的中点,A1G与平面AEF交于H,且设=,求λ的值.19.甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.(1)求x;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.甲乙9 8 7 58 x 2 1 8 0 0 3 55 3 9 0 2 520.已知动点P到直线x=2的距离等于P到圆x2﹣7x+y2+4=0的切线长,设点P的轨迹为曲线E;(1)求曲线E的方程;(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点(,)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.21.已知函数(其中常数a,b∈R),.(Ⅰ)当a=1时,若函数f(x)是奇函数,求f(x)的极值点;(Ⅱ)若a≠0,求函数f(x)的单调递增区间;(Ⅲ)当时,求函数g(x)在[0,a]上的最小值h(a),并探索:是否存在满足条件的实数a,使得对任意的x∈R,f(x)>h(a)恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G.(1)证明:PC=PD;(2)若AC=BD,求证:线段AB与DE互相平分.[选修4-4:坐标系与参数方程]23.已知直角坐标系xOy的原点和极坐标系Ox的极点重合,x轴非负半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为,(φ为参数).(1)在极坐标系下,若曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB 的面积;(2)给出直线l的极坐标方程为ρcosθ﹣ρsinθ=2,求曲线C与直线l在平面直角坐标系中的交点坐标.[选修4-5:不等式选讲]24.已知:函数f(x)=|1﹣3x|+3+ax.(1)若a=﹣1,解不等式f(x)≤5;(2)若函数f(x)有最小值,某某数a的取值X围.2016年某某省某某市扶沟县包屯高中高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则(∁U A)∩B=()A.[﹣1,0] B.[﹣1,2] C.(1,2] D.(﹣∞,1]∪[2,+∞)【考点】交、并、补集的混合运算.【分析】化简集合B,求出A的补集,再计算(∁U A)∩B.【解答】解:全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0}={x|0≤x≤2},∴∁U A={x|x<﹣1或x>1},∴(∁U A)∩B={x|1<x≤2}=(1,2].故选:C.2.设复数z=1+i(i是虚数单位),则|+z|=()A.2 B.C.3 D.2【考点】复数代数形式的乘除运算.【分析】先求出+z,再求出其模即可.【解答】解:∵z=1+i,∴+z=+1+i===1﹣i+1+i=2,故|+z|=2,故选:A.3.不等式|2x﹣1|>x+2的解集是()A.(﹣,3)B.(﹣∞,﹣)∪(3,+∞)C.(﹣∞,﹣3)∪(,+∞)D.(﹣3,+∞)【考点】绝对值三角不等式.【分析】选择题,对x+2进行分类讨论,可直接利用绝对值不等式公式解决:|x|>a等价于x>a或x<﹣a,最后求并集即可.【解答】解:当x+2>0时,不等式可化为2x﹣1>x+2或2x﹣1<﹣(x+2),∴x>3或2x﹣1<﹣x﹣2,∴x>3或﹣2<x<﹣,当x+2≤0时,即x≤﹣2,显然成立,故x的X围为x>3或x<﹣故选:B.4.若函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.﹣2或2 C.0 D.﹣2或0【考点】正弦函数的图象.【分析】由f(+x)=f(﹣x),可得x=是函数f(x)的对称轴,利用三角函数的性质即可得到结论.【解答】解:∵函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),∴x=是函数f(x)的对称轴,即此时函数f(x)取得最值,即f()=±2,故选:B5.一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1 B.0 C.1 D.5【考点】程序框图.【分析】模拟执行程序可得程序功能是求分段函数y=的值,根据已知即可求解.【解答】解:模拟执行程序可得程序功能是求分段函数y=的值,∵y=,∴sin()=∴=2kπ+,k∈Z,即可解得x=12k+1,k∈Z.∴当k=0时,有x=1.故选:C.6.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【分析】由题意可得c﹣a=1,求出渐近线方程和焦点的坐标,运用点到直线的距离公式,可得b=,由a,b,c的关系,可得a,进而得到所求双曲线的方程.【解答】解:双曲线的一个顶点(a,0)到较近焦点(c,0)的距离为1,可得c﹣a=1,由双曲线的渐近线方程为y=x,则焦点(c,0)到渐近线的距离为d==b=,又c2﹣a2=b2=3,解得a=1,c=2,即有双曲线的方程为x2﹣=1.故选:A.7.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①② B.②③ C.①④ D.②④【考点】空间中直线与平面之间的位置关系.【分析】与立体几何有关的命题真假判断,要多结合空间图形,充分利用相关的公里、定理解答.判断线与线、线与面、面与面之间的关系,可将线线、线面、面面平行(垂直)的性质互相转换,进行证明,也可将题目的中直线放在空间正方体内进行分析.【解答】解:因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;④垂直于同一平面的两直线平行,由线面垂直的性质定理判断④正确;故选:D.8.设点M(x,y)是不等式组所表示的平面区域Ω中任取的一点,O为坐标原点,则|OM|≤2的概率为()A. B.C. D.【考点】几何概型.【分析】若x,y∈R,则区域W的面积是2×2=4.满足|OM|≤2的点M构成的区域为{(x,y)|﹣1≤x≤1,0≤y≤2,x2+y2≤4},求出面积,即可求出概率.【解答】解:这是一个几何概率模型.若x,y∈R,则区域W的面积是2×2=4.满足|OM|≤2的点M构成的区域为{(x,y)|﹣1≤x≤1,0≤y≤2,x2+y2≤4},面积为2[﹣(﹣)]= +,故|OM|≤2的概率为.故选:D.9.已知等差数列{a n}的前n项和为S n,若S17=170,则a7+a9+a11的值为()A.10 B.20 C.25 D.30【考点】等差数列的前n项和.【分析】由等差数列的性质可得a7+a9+a11=3a9,而s17=17a9,故本题可解.【解答】解:∵a1+a17=2a9,∴s17==17a9=170,∴a9=10,∴a7+a9+a11=3a9=30;故选D.10.已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值X围为()A.<α≤B.<α<πC.≤α<πD.<α≤【考点】余弦定理;正弦定理.【分析】由已知根据三角形内角和定理得3α>π,从而解得α>,妨设三角形三边为a﹣d,a,a+d,(a>0,d>0),利用余弦定理可得cosα=2﹣>﹣1,结合三角形内角的X围即可得解.【解答】解:∵α为△ABC最大内角,∴3α>π,即α>,由题意,不妨设三角形三边为a﹣d,a,a+d,(a>0,d>0),则由余弦定理可得,cosα===2﹣=2﹣,又∵三角形两边之和大于第三边,可得a﹣d+a>a+d,可得a>2d,即,∴cosα=2﹣>﹣1,又α为三角形内角,α∈(0,π),可得:α∈(,π).故选:B.11.已知f(x)=在x=0处取得最小值,则a的最大值是()A.4 B.1 C.3 D.2【考点】函数的最值及其几何意义.【分析】根据分段函数,分别讨论x的X围,求出函数的最小值,根据题意得出不等式a2<a+2,求解即可.【解答】解:∵f(x)=,当x≤0时,f(x)的最小值为a2,当x>0时,f(x)的最小值为2+a,∵在x=0处取得最小值,∴a2<a+2,∴﹣1≤a≤2,故选D.12.若对∀x,y∈[0,+∞),不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1 C.2 D.【考点】函数恒成立问题.【分析】利用基本不等式和参数分离可得a≤在x>0时恒成立,构造函数g(x)=,通过求导判断单调性求得g(x)的最小值即可得到a的最大值.【解答】解:当x=0时,不等式即为0≤e y﹣2+e﹣y﹣2+2,显然成立;当x>0时,设f(x)=e x+y﹣2+e x﹣y﹣2+2,不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,即为不等式4ax≤f(x)恒成立.即有f(x)=e x﹣2(e y+e﹣y)+2≥e x﹣2•2+2=2+2e x﹣2(当且仅当y=0时,取等号),由题意可得4ax≤2+2e x﹣2,即有a≤在x>0时恒成立,令g(x)=,g′(x)=,令g′(x)=0,即有(x﹣1)e x﹣2=1,令h(x)=(x﹣1)e x﹣2,h′(x)=xe x﹣2,当x>0时h(x)递增,由于h(2)=1,即有(x﹣1)e x﹣2=1的根为2,当x>2时,g(x)递增,0<x<2时,g(x)递减,即有x=2时,g(x)取得最小值,为,则有a≤.当x=2,y=0时,a取得最大值.故选:D二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.命题“对任意x≤0,都有x2<0”的否定为存在x0≤0,都有.【考点】命题的否定.【分析】利用全称命题的否定是特称命题,写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“对任意x≤0,都有x2<0”的否定为:存在x0≤0,都有;故答案为:存在x0≤0,都有;14.若(ax2+)6的展开式中x3项的系数为20,则ab的值为 1 .【考点】二项式系数的性质.【分析】直接利用二项式定理的通项公式,求出x3项的系数为20,得到ab的值.【解答】解:(ax2+)6的展开式的通项公式为T r+1=•a6﹣r•b r•x12﹣3r,令12﹣3r=3,求得r=3,故(ax2+)6的展开式中x3项的系数为•a3•b3=20,∴ab=1.故答案为:1.15.设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为.【考点】三角形的形状判断;函数的值.【分析】不妨设c为斜边,则M<a<c,M<b<c,则可得ab>M2,结合题意可得,结合a2+b2≥2ab可求c的X围,进而可求M的X围,即可求解【解答】解:不妨设c为斜边,则M<a<c,M<b<c∴ab>M2由题意可得,∴∵a2+b2≥2ab>2c∴c2>2c即c>2∴ab>2∴M2≥2∴故答案为:16.已知||=1,||=, =0,点C在∠AOB内,且∠AOC=30°,设=m+n (m、n∈R),则等于 3 .【考点】平面向量数量积的运算;线段的定比分点.【分析】先根据=0,可得⊥,又因为===|OC|×1×cos30°==1×,所以可得:在x轴方向上的分量为在y轴方向上的分量为,又根据=m+n=n+m,可得答案.【解答】解:∵||=1,||=, =0,⊥===|OC|×1×cos30°==1×∴在x轴方向上的分量为在y轴方向上的分量为∵=m+n=n+m∴,两式相比可得: =3.故答案为:3三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),则数列{b n}中,b1=1,点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若=a n•b n,求数列{}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(I)等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),可得a1=5,a2=3,a3=1.利用等差数列的通项公式即可得出.由点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上,可得b n=a•2n.利用b1=1,解得a,即可得出.(II)=a n•b n=(7﹣2n)•2n﹣1.利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(I)等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),∴a1=5,a2=3,a3=1.∴d=3﹣5=﹣2,∴a n=5﹣2(n﹣1)=7﹣2n.∵点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上,∴b n=a•2n.∵b1=1,∴1=a×21,解得a=.∴b n=2n﹣1.(II)=a n•b n=(7﹣2n)•2n﹣1.∴数列{}的前n项和S n=5×1+3×2+1×22+…+(7﹣2n)•2n﹣1.∴2S n=5×2+3×22+…+(9﹣2n)•2n﹣1+(7﹣2n)•2n,∴﹣S n=5﹣2(2+22+…+2n﹣1)﹣(7﹣2n)•2n=5﹣﹣(7﹣2n)•2n=9﹣(9﹣2n)•2n,∴S n=(9﹣2n)•2n﹣9.18.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求平面AEF与平面ABC所成角α的余弦值;(2)若G为BC的中点,A1G与平面AEF交于H,且设=,求λ的值.【考点】二面角的平面角及求法;棱柱的结构特征.【分析】(1)建立空间坐标系,求出平面的法向量,利用向量法进行求解即可.(2)利用四点共面, =x+y,建立方程关系进行求解即可.【解答】解:(1)在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:则A(0,0,0),A1(0,0,6),B(2,0,0),C(0,2,0),E(2,0,2),F(0,2,4),则=(2,0,2),=(0,2,4),设平面AEF的法向量为=(x,y,z)则令z=1.则x=﹣1,y=﹣2,即=(﹣1,﹣2,1),平面ABC的法向量为=(0,0,1),则cos<,>===即平面AEF与平面ABC所成角α的余弦值是;(2)若G为BC的中点,A1G与平面AEF交于H,则G(1,1,0),∵=,∴==λ(1,1,﹣6)=(λ,λ,﹣6λ),=+=(λ,λ,6﹣6λ)∵A,E,F,H四点共面,∴设=x+y,即(λ,λ,6﹣6λ)=x(2,0,2)+y(0,2,4),则,得λ=,x=y=,故λ的值为.19.甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.(1)求x;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.甲乙9 8 7 58 x 2 1 8 0 0 3 55 3 9 0 2 5【考点】离散型随机变量的期望与方差;极差、方差与标准差;离散型随机变量及其分布列.【分析】(1)由题意利用平均数的定义仔细分析图表即可求得;(2)由题意记“甲同学在一次数学竞赛中成绩高于8”为事A,则,而随机变量ξ的可能取值为0、1、2、3,由题意可以分析出该随机变量ξ~B(3,),再利用二项分布的期望与分布列的定义即可求得.【解答】解:(1)依题意,解x=4,由图中数据直观判断,甲同学的成绩比较稳定.(2)记“甲同学在一次数学竞赛中成绩高于80分”为事A,则,随机变ξ的可能取值为0、1、2、3,ξ~B(3,),,其k=0、1、2、3.所以变ξ的分布列为:ξ0 1 2 3P20.已知动点P到直线x=2的距离等于P到圆x2﹣7x+y2+4=0的切线长,设点P的轨迹为曲线E;(1)求曲线E的方程;(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点(,)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(1)设P(x,y),由题意可得,整理可得切线E 的方程(2)过点Q任作的直线方程可设为:为直线的倾斜角),代入曲线E的方程y2=3x,得(n+tsinα)2=3(m+tcosα),sin2αt2+(2nsinα﹣3cosα)t+n2﹣3m=0,由韦达定理得,,若使得点(,)在以原点为圆心,定值r为半径的圆上,则有=为定值【解答】解:(1)设P(x,y),圆方程x2﹣7x+y2+4=0化为标准式:则有∴(x﹣2)2=x2﹣7x+y2+4,整理可得y2=3x∴曲线E的方程为y2=3x.(2)过点Q任作的直线方程可设为:为直线的倾斜角)代入曲线E的方程y2=3x,得(n+tsinα)2=3(m+tc osα),sin2αt2+(2nsinα﹣3cosα)t+n2﹣3m=0由韦达定理得,,==═令﹣12n与2n2+6m﹣9同时为0得n=0,,此时为定值故存在.21.已知函数(其中常数a,b∈R),.(Ⅰ)当a=1时,若函数f(x)是奇函数,求f(x)的极值点;(Ⅱ)若a≠0,求函数f(x)的单调递增区间;(Ⅲ)当时,求函数g(x)在[0,a]上的最小值h(a),并探索:是否存在满足条件的实数a,使得对任意的x∈R,f(x)>h(a)恒成立.【考点】函数在某点取得极值的条件;利用导数研究函数的单调性.【分析】(I)根据所给的函数是一个奇函数,写出奇函数成立的等式,整理出b的值是0,得到函数的解析式,对函数求导,使得导函数等于0,求出极值点.(II)要求函数的单调增区间,首先对函数求导,使得导函数大于0,解不等式,问题转化为解一元二次不等式,注意对于a值进行讨论.(Ⅲ)求出函数g(x)在[0,a]上的极值、端点值,比较其中最小者即为h(a),再利用奇函数性质及基本不等式求出f(x)的最小值,对任意的x∈R,f(x)>h(a)恒成立,等价于f(x)min>h(a),在上只要找到一a值满足该不等式即可.【解答】解:(Ⅰ)当a=1时,因为函数f(x)是奇函数,∴对x∈R,f(﹣x)=﹣f(x)成立,得,∴,∴,得,令f'(x)=0,得x2=1,∴x=±1,经检验x=±1是函数f(x)的极值点.(Ⅱ)因为,∴,令f'(x)>0⇒﹣ax2﹣2bx+a>0,得ax2+2bx﹣a<0,①当a>0时,方程ax2+2bx﹣a=0的判别式△=4b2+4a2>0,两根,单调递增区间为,②当a<0时,单调递增区间为和.(Ⅲ)因为,当x∈[0,a]时,令g'(x)=0,得,其中.当x变化时,g'(x)与g(x)的变化情况如下表:x (0,x0)x0(x0,a)g'(x)+ 0 ﹣g(x)↗↘∴函数g(x)在[0,a]上的最小值为g(0)与g(a)中的较小者.又g(0)=0,,∴h(a)=g(a),∴,b=0时,由函数是奇函数,且,∴x>0时,,当x=1时取得最大值;当x=0时,f(0)=0;当x<0时,,∴函数f(x)的最小值为,要使对任意x∈R,f(x)>h(a)恒成立,则f(x)最小>h(a),∴,即不等式在上有解,a=π符合上述不等式,∴存在满足条件的实数a=π,使对任意x∈R,f(x)>h(a)恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G.(1)证明:PC=PD;(2)若AC=BD,求证:线段AB与DE互相平分.【考点】与圆有关的比例线段.【分析】(1)利用PD为圆的切线,切点为D,AB为圆的一条直径,证明:∠DGP=∠PDG,即可证明PC=PD;(2)若AC=BD,证明DE为圆的一条直径,即可证明线段AB与DE互相平分.【解答】证明:(1)∵PD为圆的切线,切点为D,AB为圆的一条直径,∴∠PDA=∠DBA,∠BDA=90°,∴∠DBA+∠DAB=90°,∵PE⊥AB∴在Rt△AFG中,∠FGA+∠GAF=90°,∴∠FGA+∠DAB=90°,∴∠FGA=∠DBA.∵∠FGA=∠DGP,∴∠DGP=∠PDA,∴∠DGP=∠PDG,∴PG=PD;(2)连接AE,则∵CE⊥AB,AB为圆的一条直径,∴AE=AC=BD,∴∠EDA=∠DAB,∵∠DEA=∠DBA,∴△BDA≌△EAD,∴DE=AB,∴DE为圆的一条直径,∴线段AB与DE互相平分.[选修4-4:坐标系与参数方程]23.已知直角坐标系xOy的原点和极坐标系Ox的极点重合,x轴非负半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为,(φ为参数).(1)在极坐标系下,若曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB 的面积;(2)给出直线l的极坐标方程为ρcosθ﹣ρsinθ=2,求曲线C与直线l在平面直角坐标系中的交点坐标.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线C的参数方程为,(φ为参数),利用平方关系可得:曲线 C 在直角坐标系下的普通方程.将其化为极坐标方程为,分别代入和,可得|OA|,|OB|,,利用直角三角形面积计算公式可得△AOB的面积.(2)将l的极坐标方程化为直角坐标方程得x﹣y﹣2=0,与椭圆方程联立解出即可得出交点坐标.【解答】解:(1)曲线C的参数方程为,(φ为参数),利用平方关系可得:曲线 C在直角坐标系下的普通方程为,将其化为极坐标方程为,分别代入和,得,∵,故△AOB的面积.(2)将l的极坐标方程化为直角坐标方程,得x﹣y﹣2=0,联立方程,解得x=2,y=0,或,∴曲线C与直线l的交点坐标为(2,0)或.[选修4-5:不等式选讲]24.已知:函数f(x)=|1﹣3x|+3+ax.(1)若a=﹣1,解不等式f(x)≤5;(2)若函数f(x)有最小值,某某数a的取值X围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)若a=﹣1,不等式f(x)≤5,即为|3x﹣1|≤x+2,去掉绝对值解不等式f(x)≤5;(2)分析知函数f(x)有最小值的充要条件为,即可某某数a的取值X围.【解答】解:(1)当a=﹣1时,f(x)=|3x﹣1|+3﹣x,所以不等式f(x)≤5,即为|3x﹣1|≤x+2,讨论:当时,3x﹣1﹣x+3≤5,解之得;当时,﹣3x+1﹣x+3≤5,解之得,综上,原不等式的解集为…(2),分析知函数f(x)有最小值的充要条件为,即﹣3≤a≤3…。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省高考数学二模试卷(理科)一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的.1.函数f(x)=+lg(6﹣3x)的定义域为()A.(﹣∞,2)B.(2,+∞)C.[﹣1,2)D.[﹣1,2]2.己知复数z=(a∈R,i是虚数单位)是纯虚数,则|z|为()A.B.C.6 D.33.“p∧q是真命题”是“p∨q是真命题”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知sinα﹣cosα=,则cos(﹣2α)=()A.﹣ B.C.D.5.己知0<a<b<l<c,则()A.a b>a a B.c a>c b C.log a c>log b c D.log b c>log b a6.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器﹣﹣商鞍铜方升,其三视图如图所示(单位:升),则此量器的体积为(单位:立方升)()A.14 B.12+C.12+πD.38+2π7.设计如图的程序框图,统计高三某班59位同学的数学平均分,输出不少于平均分的人数(用j表示),则判断框中应填入的条件是()A.i<58?B.i≤58?C.j<59?D.j≤59?8.某撤信群中四人同时抢3个红包,每人最多抢一个,则其中甲、乙两人都抢到红包的概率为()A.B.C.D.9.己知实数x,y满足不等式组,若z=x﹣2y的最小值为﹣3,则a的值为()A.1 B.C.2 D.10.函数f(x)=x2﹣()x的大致图象是()A.B.C.D.11.已知一长方体的体对角线的长为l0,这条对角线在长方体一个面上的正投影长为8,则这个长方体体积的最大值为()A.64 B.128 C.192 D.38412.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内有零点,则ω的取值范围是()A.(,)∪(,+∞)B.(0,]∪[,1)C.(,)∪(,)D.(,)∪(,+∞)二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.13.已知向量=(x﹣1,2),=(2,x﹣1)满足=﹣||•||,则x= .14.已知直线3x﹣4y﹣6=0与圆x2+y2﹣2y+m=0(m∈R)相切,则m的值为.15.在△ABC中,已知与的夹角为150°,||=2,则||的取值范围是.16.己知双曲线﹣=1(b>0)的离心率为,F1,F2时双曲线的两个焦点,A 为左顶点、B(0,b),点P在线段AB上,则•的最小值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}中,a1=1,a n+1=+n+1.(I)求证:数列{+1}是等比教列.(II)求数列{a n}的前n项和为S n.18.(12分)己知图1中,四边形ABCD是等腰梯形,AB∥CD,EF∥CD,O、Q分别为线段AB,CD的中点,OQ与EF的交点为P,OP=1,PQ=2,现将梯形ABCD沿EF 折起,使得OQ=,连结AD,BC,得一几何体如图2示.(I)证明:平面ABCD⊥平面ABFE;(II)若图1中.∠A=45°,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.19.(12分)某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n﹣1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;(II)估计小明在3次游戏中至少过两关的平均次数;(Ⅲ)估计小明在3次游戏中所得奖品超过30件的概率.20.(12分)己知椭圆+=1(a>b>0)与抛物线y2=2px(p>0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|﹣1,且椭圆与抛物线的交点Q满足|QF2|=.(I)求抛物线的方程和椭圆的方程;(II)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A,B两点,设线段AB的中点为C(x0,y0),求x0的取值范围.21.(12分)设函数f(x)=(x﹣a)2(a∈R),g(x)=lnx,(I)试求曲线F(x))=f(x)+g(x)在点(1,F(1))处的切线l与曲线F(x)的公共点个数;(II)若函数G(x)=f(x).g(x)有两个极值点,求实数a的取值范围.(附:当a<0,x趋近于0时,2lnx﹣趋向于+∞)三、请考生在第(12)、(23)題中任选一题作答,如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,已知直线l1:y=tanα•x(0≤a<π,α),抛物线C:(t为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系(Ⅰ)求直线l1和抛物线C的极坐标方程;(Ⅱ)若直线l1和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.五、[选修4-5:不等式选讲](共1小题,满分0分)23.己知函数f(x)=|2|x|﹣1|.(I)求不等式f(x)≤1的解集A;(Ⅱ)当m,n∈A时,证明:|m+n|≤mn+1.参考答案与试题解析一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的.1.函数f(x)=+lg(6﹣3x)的定义域为()A.(﹣∞,2)B.(2,+∞)C.[﹣1,2)D.[﹣1,2]【考点】33:函数的定义域及其求法.【分析】根据二次根式以及对数函数的性质求出函数的定义域即可.【解答】解:由题意得:,解得:﹣1≤x<2,故函数的定义域是[﹣1,2),故选:C.【点评】本题考查了求函数的定义域问题,考查二次根式以及对数函数的性质,是一道基础题.2.己知复数z=(a∈R,i是虚数单位)是纯虚数,则|z|为()A.B.C.6 D.3【考点】A8:复数求模.【分析】利用复数的运算法则、纯虚数的定义、模的计算公式即可得出.【解答】解:复数z===(a∈R,i是虚数单位)是纯虚数,∴=0,≠0.解得a=﹣6.∴z=3i.则|z|=3.故选:D.【点评】本题考查了复数的运算法则、纯虚数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.3.“p∧q是真命题”是“p∨q是真命题”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2E:复合命题的真假;29:充要条件.【分析】由真值表可知若p∧q为真命题,则p、q都为真命题,从而p∨q为真命题,反之不成立,从而求解.【解答】解::∵p∨q为真命题,则p、q中只要有一个命题为真命题即可,p∧q 为真命题,则需两个命题都为真命题,∴p∨q为真命题不能推出p∧q为真命题,而p∧q为真命题能推出p∨q为真命题∴“p∧q是真命题”是“p∨q是真命题”的充分不必要条件,故选A.【点评】本题考查了利用充要条件定义判断充分必要性的方法,利用真值表判断命题真假的方法,熟记真值表是解决本题的关键.4.已知sinα﹣cosα=,则cos(﹣2α)=()A.﹣ B.C.D.【考点】GT:二倍角的余弦;GI:三角函数的化简求值.【分析】由已知,利用二倍角公式可求sin2α的值,进而利用诱导公式即可化简求值得解.【解答】解:∵sinα﹣cosα=,∴两边平方,可得:1﹣2sinαcosα=,可得:1﹣sin2α=,∴cos(﹣2α)=sin2α=.故选:C.【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.5.己知0<a<b<l<c,则()A.a b>a a B.c a>c b C.log a c>log b c D.log b c>log b a【考点】4M:对数值大小的比较.【分析】利用指数函数、对数函数的单调性即可判断出正误.【解答】解:∵0<a<b<l<c,则a b<a a,c a<c b,log a c>log b c,log b c>log b a.故选:C.【点评】本题考查了指数函数、对数函数的单调性,考查了推理能力与计算能力,属于基础题.6.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器﹣﹣商鞍铜方升,其三视图如图所示(单位:升),则此量器的体积为(单位:立方升)()A.14 B.12+C.12+πD.38+2π【考点】L!:由三视图求面积、体积.【分析】该几何体为一底面半径为、高为2的圆柱与一长、宽、高分别为4、3、1的长方体的组合,由此能求出此量器的体积.【解答】解:由三视图得到该几何体为一底面半径为、高为2的圆柱与一长、宽、高分别为4、3、1的长方体的组合,如右图,故此量器的体积为:V==.故选:B.【点评】本题考查三视图与几何体的直观图的关系,几何体的体积的求法,考查计算能力与空间想象能力,是基础题.7.设计如图的程序框图,统计高三某班59位同学的数学平均分,输出不少于平均分的人数(用j表示),则判断框中应填入的条件是()A.i<58?B.i≤58?C.j<59?D.j≤59?【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,由程序框图知:要想判断所有59位学生的成绩a i≥b(i=1,2,3,…59)是否成立,判断框中应填入的条件是i≤58?【解答】解:由程序框图知:先输入59位同学的数学成绩,并求出平均分b,然后依次判断59名学生的成绩a i≥b(i=1,2,3,…59)是否成立,若成立,j=j+1,再判断下一位,若不成立,直接判断下一位,由此得到要想判断所有59位学生的成绩a i≥b(i=1,2,3,…59)是否成立,判断框中应填入的条件是i≤58?故选:B.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.某撤信群中四人同时抢3个红包,每人最多抢一个,则其中甲、乙两人都抢到红包的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】3个红包分配给四人共有种分法,“甲、乙两人都抢到红包”指从3个红包中选2个分配给甲、乙,其余1个分配给另外二人,甲、乙两人都抢到红包的概率.【解答】解:3个红包分配给四人共有种分法,“甲、乙两人都抢到红包”指从3个红包中选2个分配给甲、乙,其余1个分配给另外二人,∴甲、乙两人都抢到红包的概率:p===.∴甲、乙两人都抢到红包的概率为.故选:D.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9.己知实数x,y满足不等式组,若z=x﹣2y的最小值为﹣3,则a的值为()A.1 B.C.2 D.【考点】7C:简单线性规划.【分析】画出约束条件的可行域,利用目标函数的最值列出方程,求解即可.【解答】解:实数x,y满足不等式组的可行域如图,当直线z=x﹣2y过点A(a﹣2,a)时,z取得最小值,即a﹣2﹣2a=﹣3可得a=1.故选:A.【点评】本题考查线性规划的简单应用,考查数形结合以及计算能力.10.函数f(x)=x2﹣()x的大致图象是()A.B.C.D.【考点】3O:函数的图象.【分析】利用f(0),f(﹣2),f(﹣4)的函数值,排除选项即可推出结果.【解答】解:由f(0)=﹣1可排除(D),由f(﹣2)=4﹣4=0,f(﹣4)=16﹣16=0,可排(A)(C),故选B.【点评】本题考查函数的图象的判断,特殊点的应用,考查计算能力.11.已知一长方体的体对角线的长为l0,这条对角线在长方体一个面上的正投影长为8,则这个长方体体积的最大值为()A.64 B.128 C.192 D.384【考点】LF:棱柱、棱锥、棱台的体积.【分析】以投影面为底面,得正方体的高为6,设长方体底面边长分别为a,b,则a2+b2=64,由此能求出这个长方体体积的最大值.【解答】解:以投影面为底面,得到正方体的高为=6,设长方体底面边长分别为a,b,则a2+b2=64,∴这个长方体体积V=6ab≤3(a2+b2)=192.∴这个长方体体积的最大值为192.故选:C.【点评】本题考查长方体的体积的最大值的求法,考查基本不等式、长方体性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.12.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内有零点,则ω的取值范围是()A.(,)∪(,+∞)B.(0,]∪[,1)C.(,)∪(,)D.(,)∪(,+∞)【考点】54:根的存在性及根的个数判断.【分析】利用两角和与差的三角函数化简函数的解析式,利用零点求出x的值,然后利用特殊值排除选项推出结果即可.【解答】解:f(x)==sin (ωx﹣),由f(x)=0,可得x=(k∈Z),令ω=2得函数f(x)有一零点x=∈(π,2π),排除(B)、(C),令得函数f(x)在(0,+∞)上的零点从小到大为:x1=,x2,…显然x1∉(π,2π),x2∉(π,2π),可排除(A),故选:D.【点评】本题考查函数的零点的判断与应用,三角函数的化简求值,考查转化思想.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.13.已知向量=(x﹣1,2),=(2,x﹣1)满足=﹣||•||,则x= ﹣1 .【考点】9R:平面向量数量积的运算.【分析】由便可得出的方向相反,即有,这样根据平行向量的坐标关系即可求出x值,并满足方向相反,从而确定x的值.【解答】解:;∴;∴夹角为π;∴,且方向相反;∴(x﹣1)2﹣4=0;∴x﹣1=﹣2,或x﹣1=2(舍去);∴x=﹣1.故答案为:﹣1.【点评】考查向量数量积的计算公式,已知余弦值求角,向量夹角的概念,以及平行向量的坐标关系.14.已知直线3x﹣4y﹣6=0与圆x2+y2﹣2y+m=0(m∈R)相切,则m的值为﹣3 .【考点】J7:圆的切线方程.【分析】利用直线3x﹣4y﹣6=0与圆x2+y2﹣2y+m=0(m∈R)相切,根据点到直线的距离公式,建立方程,即可得到结论.【解答】解:圆x2+y2﹣2y+m=0可化为x2+(y﹣1)2=1﹣m,圆心为(0,1),半径r=,由题意,直线3x﹣4y﹣6=0与圆x2+y2﹣2y+m=0(m∈R),可得=,∴m=﹣3.故答案为:﹣3.【点评】本题考查直线与圆相切,考查点到直线的距离公式,考查学生的计算能力,属于基础题.15.在△ABC中,已知与的夹角为150°,||=2,则||的取值范围是(0,4] .【考点】9S:数量积表示两个向量的夹角.【分析】与的夹角为150°,|可得∠B=30°.由正弦定理可得:==4,可得=4sinC,利用0<C<150°,即可得出.【解答】解:与的夹角为150°,|可得∠B=30°.由正弦定理可得:==4,可得=4sinC,又0<C<150°,可得:.故答案为:(0,4].【点评】本题考查了正弦定理、向量夹角、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.16.己知双曲线﹣=1(b>0)的离心率为,F1,F2时双曲线的两个焦点,A 为左顶点、B(0,b),点P在线段AB上,则•的最小值为﹣.【考点】KC:双曲线的简单性质.【分析】设P(x,y)推出=(﹣﹣x,﹣y)(﹣x,﹣y)=x2+y2﹣5,通过垂直整合求解最小值即可.【解答】解:双曲线﹣=1(b>0)的离心率为,A为左顶点、可得a=2,则c=,b==1,设P(x,y)则=(﹣﹣x,﹣y)(﹣x,﹣y)=x2+y2﹣5,显然,当OP⊥AB时,x2+y2取得最小值,由面积法易得(x2+y2)min=,故点P在线段AB上,则•的最小值为:.故答案为:﹣.【点评】本题考查双曲线的简单性质的应用,考查计算能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2017•揭阳二模)已知数列{a n}中,a1=1,a n+1=+n+1.(I)求证:数列{+1}是等比教列.(II)求数列{a n}的前n项和为S n.【考点】8H:数列递推式;8E:数列的求和.【分析】(I)a n+1=+n+1,可得+1=2,即可证明.数列{+1}是等比教列,公比为2,首项为2.(II)由(I)可得:+1=2n,可得a n=n•2n﹣n.利用错位相减法、等比数列的求和公式及其等差数列的求和公式即可得出.【解答】(I)证明:∵a n+1=+n+1,∴=+1,∴+1=2,∴数列{+1}是等比教列,公比为2,首项为2.(II)解:由(I)可得:+1=2n,可得a n=n•2n﹣n.设数列{n•2n}的前n项和为T n.则T n=2+2×22+3×23+…+n•2n,2T n=22+2×23+…+(n﹣1)•2n+n•2n+1,相减可得:﹣T n=2+22+…+2n﹣n•2n+1=﹣n•2n+1,可得:T n=(n﹣1)•2n+1+2.∴S n=(n﹣1)•2n+1+2﹣.【点评】本题考查了错位相减法、等比数列与等差数列的通项公式及其求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.18.(12分)(2017•揭阳二模)己知图1中,四边形ABCD是等腰梯形,AB∥CD,EF∥CD,O、Q分别为线段AB,CD的中点,OQ与EF的交点为P,OP=1,PQ=2,现将梯形ABCD沿EF折起,使得OQ=,连结AD,BC,得一几何体如图2示.(I)证明:平面ABCD⊥平面ABFE;(II)若图1中.∠A=45°,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(Ⅰ)推导出OP⊥EF、PQ⊥EF,OQ⊥OP,从而EF⊥平面OPQ,进而EF⊥OQ,OQ⊥平面ABFE,由此能证明平面ABCD⊥平面ABFE.(Ⅱ)以O为原点,PO所在的直线为x轴建立空间直角坐标系O﹣xyz,利用向量法能求出平面ADE与平面BCF所成锐二面角的余弦值.【解答】证明:(Ⅰ)在图3中,四边形ABCD为等腰梯形,O、Q分别为线段AB、CD的中点,∴OQ为等腰梯形ABCD的对称轴,又AB∥EF∥CD,∴OP⊥EF、PQ⊥EF,①(2分)在图4中,∵OQ2+OP2=PQ2,∴OQ⊥OP,(3分)由①及OP∩PQ=P,得EF⊥平面OPQ,∴EF⊥OQ,(4分)又OP∩EF=P,∴OQ⊥平面ABFE,又OQ⊂平面ABCD,∴平面ABCD⊥平面ABFE.(6分)解:(Ⅱ)在图4中,由∠A=45°,CD=2,解得PE=PF=3,AO=OB=4,(7分)以O为原点,PO所在的直线为x轴建立空间直角坐标系O﹣xyz,如图所示,则B(0,4,0)、F(﹣1,3,0)、C(0,1,),∴=(﹣1,﹣1,0),=(0,﹣3,),(8分)设=(x,y,z)是平面BCF的一个法向量,则,取z=3,得=(﹣,3),(9分)同理可得平面ADE的一个法向量=(﹣),(10分)设所求锐二面角的平面角为θ,则cosθ=|cos<,>|===,所以平面ADE与平面BCF所成锐二面角的余弦值为.(12分)【点评】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.19.(12分)(2017•揭阳二模)某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n﹣1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;(II)估计小明在3次游戏中至少过两关的平均次数;(Ⅲ)估计小明在3次游戏中所得奖品超过30件的概率.【考点】CH:离散型随机变量的期望与方差;B8:频率分布直方图;CG:离散型随机变量及其分布列.【分析】(Ⅰ)设小明在1次游戏中所得奖品数为ξ,根据题意写出ξ的分布列,计算期望值;(Ⅱ)设小明在3次游戏中至少过两关的次数为X,则X~B(3,0.7),计算E(X)即可;(Ⅲ)计算小明在3次游戏中所得奖品超过30件的概率值即可.【解答】解:(Ⅰ)设小明在1次游戏中所得奖品数为ξ,则ξ的分布列为ξ0124816P0.10.20.30.20.10.1﹣﹣﹣﹣﹣﹣(2分)ξ的期望值为E(ξ)=0×0.1+1×0.2+2×0.3+4×0.2+8×0.1+16×0.1=4;﹣﹣﹣﹣﹣(4分)(Ⅱ)小明在1次游戏中至少过两关的概率为0.7,﹣﹣﹣﹣﹣﹣﹣设小明在3次游戏中至少过两关的次数为X,可知X~B(3,0.7),则X的平均次数E(X)=3×0.7=2.1;﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅲ)小明在3次游戏中所得奖品超过30件含三类:恰好一次ξ=16和两次ξ=8,恰好二次ξ=16,恰好三次ξ=16,﹣﹣﹣﹣﹣﹣(8分)•P(ξ=16)•P(ξ=8)2=3×0.1×0.12=0.003,﹣﹣﹣﹣﹣﹣﹣(9分•P(ξ=16)2•P(ξ≠16)=3×0.12×(1﹣0.1)=0.027,﹣﹣﹣﹣﹣(10分)•P(ξ=16)3=0.13=0.001;﹣﹣﹣﹣﹣﹣﹣(11分)所以小明在3次游戏中所得奖品超过30件的概率为P=0.003+0.027+0.001=0.031.﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是综合题.20.(12分)(2017•揭阳二模)己知椭圆+=1(a>b>0)与抛物线y2=2px(p >0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|﹣1,且椭圆与抛物线的交点Q满足|QF2|=.(I)求抛物线的方程和椭圆的方程;(II)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A,B两点,设线段AB的中点为C(x0,y0),求x0的取值范围.【考点】KP:圆锥曲线的范围问题;K3:椭圆的标准方程;K7:抛物线的标准方程.【分析】(I)利用抛物线上的点M到y轴的距离等于|MF2|﹣1,通过抛物线的定义,转化解得p=2,得到抛物线的方程,通过椭圆的右焦点F2(1,0),左焦点F1(﹣1,0),由|QF2|=,解得Q(,)利用椭圆的定义求出a,b.求解椭圆的方程.(II)显然k≠0,m≠0,由消去x,推出km=1,由消去y,推出9k2﹣m2+8>0,求出0<m2<9,设A(x1,y1),B(x2,y2),结合韦达定理求解x0的取值范围.【解答】解:(I)∵抛物线上的点M到y轴的距离等于|MF2|﹣1,∴点M到直线x=﹣1的距离等于点M到焦点F2的距离,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)得x=﹣1是抛物线y2=2px的准线,即﹣=﹣1,解得p=2,∴抛物线的方程为y2=4x;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)可知椭圆的右焦点F2(1,0),左焦点F1(﹣1,0),由|QF2|=,得x Q+1=,又y Q2=4x Q,解得Q(,),﹣﹣﹣﹣﹣﹣﹣(4分)由椭圆的定义得2a=|QF1|+|QF2|=+=6,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴a=3,又c=1,得b2=a2﹣c2=8,∴椭圆的方程为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(II)显然k≠0,m≠0,由消去x,得ky2﹣4y+4m=0,由题意知△=16﹣16km=0,得km=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)由消去y,得(9k2+8)x2+18kmx+9m2﹣72=0,其中△2=(18km)2﹣4(9k2+8)(9m2﹣72)>0,化简得9k2﹣m2+8>0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分又k=,得m4﹣8m2﹣9<0,解得0<m2<9,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)设A(x1,y1),B(x2,y2),则x0==﹣<0,由k2=>,得x0>﹣1,∴x0的取值范围是(﹣1,0).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查椭圆以及抛物线的简单性质的应用,范围问题的处理方法,考查转化思想以及计算能力.21.(12分)(2017•揭阳二模)设函数f(x)=(x﹣a)2(a∈R),g(x)=lnx,(I)试求曲线F(x))=f(x)+g(x)在点(1,F(1))处的切线l与曲线F(x)的公共点个数;(II)若函数G(x)=f(x).g(x)有两个极值点,求实数a的取值范围.(附:当a<0,x趋近于0时,2lnx﹣趋向于+∞)【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算F(1),F′(1),求出切线方程,联立方程组得到得x2﹣3x+lnx+2=0,设h(x)=x2﹣3x+lnx+2,根据函数的单调性判断即可;(Ⅱ)设r(x)=2lnx+1﹣,通过讨论a的范围,结合函数的单调性确定a的范围即可.【解答】解:(Ⅰ)∵F(1)=(1﹣a)2,F′(x)=2(x﹣a)+,切线l的斜率是F′(1)=3﹣2a,故切线方程是y﹣(1﹣a)2=(3﹣2a)(x﹣1),即y=(3﹣2a)x+a2﹣2,联立y=F(x)=(x﹣a)2+lnx,得x2﹣3x+lnx+2=0,设h(x)=x2﹣3x+lnx+2,则h′(x)=,由h′(x)>0以及x>0,得0<x<或x>1,故h(x)在(0,)和(1,+∞)递增,故h(x)在(,1)递减,又h(1)=0,h()=﹣<0,故存在x0∈(0,),h(x0)=0,故方程x2﹣3x+lnx+2=0有2个根:1和x0,从而切线l和曲线F(x)有2个公共点;(Ⅱ)由题意得G(x)=(x﹣a)(2lnx+1﹣)=0在(0,+∞)至少有2个不同的根,设r(x)=2lnx+1﹣,①a>0时,x1=a是G′(x)=0的根,由y=2lnx+1与y=(a>0)恰有1个公共点,可知2lnx+1﹣=0恰有1根x2,由x2=x1=a得a=1,不合题意,故a>0且a≠1时,检验可知x1=a和x2是G(x)的2个极值点;②a=0时,G′(x)=x(2lnx+1)=0在(0,+∞)仅1根,故a=0不合题意;③a<0时,需r(x)=2lnx+1﹣=0在(0,+∞)至少有2个不同的实根,由r′(x)=+>0,得x>﹣,故r(x)在(﹣,+∞)递增,故r(x)在(0,﹣)递减,∵a<0,x→0时,r(x)→+∞,且x>1时,r(x)>0,由题意得,需r(x)min<0,即r(﹣)=2ln(﹣)+3<0,解得:a>﹣2,故﹣2<a<0,综上,a∈(﹣2,0)∪(0,1)∪(1,+∞).【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.三、请考生在第(12)、(23)題中任选一题作答,如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.(10分)(2017•揭阳二模)在直角坐标系xOy中,已知直线l1:y=tanα•x(0≤a <π,α),抛物线C:(t为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系(Ⅰ)求直线l1和抛物线C的极坐标方程;(Ⅱ)若直线l1和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(Ⅰ)直线l1是过原点且倾斜角为α的直线,抛物线C的普通方程为y2=4x,由此能求出直线l1和抛物线C的极坐标方程.(Ⅱ)由直线l1和抛物线C有两个交点知α≠0,把θ=α代入ρsin2θ=4cosθ,得ρ∈R),代入ρsin2θ=4cosθ,求ρA=,直线l2的极坐标方程为,(出ρB=﹣,由此能求出△OAB的面积的最小值.【解答】解:(Ⅰ)∵直线l1:y=tanα•x(0≤a<π,α),∴直线l1是过原点且倾斜角为α的直线,其极坐标方程为θ=α(),(2分)抛物线C的普通方程为y2=4x,(3分)其极坐标方程为(ρsinθ)2=4ρcosθ,化简得ρsin2θ=4cosθ.(Ⅱ)由直线l1和抛物线C有两个交点知α≠0,把θ=α代入ρsin2θ=4cosθ,得ρA=,(6分)可知直线l2的极坐标方程为,(ρ∈R),(7分)代入ρsin2θ=4cosθ,得ρB cos2α=﹣4sinα,所以ρB=﹣,(8分)==≥16,∴△OAB的面积的最小值为16.(10分)【点评】本题考查抛物线、直线方程、极坐标方程、直角坐标方程、参数方程、三角形面积等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.五、[选修4-5:不等式选讲](共1小题,满分0分)23.(2017•揭阳二模)己知函数f(x)=|2|x|﹣1|.(I)求不等式f(x)≤1的解集A;(Ⅱ)当m,n∈A时,证明:|m+n|≤mn+1.【考点】R6:不等式的证明.【分析】(Ⅰ)去掉绝对值,即可求不等式f(x)≤1的解集A;(Ⅱ)当m,n∈A时,利用分析法即可证明:|m+n|≤mn+1.【解答】(I)解:f(x)≤1即|2|x|﹣1|≤1.∴﹣1≤2|x|﹣1≤1,∴|x|≤1…(2分)解得:﹣1≤x≤1,所以A=[﹣1,1]…(4分)(II)证明:要证:|m+n|≤mn+1,即证(m+n)2≤(mn+1)2…(6分)因为(m+n)2﹣(mn+1)2=m2+n2﹣m2n2﹣1=(m2﹣1)(1﹣n2)…(8分)因为m,n∈A,所以m2≤1,n2≤1,所以(m2﹣1)(1﹣n2)≤0所以(m+n)2≤(mn+1)2所以,|m+n|≤mn+6…(10分)【点评】本题考查不等式的证明,考查分析法的综合运用,属于中档题.。