2020-2021学年广东省高考数学二模试卷(文科)及答案解析

合集下载

2019-2020年高考数学二模试卷(文科) 含解析

2019-2020年高考数学二模试卷(文科) 含解析

2019-2020年高考数学二模试卷(文科)含解析一、选择题1.设U=R,集合A={y|y=,x>1},B={﹣2,﹣1,1,2},则下列结论正确的是()A.A∩B={﹣2,﹣1}B.(∁U A)∪B=(﹣∞,0)C.A∪B=(0,+∞)D.(∁U A)∩B={﹣2,﹣1}2.若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.﹣2 B.4 C.﹣6 D.63.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A. B. C.2 D.44.已知向量=(﹣3cosα,2)与向量=(3,﹣4sinα)平行,则锐角α等于()A. B. C. D.5.在集合{x|x=,n=1,2,3…,10}中任取一个元素,所取元素恰好满足方程sinx=的概率是()A. B. C. D.6.已知函数y=log a(x+b)(a,b为常数)的图象如图所示,则函数g(x)=b,x∈[0,3]的最大值是()A.1 B.b C.b2D.7.若关于x的不等式|x+1|﹣|x﹣2|>log2a的解集为R,则实数a的取值范围为()A.(0,8)B.(8,+∞)C.(0,)D.(,+∞)8.若实数x,y满足则z=3x+2y的最小值是()A.0 B.1 C. D.99.将函数f(x)=Asin(ωx)(A≠0,ω>0)的图象向左平移个单位,得到的图象关于原点对称,则ω的值可以为()A.3 B.4 C.5 D.610.设α、β、γ是三个不同的平面,a、b是两条不同的直线,下列四个命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a⊥α,b⊥β,a⊥b,则α⊥βC.若a∥α,b∥β,a∥b,则α∥βD.若a,b在平面α内的射影互相垂直,则a⊥b11.已知点F(﹣c,0)(c>0)是双曲线=1的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于点P,且P在抛物线y2=4cx上,则e2=()A. B. C. D.12.定义域为D的函数f(x)同时满足条件:①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[at,bt](t∈N+),那么我们把f(x)叫做[a,b]上的“t级矩形”函数,函数f(x)=x3是[a,b]上的“2级矩形”函数,则满足条件的常数对(a,b)共有()A.1对B.2对C.3对D.4对二、填空题13.某程序框图如图所示,该程序运行后输出的S的值是_______._______..若、、都是正数,且++,则+的最小值为_______.16.已知函数f(x)=x2+4lnx,若存在满足1≤x0≤4的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my﹣2=0垂直,则实数m的取值范围是_______.三、解答题(1)求表中x+z的值;(2)某市四月份模考后,市教研室准备从这三所学校的所有高三文科学生中利用随机数表法抽取100人进行成绩统计分析.先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始向右读,请你依次写出最先检测的4个人的编号:(下面摘取了随机数表中第7 918.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PD⊥平面ABCD.点E是线段BD 的中点,点F是线段PD上的动点.(Ⅰ)若F是PD的中点,求证:EF∥平面PBC;(Ⅱ)求证:CE⊥BF;(Ⅲ)若AB=2,PD=3,当三棱锥P﹣BCF的体积等于时,试判断点F在边PD上的位置,并说明理由.19.若数列{a n}满足a﹣a=d,其中d为常数,则称数列{a n}为等方差数列.已知等方差数列{a n}满足a n>0,a1=1,a5=3.(1)求数列{a n}的通项公式;(2)记b n=na,若不等式kb n>n(4﹣k)+4对任意的n∈N*恒成立,求实数k的取值范围.20.已知椭圆C: +=1(a>b>0)的短轴长为2,且斜率为的直线l过椭圆C的焦点及点(0,﹣2).(1)求椭圆C的方程;(2)已知一直线m过椭圆C的左焦点F,交椭圆于点P、Q,若直线m与两坐标轴都不垂直,点M在x轴上,且使MF为∠PMQ的一条角平分线,求点M的坐标.21.已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f(x2)﹣1<f(x1)[选修4-1:几何证明选讲]22.如图,⊙O1与⊙O2相交于A、B两点,AB是⊙O2的直径,过A点作⊙O1的切线交⊙O2于点E,并与BO1的延长线交于点P,PB分别与⊙O1、⊙O2交于C,D两点.求证:(1)PA•PD=PE•PC;(2)AD=AE.[选修4-4:坐标系与参数方程选讲]23.已知直线l的参数方程为(t为参数),在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,以相同的才长度单位建立极坐标系,设圆M的极坐标方程为:ρ2﹣6ρsinθ=﹣5.(1)求圆M的直角坐标方程;(2)若直线l截圆所得弦长为2,求整数a的值.[选修4-5:不等式选讲]24.已知不等式|x+1|+|x﹣1|<8的解集为A.(1)求集合A;(2)若∀a,b∈A,x∈(0,+∞),不等式a+b<x++m恒成立,求实数m的最小值.xx年江西省宜春市高考数学二模试卷(文科)参考答案与试题解析一、选择题1.设U=R,集合A={y|y=,x>1},B={﹣2,﹣1,1,2},则下列结论正确的是()A.A∩B={﹣2,﹣1}B.(∁U A)∪B=(﹣∞,0)C.A∪B=(0,+∞)D.(∁U A)∩B={﹣2,﹣1}【考点】交、并、补集的混合运算.【分析】求出集合A中函数的值域确定出A,求出A的补集,求出各项的结果,即可做出判断.【解答】解:由A中的函数y=,且x>1,得到y>0,即A=(0,+∞),∴∁U A=(﹣∞,0],∴A∩B={1,2},(∁U A)∪B=(﹣∞,0]∪{1,2},A∪B={﹣2,﹣1}∪(0,+∞),(∁U A)∩B={﹣2,﹣1},故选:D.2.若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.﹣2 B.4 C.﹣6 D.6【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数==是纯虚数,∴=0,0.则实数a=﹣6.故选:C.3.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A. B. C.2 D.4【考点】椭圆的简单性质.【分析】根据题意,求出长半轴和短半轴的长度,利用长轴长是短轴长的两倍,解方程求出m 的值.【解答】解:椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,∴,故选A.4.已知向量=(﹣3cosα,2)与向量=(3,﹣4sinα)平行,则锐角α等于()A. B. C. D.【考点】平面向量共线(平行)的坐标表示.【分析】根据向量的平行的条件以及二倍角公式即可判断.【解答】解:∵向量=(﹣3cosα,2)与向量=(3,﹣4sinα)平行∴12sinαcosα﹣6=0,即sin2α=1,∵α为锐角α,∴α=,故选:B.5.在集合{x|x=,n=1,2,3…,10}中任取一个元素,所取元素恰好满足方程sinx=的概率是()A. B. C. D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数,再求出所取元素恰好满足方程sinx=的基本事件个数,由此能求出所取元素恰好满足方程sinx=的概率.【解答】解:在集合{x|x=,n=1,2,3…,10}中任取一个元素,基本事件总数为10,所取元素恰好满足方程sinx=的基本事件为x=和x=,∴所取元素恰好满足方程sinx=的概率p=.故选:A.6.已知函数y=log a(x+b)(a,b为常数)的图象如图所示,则函数g(x)=b,x∈[0,3]的最大值是()A.1 B.b C.b2D.【考点】函数的图象;函数的最值及其几何意义;二次函数的性质.【分析】根据已知中函数的图象,可得b∈(0,1),结合二次函数的图象和性质,指数函数的图象和性质,及复合函数的单调性,可得答案.【解答】解:∵函数y=log a(x+b)(a,b为常数)的零点位于(0,1)上,故b∈(0,1),当x∈[0,3]时,x2﹣2x在x=1时取最小值﹣1,此时g(x)=b取最大值,故选:D7.若关于x的不等式|x+1|﹣|x﹣2|>log2a的解集为R,则实数a的取值范围为()A.(0,8)B.(8,+∞)C.(0,)D.(,+∞)【考点】绝对值三角不等式.【分析】令f(x)=|x+1|﹣|x﹣2|,依题意,log2a<f(x)min,解之即可得实数a的取值范围.【解答】解:令f(x)=|x+1|﹣|x﹣2||,∵不等式|x+1|﹣|x﹣2|>log2a的解集为R,∴log2a<|x+1|﹣|x﹣2|对任意实数恒成立,∴log2a<f(x)min;∵f(x)=||x+1|﹣|x﹣2||≤|(x+1)﹣(x﹣2)|=3,∴f(x)min=3﹣.∴log2a<﹣3,∴0<a<.故选:C.8.若实数x,y满足则z=3x+2y的最小值是()A.0 B.1 C. D.9【考点】简单线性规划的应用.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.【解答】解:约束条件对应的平面区域如图示:由图可知当x=0,y=0时,目标函数Z有最小值,Z min=3x+2y=30=1故选B9.将函数f(x)=Asin(ωx)(A≠0,ω>0)的图象向左平移个单位,得到的图象关于原点对称,则ω的值可以为()A.3 B.4 C.5 D.6【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据图象平移关系以及三角函数的对称性建立方程关系进行求解即可.【解答】解:f(x)=Asin(ωx)(A≠0,ω>0)的图象向左平移个单位,得到y=Asinω(x+)=Asin(ωx+ω),若图象关于原点对称,则ω=kπ,即ω=6k,k∈Z当k=1时,ω=6,故选:D.10.设α、β、γ是三个不同的平面,a、b是两条不同的直线,下列四个命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a⊥α,b⊥β,a⊥b,则α⊥βC.若a∥α,b∥β,a∥b,则α∥βD.若a,b在平面α内的射影互相垂直,则a⊥b【考点】空间中直线与平面之间的位置关系.【分析】在A中,a与b相交、平行或异面;在B中,由面面垂直的判定定理得α⊥β;在C 中,α与β相交或平行;在D中,a与b相交、平行或异面.【解答】解:由α、β、γ是三个不同的平面,a、b是两条不同的直线,知:在A中,若a∥α,b∥α,则a与b相交、平行或异面,故A错误;在B中,若a⊥α,b⊥β,a⊥b,则由面面垂直的判定定理得α⊥β,故B正确;在C中,若a∥α,b∥β,a∥b,则α与β相交或平行,故C错误;在D中,若a,b在平面α内的射影互相垂直,则a与b相交、平行或异面,故D错误.故选:B.11.已知点F(﹣c,0)(c>0)是双曲线=1的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于点P,且P在抛物线y2=4cx上,则e2=()A. B. C. D.【考点】双曲线的简单性质.【分析】利用抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质、相似三角形的性质即可得出.【解答】解:如图,设抛物线y2=4cx的准线为l,作PQ⊥l于Q,设双曲线的右焦点为F′,P(x,y).由题意可知FF′为圆x2+y2=c2的直径,∴PF′⊥PF,且tan∠PFF′=,|FF′|=2c,满足,将①代入②得x2+4cx﹣c2=0,则x=﹣2c±c,即x=(﹣2)c,(负值舍去)代入③,即y=,再将y代入①得,==e2﹣1即e2=1+=.故选:D.12.定义域为D的函数f(x)同时满足条件:①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[at,bt](t∈N+),那么我们把f(x)叫做[a,b]上的“t级矩形”函数,函数f(x)=x3是[a,b]上的“2级矩形”函数,则满足条件的常数对(a,b)共有()A.1对B.2对C.3对D.4对【考点】函数的值域.【分析】函数f(x)=x3是[a,b]上的“2级矩阵”函数,即满足条件①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[at,bt],利用函数f(x)=x3是[a,b]上的单调增函数,即可求得满足条件的常数对.【解答】解:由题意,函数f(x)=x3是[a,b]上的“2级矩阵”函数,即满足条件①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[at,bt],∵函数f(x)=x3是[a,b]上的单调增函数,∴,∴满足条件的常数对(a,b)为(﹣,0),(﹣,),(0,),故选:C.二、填空题13.某程序框图如图所示,该程序运行后输出的S的值是.【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:是否继续循环S i循环前/2 1第一圈是﹣3 2第二圈是﹣ 3第三圈是 4第四圈是 2 5第五圈是﹣3 6…依此类推,S的值呈周期性变化:2,﹣3,﹣,,2,﹣3,…第xx圈是﹣2011第2011圈否故最终的输出结果为:﹣,故答案为:﹣.14.一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为.【考点】由三视图求面积、体积.【分析】几何体是一个组合体,是由两个完全相同的四棱锥底面重合组成,四棱锥的底面是边长是1的正方形,四棱锥的高是,根据求和几何体的对称性得到几何体的外接球的直径是,求出表面积及球的表面积即可得出比值.【解答】解:由三视图知,几何体是一个组合体,是由两个完全相同的四棱锥底面重合组成,四棱锥的底面是边长是1的正方形,四棱锥的高是,斜高为,这个几何体的表面积为8×1×=2∴根据几何体和球的对称性知,几何体的外接球的直径是四棱锥底面的对角线是,∴外接球的表面积是4×π()2=2π则这个几何体的表面积与其外接球面积之比为=故答案为:.15.若a、b、c都是正数,且a+b+c=2,则+的最小值为3.【考点】基本不等式.【分析】由题意可得a+1+b+c=3,得到+=(+)(a+1+b+c),由基本不等式求最值可得.【解答】解:a,b,c都是正数,且a+b+c=2,∴a+1+b+c=3,且a+1>0,且b+c>0,∴+=(+)(a+1+b+c)= [5++]≥ [5+2]=3当且仅当=,即a=1且b+c=2时取等号,故答案为:3.16.已知函数f(x)=x2+4lnx,若存在满足1≤x0≤4的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my﹣2=0垂直,则实数m的取值范围是[4,9].【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求出切线的斜率,再由两直线垂直斜率之积为﹣1,得到2x0+=m,再由基本不等式求出左边的最小值,代入端点1和4,比较得到最大值.【解答】解:函数f(x)=x2+4lnx的导数为f′(x)=2x+(x>0).曲线f(x)在点(x0,f(x0))处的切线斜率为2x0+,由于切线垂直于直线x+my﹣2=0,则有2x0+=m,由于1≤x0≤4,则由2x0+≥2=4,当且仅当x0=∈[1,4],取得最小值4;当x0=4时,取得最大值9.故m的取值范围是[4,9].故答案为:[4,9].三、解答题(1)求表中x+z的值;(2)某市四月份模考后,市教研室准备从这三所学校的所有高三文科学生中利用随机数表法抽取100人进行成绩统计分析.先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始向右读,请你依次写出最先检测的4个人的编号:(下面摘取了随机数表中第7【考点】列举法计算基本事件数及事件发生的概率;系统抽样方法.【分析】(1)利用在三所高中的所有高三文科学生中随机抽取1人,抽到乙高中女生的概率为0.2,求出表中y的值,再很据总数,求的x+z的值;(2)根据从第8行第7列的数开始向右读,即可写出最先检测的4个人的编号;(3)“丙校高三文科生中的男生比女生人数多”为事件A,其中男女生数即为(x,z),一一列举所有的基本事件,根据概率公式计算即可【解答】解:(1)∵在所有高三文科学生中随机抽取1人,抽到乙高中女生的概率为0.2,∴y=800×0.2=160,则x+z=800﹣(97+153+90+160)=300,…(2)最先检测的4个人的编号为165、538、707、175;…(3)设:“丙校高三文科生中的男生比女生人数多”为事件A,其中男女生数即为(x,z)由(1)知,x+z=300,x≥145,z≥145,满足条件的(x,z)有,,,,,,,,,,共11组,且每组出现的可能性相同,其中事件A包含的基本事件有:,,,,,共5组,∴丙高中学校中的女生比男生人数多的概率为P(A)=.…18.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PD ⊥平面ABCD .点E 是线段BD 的中点,点F 是线段PD 上的动点.(Ⅰ)若F 是PD 的中点,求证:EF ∥平面PBC ;(Ⅱ)求证:CE ⊥BF ;(Ⅲ)若AB=2,PD=3,当三棱锥P ﹣BCF 的体积等于时,试判断点F 在边PD 上的位置,并说明理由.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)利用三角形的中位线的性质证明EF ∥PB ,利用线面平行的判定定理,证明:EF ∥平面PBC ;(Ⅱ)证明CE ⊥平面PBD ,即可证明:CE ⊥BF ;(Ⅲ)设PF=x .由AB=2得BD=2,CE=,所以V P ﹣BCF =V C ﹣BPF ===,即可得出结论.【解答】(Ⅰ)证明:在△PDB 中,因为点E 是BD 中点,点F 是PD 中点,所以EF ∥PB .又因为EF ⊄平面PBC ,PB ⊂平面PBC ,所以EF ∥平面PBC .…(Ⅱ)证明:因为PD ⊥平面ABCD ,且CE ⊂平面ABCD ,所以PD ⊥CE .又因为底面ABCD 是正方形,且点E 是BD 的中点,所以CE ⊥BD .因为BD ∩PD=D ,所以CE ⊥平面PBD ,而BF ⊂平面PCD ,所以CE ⊥BF . …(Ⅲ)解:点F 为边PD 上靠近D 点的三等分点.说明如下:由(Ⅱ)可知,CE ⊥平面PBF .又因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD ⊥BD .设PF=x . 由AB=2得BD=2,CE=,所以V P ﹣BCF =V C ﹣BPF ===.由已知=,所以x=2.因为PD=3,所以点F 为边PD 上靠近D 点的三等分点.…19.若数列{a n}满足a﹣a=d,其中d为常数,则称数列{a n}为等方差数列.已知等方差数列{a n}满足a n>0,a1=1,a5=3.(1)求数列{a n}的通项公式;(2)记b n=na,若不等式kb n>n(4﹣k)+4对任意的n∈N*恒成立,求实数k的取值范围.【考点】数列与不等式的综合;数列递推式.【分析】(1)要求数列的通项公式,我们根据数列{a n}为等方差数列,且a1=1,a5=3.我们根据等方差数列的定义:a n+12﹣a n2=d我们可以构造一个关于d的方程,解方程求出公差d,进而求出数列的通项公式;(2)求得b n的通项公式,代入kb n>n(4﹣k)+4,分离k的取值范围,根据n的取值范围,求得k的取值范围.【解答】解:(1)由a12=1,a52=9.得,a52﹣a12=4d,∴d=2.…a n2=1+(n﹣1)×2=2n﹣1,∵a n>0,∴a n=,数列{a n}的通项公式为a n=;…(2)由(1)知记b n=na n2,=2n2﹣n不等式kb n>n(4﹣k)+4恒成立,即kn2﹣2n﹣2>0对于一切的n∈N*恒成立.∴k>+,…又n≥1, +≤4.…∴k>4,∴不等式kb n>n(4﹣k)+4对任意的n∈N*恒成立,实数k的取值范围是:k∈(4,+∞).…20.已知椭圆C: +=1(a>b>0)的短轴长为2,且斜率为的直线l过椭圆C的焦点及点(0,﹣2).(1)求椭圆C的方程;(2)已知一直线m过椭圆C的左焦点F,交椭圆于点P、Q,若直线m与两坐标轴都不垂直,点M在x轴上,且使MF为∠PMQ的一条角平分线,求点M的坐标.【考点】椭圆的简单性质.【分析】(1)直线l的方程为y=,焦点坐标为(2,0),又椭圆C的短轴长为2,由此能求出椭圆C的方程.(2)设点M(m,0),左焦点为F(﹣2,0),设直线PQ的方程为x=,与椭圆联立,得()y2﹣﹣2=0,由此利用韦达定理、角平分线性质、椭圆性质,结合已条条件能求出点M坐标.【解答】解:(1)由题意可知,直线l的方程为y=,…∵直线l过椭圆C的焦点,∴该焦点坐标为(2,0),∴c=2,又椭圆C的短轴长为2,∴b=,∴a2=b2+c2=4+2=6,∴椭圆C的方程为.…(2)设点M(m,0),左焦点为F(﹣2,0),可设直线PQ的方程为x=,由,消去x,得()y2﹣﹣2=0,设P(x1,y1),Q(x2,y2),则y1+y2=,y1•y2=,…∵MF为∠PMQ的一条角平分线,∴k PM+k QM=0,即+=0,…又,,代入上式可得,∴,解得m=﹣3,∴点M(﹣3,0).…21.已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f′(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值;(2)若函数F(x)=g(x)+x2有两个极值点x1,x2,且x1<x2,求证:f(x2)﹣1<f(x1)【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)利用导数的几何意义求切线斜率,解a;(2)利用极值点与其导数的关系求出a的范围,进一步求出f(x)的解析式,通过求导判断其单调性以及最值.【解答】解:(1)∵f′(x)=ln x﹣2ax+1,∴f′(1)=1﹣2a因为3x﹣y﹣1=0的斜率为3.依题意,得1﹣2a=3;则a=﹣1.…(2)证明:因为F(x)=g(x)+x2=ln x﹣2ax+1+x2,所以F′(x)=﹣2a+x=(x>0),函数F(x)=g(x)+x2有两个极值点x1,x2且x1<x2,即h(x)=x2﹣2ax+1在(0,+∞)上有两个相异零点x1,x2.∵x1x2=1>0,∴∴a>1.…当0<x<x1或x>x2时,h(x)>0,F′(x)>0.当x1<x<x2时,h(x)<0,F′(x)<0.所以F(x)在(0,x1)与(x2,+∞)上是增函数,在区间(x1,x2)上是减函数.因为h(1)=2﹣2a<0,所以0<x1<1<a<x2,令x2﹣2ax+1=0,得a=,∴f(x)=x(ln x﹣ax)=xln x﹣x3﹣x,则f′(x)=ln x﹣x2+,设s(x)=ln x﹣x2+,s′(x)=﹣3x=,…①当x>1时,s′(x)<0,s(x)在(1,+∞)上单调递减,从而函数s(x)在(a,+∞)上单调递减,∴s(x)<s(a)<s(1)=﹣1<0,即f′(x)<0,所以f(x)在区间(1,+∞)上单调递减.故f(x)<f(1)=﹣1<0.又1<a<x2,因此f(x2)<﹣1.…②当0<x<1时,由s′(x)=>0,得0<x<.由s′(x)=<0,得<x<1,所以s(x)在[0,]上单调递增,s(x)在[,1]上单调递减,∴s(x)≤s max=ln<0,∴f(x)在(0,1)上单调递减,∴f(x)>f(1)=﹣1,∵x1∈(0,1),从而有f(x1)>﹣1.综上可知:f(x2)<﹣1<f(x1).…[选修4-1:几何证明选讲]22.如图,⊙O1与⊙O2相交于A、B两点,AB是⊙O2的直径,过A点作⊙O1的切线交⊙O2于点E,并与BO1的延长线交于点P,PB分别与⊙O1、⊙O2交于C,D两点.求证:(1)PA•PD=PE•PC;(2)AD=AE.【考点】与圆有关的比例线段.【分析】(1)根据切割线定理,建立两个等式,即可证得结论;(2)连接AC、ED,设DE与AB相交于点F,证明AC是⊙O2的切线,可得∠CAD=∠AED,由(1)知,可得∠CAD=∠ADE,从而可得∠AED=∠ADE,即可证得结论.【解答】证明:(1)∵PE、PB分别是⊙O2的割线∴PA•PE=PD•PB又∵PA、PB分别是⊙O1的切线和割线∴PA2=PC•PB由以上条件得PA•PD=PE•PC(2)连接AC、ED,设DE与AB相交于点F∵BC是⊙O1的直径,∴∠CAB=90°∴AC是⊙O2的切线.由(1)知,∴AC∥ED,∴AB⊥DE,∠CAD=∠ADE又∵AC是⊙O2的切线,∴∠CAD=∠AED又∠CAD=∠ADE,∴∠AED=∠ADE∴AD=AE[选修4-4:坐标系与参数方程选讲]23.已知直线l的参数方程为(t为参数),在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,以相同的才长度单位建立极坐标系,设圆M的极坐标方程为:ρ2﹣6ρsinθ=﹣5.(1)求圆M的直角坐标方程;(2)若直线l截圆所得弦长为2,求整数a的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)由圆M的极坐标方程为:ρ2﹣6ρsinθ=﹣5,利用ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可得直角坐标方程.通过配方可得圆心M,半径r.(2)把直线l的参数方程为(t为参数)化为普通方程,利用点到直线的距离公式可得圆心M (0,3)到直线l的距离d,利用弦长公式即可得出.【解答】解:(1)∵圆M的极坐标方程为:ρ2﹣6ρsinθ=﹣5.可得直角坐标方程:x2+y2﹣6y=﹣5,配方为:x2+(y﹣3)2=4.∴圆M 的直角坐标方程为::x2+(y﹣3)2=4.圆心M(0,3),半径r=2.(2)把直线l的参数方程为(t为参数)化为普通方程得:3x+4y﹣3a+4=0,∵直线l截圆M 所得弦长为2,且圆M 的圆心M (0,3)到直线l的距离d==.∴=22﹣,化为:16﹣3a=±5,解得a=或7.又a∈Z,∴a=7.[选修4-5:不等式选讲]24.已知不等式|x+1|+|x﹣1|<8的解集为A.(1)求集合A;(2)若∀a,b∈A,x∈(0,+∞),不等式a+b<x++m恒成立,求实数m的最小值.【考点】绝对值三角不等式;函数恒成立问题.【分析】(1)分x<﹣1,﹣1≤x≤1,x>1三种情况去绝对值符号将不等式转化为一元一次不等式求解;(2)分别求出a+b和x++m的范围,令a+b的最大值小于x++m的最小值即可.【解答】解:(1)①当x<﹣1时,﹣x﹣1﹣x+1<8,解得﹣4<x<﹣1;②当﹣1≤x≤1时,x+1﹣x+1<8,恒成立;③当x>1时,x+1+x﹣1<8,解得1<x<4.综上,A=(﹣4,4)…(2)由(1)知:a,b∈(﹣4,4),∴a+b∈(﹣8,8).又x∈(0,+∞)时,x+≥2=6,(当且仅当x=3时等号成立)…;∴依题意得:6+m≥8,∴m≥2,故实数m的最小值为2…xx年9月8日。

专题12 利用导数解决函数的单调性-学会解题之高三数学万能解题模板【2022版】(原卷版)

专题12 利用导数解决函数的单调性-学会解题之高三数学万能解题模板【2022版】(原卷版)

专题12 导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用. 导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一 求无参函数的单调区间万能模板 内 容使用场景 知函数()f x 的解析式判断函数的单调性 解题模板第一步 计算函数()f x 的定义域; 第二步 求出函数()f x 的导函数'()f x ;第三步 若'()0f x >,则()f x 为增函数;若'()0f x <,则()f x 为减函数.例1 【河北省衡水市枣强中学2020届高三下学期3月调研】已知函数()ln xx af x e+=. (1)当1a =时,判断()f x 的单调性;【变式演练1】函数,的单调递增区间为__________.【来源】福建省三明第一中学2021届高三5月校模拟考数学试题【变式演练2】已知函数,则不等式的解集为___________.【来源】全国卷地区“超级全能生”2021届高三5月联考数学(文)试题(丙卷)【变式演练3】【黑龙江省哈尔滨六中2020届高三高考数学(文科)二模】已知函数()2sin f x x x =-+,若3(3)a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .a c b <<【变式演练4】【湖南省湘潭市2020届高三下学期第四次模拟考试】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211x f x f x e -+=--,则下列命题中一定成立的是( )A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->类型二 判定含参数的函数的单调性万能模板 内 容使用场景 函数()f x 的解析式中含有参数解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0; 第三步 根据导函数的符号变换判断其单调区间.例2 【黑龙江省大庆市第四中学2020届高三下学期第四次检测】已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【变式演练5】(主导函数是一次型函数)【福建省三明市2020届高三(6月份)高考数学(文科)模拟】已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;()2sin sin 2f x x x =⋅0,2x π⎡⎤∈⎢⎥⎣⎦()()2ln 1x xf x x e e -=+++()()2210f x f x --+≤【变式演练6】(主导函数为类一次型)【山东省威海荣成市2020届高三上学期期中考试】已知函数()x f x e ax -=+.(I )讨论()f x 的单调性;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥. (1)讨论()f x 的单调性;【变式演练8】(主导函数是类二次型)【山西省太原五中2020届高三高考数学(理科)二模】已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【变式演练9】已知函数,若在区间上单调递增,则的取值范围是( )A .B .C .D .【来源】江西省南昌市新建区第一中学2020-2021学年高三上学期期末考试数学(文)试题类型三 由函数单调性求参数取值范围万能模板 内 容使用场景 由函数单调性求参数取值范围解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 根据题意转化为相应的恒成立问题; 第三步 得出结论.例3.【江苏省南通市2019-2020学年高三下学期期末】若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是( ) A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为( )A .4B .16C .20D .18()22ln f x x x =-()f x ()2,1m m +m 1,14⎡⎫⎪⎢⎣⎭1,4⎡⎫+∞⎪⎢⎣⎭1,12⎡⎫⎪⎢⎣⎭[)0,1【变式演练12】(转化为变号零点)【山西省运城市2019-2020学年高三期末】已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是( ) A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【变式演练13】(直接给给定单调区间)【辽宁省六校协作体2019-2020学年高三下学期期中考试】已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为( ) A .-4B .-2C .2D .4【变式演练14】(转化为存在型恒成立)【四川省仁寿第一中学北校区2019-2020学年高三月考】若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是( )A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【高考再现】1.(2021·全国高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =-.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<2.(2021·全国高考真题(理))已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a 的取值范围. 3.已知函数. (1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【来源】2021年全国新高考Ⅰ卷数学试题 4.【2017山东文,10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,0a >1a ≠()(0)a x x f x x a=>2a =()f x ()y f x =1y =()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<则实数a 的取值范围是 ▲ .6.【2020年高考全国Ⅰ卷文数20】已知函数()()e 2xf x a x =-+.(1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.7.【2020年高考全国Ⅰ卷理数21】已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 8.【2020年高考全国Ⅱ卷文数21】已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.9.(2018年新课标I 卷文)已知函数f (x )=ae x −lnx −1∈ (1)设x =2是f (x )的极值点.求a ,并求f (x )的单调区间; (2)证明:当a ≥1e 时,f (x )≥0∈10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知函数f(x)=1x −x +alnx ∈ (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x 1,x 2,证明:f (x 1)−f (x 2)x 1−x 2<a −2.【反馈练习】1.【2020届广东省梅州市高三总复习质检(5月)】已知0x >,a x =,22xb x =-,()ln 1c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<2.【2020届山东省威海市高三下学期质量检测】若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为( )A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.【河南省十所名校2019—2020学年高三毕业班阶段性测试】若函数()sin24sin f x x x m x =--在[0,2π]上单调递减,则实数m 的取值范围为( ) A .(2,2)-B .[2,2]-C .(1,1)-D .[1,1]-4.【黑龙江哈尔滨市第九中学2019-2020学年高三阶段验收】函数()3f x x ax =+,若对任意两个不等的实数()1212,x x x x >,都有()()121233f x f x x x ->-恒成立,则实数a 的取值范围是( ) A .()2,-+∞B .[)3,+∞C .(],2-∞-D .(),3-∞5.【湖北省武汉市新高考五校联合体2019-2020学年高三期中检测】若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______. 6.【四川省宜宾市2020届高三调研】若对(]0,1t ∀∈,函数2()(4)2ln g x x a x a x =-++在(,2)t 内总不是单调函数,则实数a 的取值范围是______7.【河南省南阳市第一中学校2019-2020学年高三月考】若函数()22ln f x x x =-在定义域内的一个子区间()1,1k k -+上不是单调函数,则实数k 的取值范围______.8.若函数在区间是增函数,则的取值范围是_________.【来源】陕西省宝鸡市眉县2021届高三下学期高考模拟文科数学试题 9.已知函数,若对任意两个不同的,,都有成立,则实数的取值范围是________________【来源】江西省景德镇市2021届高三上学期期末数学(理)试题10.【黑龙江省哈尔滨师范大学附属中学2020-2021学年高三上学期开学考试】(1)求函数()sin cos (02)f x x x x x π=+<<的单调递增区间;()cos 2sin f x x a x =+,62ππ⎛⎫⎪⎝⎭a ()()1ln 1xf x x x+=>1x 2x ()()1212ln ln f x f x k x x -≤-k(2)已知函数2()ln 43f x a x x x =-++在1,22⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的范围.11.【黑龙江省哈尔滨三中2020届高三高考数学(文科)三模】函数()()21ln 1x f x x x -=-+. (1)求证:函数()f x 在()0,∞+上单调递增; (2)若m ,n 为两个不等的正数,求证ln ln 2m n m n m n->-+. 12.【湖北省黄冈中学2020届高三下学期适应性考试】已知函数()()ln 1ln f x ax x a x =-+,()f x 的导数为()f x '.(1)当1a >-时,讨论()f x '的单调性; (2)设0a >,方程()3f x x e =-有两个不同的零点()1212,x x x x <,求证121x e x e+>+. 13.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论()f x 的单调性;(2)当0x ≥时,()1xf x e ≥-,求实数a 的取值范围.14.【2020届山西省高三高考考前适应性测试(二)】已知函数()xf x ae ex =-,()()ln 1xg x x b x e =--,其中,a b ∈R .(1)讨论()f x 在区间()0,∞+上的单调性; (2)当1a =时,()()0f x g x ≤,求b 的值.15.【河南省2020届高三(6月份)高考数学(文科)质检】已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 16.【山东省2020年普通高等学校招生统一考试数学必刷卷】已知实数0a >,函数()22ln f x a x a x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x ,()()22,Q x f x ()12xx <处的切线分别为12,l l ,且12,l l 在y 轴上的截距分别为12,b b .若12//l l ,求12b b -的取值范围.17.【福建省2020届高三(6月份)高考数学(理科)模拟】已知函数()()()2ln 222f x x a x x =++++,0a >.(1)讨论函数()f x 的单调性; (2)求证:函数()f x 有唯一的零点.18.【山东省潍坊市五县2020届高三高考热身训练考前押题】已知函数()f x 满足222(1)()2(0)2x f f x x f x e -'=+-,21()(1)24x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R . (1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x e x e a x x--<+-.19.【陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练】已知函数3()ln ()f x x a x a R =-∈.∈1)讨论函数()f x 的单调性∈∈2)若函数()y f x =在区间(1,]e 上存在两个不同零点∈求实数a 的取值范围.20.【2020年普通高等学校招生全国统一考试伯乐马模拟考试】已知函数()()22xxf x ax a e e =-++.(1)讨论函数()f x 的单调性; (2)若函数()()()2212x x g x f x ax x a e e =-++-存在3个零点,求实数a 的取值范围. 21.【金科大联考2020届高三5月质量检测】已知函数()()()()()22224ln 2144f x x ax x a x a a x a =--+++∈R .(∈)讨论函数()f x 的单调性;(∈)若0a ≤,证明:函数()f x 在区间)1,a e -⎡+∞⎣有且仅有一个零点.22.已知函数.(1)若,求函数的单调区间; (2)求证:对任意的,只有一个零点.【来源】全国Ⅱ卷2021届高三高考数学(理)仿真模拟试题 23.已知函数. (1)当时,判断的单调性;(2)若有两个极值点,求实数的取值范围.【来源】安徽省合肥六中2021届高三6月份高考数学(文)模拟试题 24.已知函数. (1)求的单调性;(2)设函数,讨论的零点个数. 【来源】重庆市高考康德卷2021届高三模拟调研卷数学试题(三) 25.已知函数, (1)讨论的单调性;(2)若,,,用表示,的最小值,记函数,,讨论函数的零点个数.【来源】山东省泰安肥城市2021届高三高考适应性训练数学试题(二) 26.已知() (1)讨论的单调性;(2)当时,若在上恒成立,证明:的最小值为. 【来源】贵州省瓮安中学高三2021届6月关门考试数学(理)试题27.已知函数.(1)讨论的单调性;()321()13f x x a x x =--+2a =-()f x a ∈R ()f x ()21ln 2f x x ax x ax =-+1a =()f x ()f x a ()()cos sin ,0,2f x x x x x π=-∈()f x ()()(01)g x f x ax a =-<<()g x ()ln()xf x x a x a=+-+a R ∈()f x 4a =()1cos (2sin )2g x x x mx x =++0m >}{min ,m n m n }{()min ()()h x f x g x =,[],x ππ∈-()h x ()ln f x x ax =+a R ∈()f x 1a =()()1f x k x b ≤++()0,∞+221k b k +--1e -+2()2ln ,()f x x ax x a R =+++∈()f x(2)若恒成立,求的最大值.【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题 28.已知函数. (1)若,证明:在单调递增; (2)若恒成立,求实数的取值范围.【来源】黑龙江省哈尔滨市第三中学2021届高三五模数学(理)试题 29.已知函数. (1)若在上为增函数,求实数a 的取值范围;(2)设,若存在两条相互垂直的切线,求函数在区间上的最小值.【来源】四川省达州市2021 届高三二模数学(文)试题 30.已知函数. (1)如果函数在上单调递减,求的取值范围; (2)当时,讨论函数零点的个数.【来源】内蒙古赤峰市2021届高三模拟考试数学(文)试题 31.已知函数. (1)若在R 上是减函数,求m 的取值范围;(2)如果有一个极小值点和一个极大值点,求证 有三个零点. 【来源】安徽省淮南市2021届高三下学期一模理科数学试题32.已知函数.(1)若函数在上为增函数,求实数的取值范围; (2)当时,证明:函数有且仅有3个零点. 【来源】重庆市第二十九中学校2021届高三下学期开学测试数学试题()xf x e ≤a ()ln x f x xe ax a x =--0a ≤()f x ()0,∞+()0f x ≥a 21()cos 2f x x ax x =++()f x [0,)+∞21()()2g x f x x =-()g x sin ()1()x g x F x x -+=,2ππ⎡⎤⎢⎥⎣⎦1()ln(1)1f x a x x =-+-()()22g x f x x =-+(1,)+∞a 0a >()y f x =21()e 1()2x f x x mx m =+-+∈R ()f x ()f x 1x 2x ()f x ()e sin 1xf x ax x =-+-()f x ()0,∞+a 12a ≤<()()()2g x x f x =-11/ 11。

2020年广东省湛江市高考数学二模试卷(文科) (含答案解析)

2020年广东省湛江市高考数学二模试卷(文科) (含答案解析)

2020年广东省湛江市高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|0<x<2},B={x|x<1或x>3},则A∩B=()A. (0,1)B. (0,2)∪(3,+∞)C. ⌀D. (0,+∞)2.1+2i−2+i=()A. −1+45i B. −45+i C. −i D. i3.已知函数y=f(x)的图象在点(2,f(2))处的切线方程是x=2y−1,则f(2)+f′(2)的值是()A. 2B. 1C. 1.5D. 34.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是()A. 10B. 11C. 12D. 165.设a=log2e,b=ln2,c=log1213,则()A. a<b<cB. b<a<cC. b<c<aD. c<b<a6.函数y=sin3x1+cosx,x∈(−π,π)图象大致为()A. B.C. D.7.已知圆锥的侧面展开图是一个半径为4的半圆,则该圆锥的体积是A. 8√33π B. 4√2π C. 4√3π D. 4√23π8. 在如图所示的程序框图中,若函数f(x)={log 12(−x )(x <0),2x (x ≥0),则输出的结果是( )A. 16B. 8C. 216D. 289. 若双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线被圆(x −2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A. 2B. √3C. √2D. 2√3310. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若csinC−bsinB2a+b=sinA 2,则cosC =( )A. −14B. 14C. −12D. 1211. 将函数f(x)=2sin (ωx +π4)(ω>0)的图象向右平移π4ω个单位,得到函数y =g(x)的图象,若y =g(x)在[−π6,π3]上为增函数,则ω的最大值为( ).A. 54B. 32C. 2D. 312. 正方体ABCD −A 1B 1C 1D 1的棱长为6,O 1为正方形A 1B 1C 1D 1的中心,则四棱锥O 1−ABCD 的外接球的表面积为( )A. 9πB. 324πC. 81πD.2432π二、填空题(本大题共4小题,共20.0分)13. 已知向量a ⃗ =(1,−3),b ⃗ =(m,2),若a ⃗ ⊥(a ⃗ +b ⃗ ),则m =______.14. 已知函数f(x)=log 2(√x 2+a −x)是奇函数,g(x)={f(x),x ≤02x −1,x >0,则g(g(−1))=_________.15. 若α∈(0,π2),且cos2α=2√55sin(α+π4),则tanα=______.16.已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是________.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的前n项和S n=−n2+26n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a2+a5+a8+⋯+a3n−1的值.18.如图,直三棱柱ABC−A1B1C1中,AC=6,AB=10,BC=8,AA1=8,点D是AB的中点.(Ⅰ)求证:AC1//平面CDB1;(Ⅱ)求三棱锥B−CDB1的体积.19.袋中装着分别有数字1,2,3,4,5的5个形状相同的小球,从袋中有放回的一次取出2个小球.记第一次取出的小球所标数字为x,第二次为y(1)列举出所有基本事件;(2)求x+y是3的倍数的概率.20.已知函数f(x)=ln(ax+1)+1−x1+x,其中a>0.(1)若f(x)在x=1处取得极值,求a的值;(2)若f(x)的最小值为1,求a的取值范围.21.已知椭圆C:x2a2+y2b2=1(a >b >0)的右焦点F(√3,0),且点A(2,0)在椭圆上.(1)求椭圆C的标准方程;(2)过点F且斜率为1的直线与椭圆C相交于M、N两点,求▵OMN的面积.22.平面直角坐标系xOy中,圆C的参数方程为{x=√3+2cosαy=1+2sinα(α为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,点P在射线l:θ=π3上,且点P到极点O的距离为4.(1)求圆C的普通方程与点P的直角坐标;(2)求△OCP的面积.23.已知函数f(x)=|x−4|+|1−x|,x∈R.(1)解不等式:f(x)≤5;(2)记f(x)的最小值为M,若实数ab满足a2+b2=M,试证明:1a2+2+1b2+1≥23.-------- 答案与解析 --------1.答案:A解析:解:∵A={x|0<x<2},B={x|x<1或x>3};∴A∩B=(0,1).故选:A.进行交集的运算即可.考查描述法、区间表示集合的定义,以及交集的运算.2.答案:C解析:直接利用复数代数形式的乘除运算化简得答案.1+2i −2+i =(1+2i)(−2−i)(−2+i)(−2−i)=−5i5=−i,故选C.3.答案:A解析:本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确运用切线的方程是解题的关键,属于基础题.由已知切线的方程,结合导数的几何意义,可得f(2),f′(2),即可得到所求和.解:函数y=f(x)的图象在点(2,f(2))处的切线方程是x−2y+1=0,即y=x+12,可得f(2)=2+12=32,f′(2)=12,即有f(2)+f′(2)=32+12=2,故选:A.4.答案:D解析:本题主要考查系统抽样的定义和方法,注意样本的编号成等差数列.根据系统抽样的方法和特点,样本的编号成等差数列,由条件可得此等差数列的公差为13,从而求得另一个同学的编号.解:根据系统抽样的方法和特点,样本的编号成等差数列,一个容量为4的样本,已知3号、29号、42号同学在样本中,故此等差数列的公差为13,故还有一个同学的学号是16.故选D.5.答案:B解析:【试题解析】解:∵c=log23>log2e=a>1>ln2=b.∴b<a<c.故选:B.利用指数对数函数的单调性即可得出.本题考查了指数对数函数的单调性,考查了推理能力与计算能力,属于基础题.6.答案:D解析:解:函数y=sin3x1+cosx 满足f(−x)=−sin3x1+cosx=−f(x),函数为奇函数,排除A,由于f(π2)=sin3π21+cosπ2=−1,f(π3)=sinπ1+cosπ3=0,f(2π3)=sin2π1+cos2π3=0故排除B,C故选:D.利用函数的奇偶性排除选项,然后利用特殊值判断即可.本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.7.答案:A解析:本题考查了圆锥的侧面展开图,利用扇形求出底面周长,然后求出体积,考查计算能力,常规题型.通过圆锥的侧面展开图,求出圆锥的底面周长,然后求出底面半径,求出圆锥的高,即可求出圆锥的体积.解:圆锥的侧面展开恰为一个半径为4的半圆,所以圆锥的底面周长为4π,底面半径为2,圆锥的高为2√3;圆锥的体积为:13×π×22×2√3=8√33,故选A.8.答案:A解析:本题考查了程序框图,考查了循环结构中的直到型循环,直到型循环是先执行后判断,此题是基础题.框图在输入a=−4后,对循环变量a与b的大小进行判断,直至满足条件b<0算法结束.解:模拟执行程序框图,可得a=−16≤0,b=log1216=−4<0,a=log124=−2,不满足条件a>4,继续循环,b=log122=−1,a=log121=0,不满足条件a>4,b=20=1,a=21=2,不满足条件a>4,b=22=4,a=24=16,满足a>4,退出循环,输出a=16,故选A.9.答案:A解析:本题考查了双曲线的性质及几何意义和圆锥曲线中的综合问题.通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.解:双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x−2)2+y2=4的圆心(2,0),半径为:2,因为双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线被圆(x−2)2+y2=4所截得的弦长为2,所以圆心到直线的距离为:√22−12=√3=√a2+b2,解得:4c2−4a2c2=3,可得e2=4,即e=2.故选A.10.答案:A解析:本题目考查正弦、余弦定理,熟练掌握定理是解题的关键.利用正弦定理对csinC−bsinB2a+b =sinA2进行整理可得−12ab=a2+b2−c2,然后再利用余弦定理进行计算即可得.解:在△ABC中,由csinC−bsinB2a+b =sinA2,及正弦定理可得c2−b22a+b=a2,整理可的−12ab=a2+b2−c2,所以由余弦定理可得:cosC=a2+b2−c22ab =−14,故选A.11.答案:B解析:本题主要考查了函数y=Asin(ωx+φ)的图象与性质,主要考查函数的图像变换和函数的单调性,根据题意列出式子即可求出结果.解:将f(x)的图象向右平移π4ω得g(x)=2sin[ω(x−π4ω)+π4],即g(x)=2sinωx的图象.所以当y=g(x)满足ωx∈[−π2+2kπ,π2+2kπ](k∈Z),即x∈[−π2ω+2kπω,π2ω+2kπω](k∈Z)时,y=g(x)单调递增.因为y=g(x)在[−π6,π3]上为增函数,所以{−π2ω≤−π6π2ω≥π3即ω≤32,故选B.12.答案:C解析:设球的半径为R,则由勾股定理可得R2=(3√2)2+(3−R)2,可得R,即可求出四棱锥O1−ABCD的外接球的表面积.本题考查四棱锥O1−ABCD的外接球的表面积,考查学生的计算能力,正确求出球的半径是关键.解:设球的半径为R,则由勾股定理可得R2=(3√2)2+(3−R)2,∴R=92,∴四棱锥O1−ABCD的外接球的表面积为4πR2=81π,故选:C.13.答案:−4解析:解:a⃗+b⃗ =(m+1,−1);∵a⃗⊥(a⃗+b⃗ );∴a⃗⋅(a⃗+b⃗ )=m+1+3=0;∴m=−4.故答案为:−4.可求出a⃗+b⃗ =(m+1,−1),根据a⃗⊥(a⃗+b⃗ )即可得出a⃗⋅(a⃗+b⃗ )=0,进行数量积的坐标运算即可求出m的值.考查向量垂直的充要条件,以及向量加法和数量积的坐标运算.14.答案:√2解析:本题主要考查了函数的奇偶性,函数的定义域与值域,分段函数,掌握函数的奇偶性是解题的关键,属于基础题.解:因为函数f(x)=log2(√x2+a−x)是奇函数,所以,解得a=1,所以,所以.故答案为√2.15.答案:13解析:根据三角函数的恒等变换,利用同角的三角函数关系,即可得出tanα的值.本题考查了三角函数的恒等变换以及同角的三角函数关系,是中档题.解:α∈(0,π2),且cos2α=2√55sin(α+π4),∴cos2α−sin2α=2√55sin(α+π4),∴(cosα+cosα)(cosα−sinα)=2√55⋅√22(sinα+cosα),∴cosα−sinα=√105,两边平方,得sin2α−2sinαcosα+cos2α=25,∴sinαcosα=310,∴sinαcosαsin2α+cos2α=tanαtan2α+1=310,整理得3tan2α−10tanα+3=0,解得tanα=13或tanα=3,即cosα>sinα,得tanα<1,∴tanα=13.故答案为:13.16.答案:32解析:本题主要考查了直线与抛物线的位置关系,注意联立方程运用韦达定理,属于中档题.解:由题意,设直线方程为x=my+4,与抛物线方程联立消去x得,y2−4my−16=0,∴y1+y2=4m,y1y2=−16,则y12+y22=(y1+y2)2−2y1y2=16m2+32≥32,当m=0时取等号,则y12+y22的最小值为32.故答案为32.17.答案:解:(Ⅰ)依题意,S n=−n2+26n,S n−1=−(n−1)2+26(n−1)(n≥2),两式相减得:a n=−2n+27(n≥2),又∵a1=−1+26=25满足上式,∴a n=−2n+27;(Ⅱ)由(I)可知{a3n−1}是首项为23、公差为−6的等差数列,∴a2+a5+a8+⋯+a3n−1=23n+n(n−1)2⋅(−6)=−3n2+26n.解析:(Ⅰ)通过S n=−n2+26n与S n−1=−(n−1)2+26(n−1)(n≥2)作差、整理可知a n=−2n+ 27,进而计算可得结论;(Ⅱ)通过(I)可知{a3n−1}是首项为23、公差为−6的等差数列,进而利用等差数列的求和公式计算即得结论.本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.18.答案:证明:(Ⅰ)∵点O为矩形CBB1C1的对角线交点,∴点O为BC1的中点.又点D是AB的中点,∴AC1//OD,又AC1⊄平面CDB1,OD⊂平面CDB1.∴AC1//平面CDB1.(Ⅱ)∵AC=6,BC=8,AB=10,则AC2+BC2=AB2,∴AC⊥BC,又点D是AB的中点.∴S△CDB=12×12×AC×BC=12.故三棱锥B−CDB1的体积V B−CDB1=V B1−CDB=13×S△CDB×B1B=13×12×8=32.解析:本题考查线面平行的证明,考查几何体的体积的求法,考查运算求解能力,属于中档题.(Ⅰ)推导出AC1//OD,由此能证明AC1//平面CDB1.(Ⅱ)求出S△CDB=12×12×AC×BC=12,根据V B−CDB1=V B1−CDB即可求出三棱锥B−CDB1的体积.19.答案:解:(1)袋中装着分别有数字1,2,3,4,5的5个形状相同的小球,从袋中有放回的一次取出2个小球,记第一次取出的小球所标数字为x,第二次为y,则Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)},共有25个基本事件.(2)x+y是3的倍数包含的基本事件有:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(4,5),(5,4),共9个,∴x+y是3的倍数的概率p=925.解析:本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用. (1)由已知条件利用列举法能写出所有基本事件.(2)利用列举法求出x +y 是3的倍数的基本事件个数,由此能求出x +y 是3的倍数的概率. 20.答案:解:(1)f(x)=ln (ax +1)+1−x1+x =ln(ax +1)+21+x −1,求导函数可得f′(x)=aax+1−2(1+x)2, ∵f(x)在x =1处取得极值, ∴f′(1)=0,∴aa+1−24=0, ∴a =1;(2)设f′(x)=aax+1−2(1+x)2>0,有ax 2>2−a ,若a ≥2,则f′(x)>0恒成立,f(x)在[0,+∞)上递增,∴f(x)的最小值为f(0)=1; 若0<a <2,则x >√2−a a,f′(x)>0恒成立,f(x)在(√2−a a,+∞)上递增,在(−∞,√2−a a)上递减,∴f(x)在x =√2−a a处取得最小值,f(√2−a a)<f(0)=1.综上知,若f(x)最小值为1,则a 的取值范围是[2,+∞).解析:(1)求导函数,根据f(x)在x =1处取得极值,可得f′(1)=0,即可求得a 的值;(2)设f′(x)=aax+1−2(1+x)2>0,有ax 2>2−a ,分类讨论:a ≥2,则f′(x)>0恒成立,f(x)在[0,+∞)上递增,f(x)的最小值为f(0)=1;0<a <2,可得f(x)在x =√2−a a处取得最小值,f(√2−a a)<f(0)=1,由此可得a 的取值范围.本题考查导数知识的运用,考查函数的单调性,考查函数的极值与最值,正确求导是关键.21.答案:解:(1)由题意,椭圆焦点F(√3,0)且过点A(2,0),得a =2,c =√3,又b 2=a 2−c 2=4−3=1, 所以椭圆方程为x 24+y 2=1.(2)由题意得,直线MN 的方程为y =x −√3, 设M(x 1,y 1),N(x 2,y 2), 联立直线与椭圆方程{y =x −√3x 24+y 2=1, 得5x 2−8√3x +8=0,得则y 1−y 2=x 1−√3−(x 2−√3)=x 1−x 2, |MN|=√(x 1−x 2)2+(y 1−y 2)2=√2√(x 1−x 2)2, 又(x 1−x 2)2=(x 1+x 2)2−4x 1x 2 =(8√35)2−4×85=3225,所以|MN|=√2×√3225=85,设原点O 到直线MN 的距离为d , d =√3|√12+12=√62. 所以△OMN 的面积S =12|MN|⋅d =25√6.解析:本题考查椭圆的方程和性质,直线和椭圆的位置关系,也考查点到直线的距离公式和三角形的面积求法,属于中档题.(1)由题意可得a ,c 的值,由a ,b ,c 的关系可得b ,进而得到椭圆方程;(2)过点F 且斜率为1的直线方程设为y =x −√3,联立椭圆方程,求得|MN|,再由点到直线的距离公式可得O 到MN 的距离d ,运用三角形的面积公式,计算可得所求值.22.答案:解:(1)曲线C 的普通方程为(x −√3)2+(y −1)2=4,点P 的极坐标为(4,π3),直角坐标为(2,2√3). (2)(方法一)圆心C(√3,1),直线OC 的方程为:y =√33x ⇒x −√3y =0,点P 到直线OC 的距离d =|2−√3⋅2√3|2=2,且|OC|=2,所以 S △OCP =12|OC|⋅d =2.(方法二)圆心C(√3,1),其极坐标为(2,π6),而P(4,π3),结合图形利用极坐标的几何含义,可得∠COP =π3−π6=π6,|OC|=2,|OP|=4,所以S △OCP =12|OC|⋅|OP|sin∠COP =12⋅2⋅4⋅sin π6=2.解析:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间的进行转换. (2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果. 23.答案:解:(1)f(x)=|x −4|+|1−x|={2x −5,x >43,1≤x ≤4−2x +5,x <1.∵f(x)≤5,∴{2x −5≤5x >4或1≤x ≤4或{−2x +5≤5x <1,∴4<x ≤5或1≤x ≤4或0≤x <1,∴0≤x ≤5, ∴不等式的解集为{x|0≤x ≤5}.(2)由(1)知,f(x)min =M =3,∴a 2+b 2=M =3,∴1a 2+2−1b 2+1=(1a 2+2+1b 2+1)[(a 2+2)+(b 2+1)]×16=(2+b 2+1a 2+2+a 2+2b 2+1)×16≥(2+2√b 2+1a 2+2⋅a 2+2b 2+1)×16=23,当且仅当a 2=1,b 2=2时等号成立, ∴1a 2+2+1b 2+1≥23.解析:(1)先将f(x)写为分段函数的形式,然后根据f(x)≤5,分别解不等式即可;(2)由(1)可得f(x)min =M =3,从而得到a 2+b 2=3,再由1a 2+2−1b 2+1=(1a 2+2+1b 2+1)[(a 2+2)+(b 2+1)]×16利用基本不等式求出1a 2+2+1b 2+1的最小值.本题考查了绝对值不等式的解法和利用基本不等式求最值,考查了分类讨论思想和转化思想,属中档题.。

广东省2023年高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-03解答题(较难题)

广东省2023年高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-03解答题(较难题)

广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-03解答题(较难题)一.数列的求和(共1小题)1.(2023•汕头二模)已知各项均为正数的数列{a n}满足:a1=3,且a n a n+12﹣2(a n2﹣1)a n+1﹣a n=0,n∈N*.(1)设b n=a n﹣,求数列{b n}的通项公式;(2)设S n=a12+a22+…+a n2,T n=++…+,求S n+T n,并确定最小正整数n,使S n+T n为整数.二.利用导数研究函数的单调性(共1小题)2.(2023•梅州二模)已知函数f(x)=e x﹣1﹣alnx,其中a∈R.(1)当a=1时,讨论f(x)的单调性;(2)当x∈[0,π]时,2f(x+1)﹣cos x≥1恒成立,求实数a的取值范围.三.利用导数研究函数的最值(共6小题)3.(2023•高州市二模)设定义在R上的函数f(x)=e x﹣ax(a∈R).(1)若存在x0∈[1,+∞),使得f(x0)<e﹣a成立,求实数a的取值范围;(2)定义:如果实数s,t,r满足|s﹣r|≤|t﹣r|,那么称s比t更接近r.对于(1)中的a 及x≥1,问:和e x﹣1+a哪个更接近lnx?并说明理由.4.(2023•汕头二模)已知函数f(x)=﹣lnx,,a∈R.(1)若函数g(x)存在极值点x0,且g(x1)=g(x0),其中x1≠x0,求证:x1+2x0=0;(2)用min{m,n}表示m,n中的最小值,记函数h(x)=min{f(x),g(x)}(x>0),若函数h(x)有且仅有三个不同的零点,求实数a的取值范围.5.(2023•潮州二模)已知函数(e是自然对数的底数)有两个零点.(1)求实数a的取值范围;(2)若f(x)的两个零点分别为x1,x2,证明:.6.(2023•广东二模)已知f(x)=x2﹣ae x,存在x1<x2<x3,使得f(x1)=f(x2)=f(x3)=0.(1)求实数a的取值范围;(2)试探究x1+x2+x3与3的大小关系,并证明你的结论.7.(2023•湛江二模)已知函数.(1)求曲线y=f(x)在x=1处的切线方程.(2)若存在x1≠x2使得f(x1)=f(x2),证明:(i)m>0;(ii)2m>e(lnx1+lnx2).8.(2023•佛山二模)已知函数,其中a≠0.(1)若f(x)有两个零点,求a的取值范围;(2)若f(x)≥a(1﹣2sin x),求a的取值范围.四.直线与椭圆的综合(共1小题)9.(2023•潮州二模)已知椭圆过点和点A(x0,y0)(x0y0≠0),T的上顶点到直线的距离为2,如图过点A的直线l与x,y轴的交点分别为M,N,且,点A,C关于原点对称,点B,D关于原点对称,且.(1)求|MN|的长度;(2)求四边形ABCD面积的最大值.五.直线与抛物线的综合(共1小题)10.(2023•广东二模)已知A,B是抛物线E:y=x2上不同的两点,点P在x轴下方,PA 与抛物线E交于点C,PB与抛物线E交于点D,且满足,其中λ是常数,且λ≠1.(1)设AB,CD的中点分别为点M,N,证明:MN垂直于x轴;(2)若点P为半圆x2+y2=1(y<0)上的动点,且λ=2,求四边形ABDC面积的最大值.六.直线与双曲线的综合(共1小题)11.(2023•茂名二模)已知F1,F2分别为双曲线E:=1({a>0,b>0})的左、右焦点,P为渐近线上一点,且|PF1|=|PF2|,cos∠F1PF2=.(1)求双曲线的离心率;(2)若双曲线E实轴长为2,过点F2且斜率为k的直线l交双曲线C的右支不同的A,B两点,Q为x轴上一点且满足|QA|=|QB|,试探究是否为定值,若是,则求出该定值;若不是,请说明理由.七.直线与圆锥曲线的综合(共3小题)12.(2023•高州市二模)在一张纸上有一个圆C:=4,定点,折叠纸片使圆C上某一点S1好与点S重合,这样每次折叠都会留下一条直线折痕PQ,设折痕PQ与直线S1C的交点为T.(1)求证:||TC|﹣|TS||为定值,并求出点T的轨迹C′方程;(2)设A(﹣1,0),M为曲线C′上一点,N为圆x2+y2=1上一点(M,N均不在x轴上).直线AM,AN的斜率分别记为k1,k2,且k2=﹣,求证:直线MN过定点,并求出此定点的坐标.13.(2023•汕头二模)如图,F1(﹣c,0)、F2(c,0)为双曲线的左、右焦点,抛物线C2的顶点为坐标原点,焦点为F2,设C1与C2在第一象限的交点为P(m,n),且|PF1|=7,|PF2|=5,∠PF2F1为钝角.(1)求双曲线C1与抛物线C2的方程;(2)过F2作不垂直于x轴的直线l,依次交C1的右支、C2于A、B、C、D四点,设M 为AD中点,N为BC中点,试探究是否为定值.若是,求此定值;若不是,请说明理由.14.(2023•广州二模)已知点F(1,0),P为平面内一动点,以PF为直径的圆与y轴相切,点P的轨迹记为C.(1)求C的方程;(2)过点F的直线l与C交于A,B两点,过点A且垂直于l的直线交x轴于点M,过点B且垂直于的直线交x轴于点N.当四边形MANB的面积最小时,求l的方程.八.离散型随机变量的期望与方差(共2小题)15.(2023•高州市二模)春节过后,文化和旅游业逐渐复苏,有意跨省游、出境游的旅客逐渐增多.某旅游景区为吸引更多游客,计划在社交媒体平台和短视频平台同时投放宣传广告并进行线上售票,通过近些年的广告数据分析知,一轮广告后,在短视频平台宣传推广后,目标用户购买门票的概率为,在社交媒体平台宣传推广后,目标用户购买门票的概率为q;二轮广告精准投放后,目标用户在短视频平台进行复购的概率为p,在社交媒体平台复购的概率为.(1)记在短视频平台购票的4人中,复购的人数为X,若,试求X的分布列和期望;(2)记在社交媒体平台的3名目标用户中,恰有1名用户购票并复购的概率为P,当P 取得最大值时,q为何值?(3)为优化成本,该景区决定综合渠道投放效果的优劣,进行广告投放战略的调整.已知景区门票100元/人,在短视频平台和社交媒体平台的目标用户分别在90万人和17万人左右,短视频平台和社交媒体平台上的广告投放费用分别为4元/100人和5元/100人,不计宣传成本的景区门票利润率分别是2%和5%,在第(2)问所得q值的基础上,试分析第一次广告投放后,景区在两个平台上的目标用户身上可获得的净利润总额.16.(2023•茂名二模)马尔可夫链是因俄国数学家安德烈•马尔可夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n﹣1,n﹣2,n﹣3,…次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n(n∈N*)次操作后,记甲盒子中黑球个数为X n,甲盒中恰有1个黑球的概率为a n,恰有2个黑球的概率为b n.(1)求X1的分布列;(2)求数列{a n}的通项公式;(3)求X n的期望.广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-03解答题(较难题)参考答案与试题解析一.数列的求和(共1小题)1.(2023•汕头二模)已知各项均为正数的数列{a n}满足:a1=3,且a n a n+12﹣2(a n2﹣1)a n+1﹣a n=0,n∈N*.(1)设b n=a n﹣,求数列{b n}的通项公式;(2)设S n=a12+a22+…+a n2,T n=++…+,求S n+T n,并确定最小正整数n,使S n+T n为整数.【答案】见试题解答内容【解答】解:(1)由题意知,b n+1=a n+1﹣====2b n,,∴数列{b n}是公比为2,首项为的等比数列,其通项公式为.(2)由(1)有+…++2n=()2+()2+…()2+2n=,n∈N*,为使S n+T n=,n∈N*,当且仅当为整数.当n=1,2时,S n+T n不为整数,当n≥3时,4n﹣1=(1+3)n﹣1=,∴只需为整数,∵3n﹣1与3互质,∴为9的整数倍,当n=9时,为整数,故n的最小值为9.二.利用导数研究函数的单调性(共1小题)2.(2023•梅州二模)已知函数f(x)=e x﹣1﹣alnx,其中a∈R.(1)当a=1时,讨论f(x)的单调性;(2)当x∈[0,π]时,2f(x+1)﹣cos x≥1恒成立,求实数a的取值范围.【答案】(1)递增区间为(1,+∞),递减区间为(0,1);(2)(﹣∞,1].【解答】解:(1)a=1,f(x)=e x﹣1﹣lnx,x>0,则在(0,+∞)上单调递增且f′(1)=0,所以当0<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增,故f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);(2)令g(x)=2f(x+1)﹣cos x=2e x﹣2aln(x+1)﹣cos x,x∈[0,π],所以g′(x)=+sin x,当a≤0时,g′(x)>0,则g(x)在[0,π]上单调递增,g(x)≥g(0)=1,符合题意;当a>0时,令h(x)=g′(x),则h′(x)=>0,故h(x)即g′(x)在[0,π]上单调递增,又g′(0)=2﹣2a,(i)当0<a≤1时,g′(x)≥g′(0)=2﹣2a≥0,g(x)在[0,π]上单调递增,g (x)≥g(0)=1,符合题意;(ii)当g'(π)=2eπ﹣+sinπ≤0,即a≥(π+1)eπ时,对任意的x∈[0,π],g′(x)≤0,所以g(x)在(0,π)上单调递减,此时g(x)<g(0)=2e0﹣2aln1﹣cos0=1,不合题意.(iii)当1<a<(π+1)eπ时,因为g′(x)在[0,π]上单调递增,且g′(0)g′(π)=(2﹣2a)(2eπ﹣)<0,所以∃x0∈[0,π],使g'(x0)=0,且当x∈(0,x')时,g'(x)单调递减.此时g(x)<g(0)=2e0﹣2aln1﹣cos0=1,不合题意.综上,实数a的取值范围为(﹣∞,1].三.利用导数研究函数的最值(共6小题)3.(2023•高州市二模)设定义在R上的函数f(x)=e x﹣ax(a∈R).(1)若存在x0∈[1,+∞),使得f(x0)<e﹣a成立,求实数a的取值范围;(2)定义:如果实数s,t,r满足|s﹣r|≤|t﹣r|,那么称s比t更接近r.对于(1)中的a 及x≥1,问:和e x﹣1+a哪个更接近lnx?并说明理由.【答案】(1)(e,+∞).(2)比e x﹣1+a更接近lnx,理由见解析.【解答】解:(1)因为存在x0∈[1,+∞),使得f(x0)<e﹣a成立,即f(x)min<e﹣a,由题设知,f'(x)=e x﹣a,①当a≤0时,f'(x)>0恒成立,f(x)在R上单调递增;即f(x)在[1,+∞)单调递增,f(x)min=f(1)=e﹣a,不满足f(x)min<e﹣a,所以a≤0舍去.②当a>0时,令f'(x)=0,得x=lna,当x∈(﹣∞,lna)时f'(x)<0,f(x)单调递减,当x∈(lna,+∞)时f'(x)>0,f (x)单调递增;当a≤e时,f(x)在[1,+∞)单调递增,f(x)min=f(1)=e﹣a,不满足f(x)min<e﹣a,所以a≤e,舍去.当a>e时,lna>1,f(x)在(1,lna)单调递减,在(lna,+∞)单调递增,所以f (x)min=f(lna)<f(1)=e﹣a成立,故当a>e时成立.综上:a>e,即实数a的取值范围是(e,+∞).(2)令,x≥1,p(x)在[1,+∞)单调递减.因为p(e)=0,故当1≤x≤e时,p(x)≥p(e)=0;当x>e时,p(x)<0;令q(x)=e x﹣1+a﹣lnx,x≥1,令,,h(x)在[1,+∞)单调递增,故h(x)≥h(1)=0,所以q'(x)=h(x)>0,则q(x)在[1,+∞)单调递增,所以q(x)≥q(1)=a+1,由(1)知a>e,q(x)≥q(1)=a+1>0;①当1≤x≤e时,p(x)≥0,q(x)>0,令,所以,故m(x)在[1,e]单调递减,所以m(x)≤m(1)=e﹣1﹣a,由(1)知a>e,所以m(x)≤m(1)=e﹣1﹣a<0,即m(x)=|p(x)|﹣|q(x)|<0,故|p(x)|<|q(x)|,所以比e x﹣1+a更接近lnx;②当x>e时,p(x)<0,q(x)>0,令=,,令,,p(x)在(e,+∞)上单调递减,所以,n'(x)=p(x)<0,n(x)在(e,+∞)单调递减,所以n(x)≤n(e)=1﹣e e﹣1﹣a,由(1)知a>e,所以n(x)<n(e)=1﹣e e﹣1﹣a<0,即n(x)=|p(x)|﹣|q(x)|<0,故|p(x)|<|q(x)|,所以比e x﹣1+a更接近lnx;综上:当a>e及x≥1,比e x﹣1+a更接近lnx.4.(2023•汕头二模)已知函数f(x)=﹣lnx,,a∈R.(1)若函数g(x)存在极值点x0,且g(x1)=g(x0),其中x1≠x0,求证:x1+2x0=0;(2)用min{m,n}表示m,n中的最小值,记函数h(x)=min{f(x),g(x)}(x>0),若函数h(x)有且仅有三个不同的零点,求实数a的取值范围.【答案】(1)证明见解析;(2)().【解答】(1)证明:由题意,,g'(x)=3x2﹣a,当a≤0时,g'(x)≥0恒成立,没有极值.当a>0时,令g'(x)=0,即3x2﹣a=0,解之得,,当x∈(﹣∞,x1′)时,g'(x)>0,g(x)单调递增;当x∈(x1′,x2′)时,g'(x)<0,g(x)单调递减;当x∈(x2′,+∞)时,g'(x)>0,g(x)单调递增.∴g(x)的极大值为,极小值为,当时,要证x1+2x0=0,即证,代入计算有,,,则有g(x0)=g(x1)符合题意,即x1+2x0=0得证;当时,要证x1+2x0=0,即证,代入计算有,,,则有g(x0)=g(x1)符合题意,即x1+2x0=0得证.综上,当x0为极大值点和极小值点时,x1+2x0=0均成立.(2)解:①当x∈(1,+∞)时,f(x)=﹣lnx<0,∴h(x)=min{f(x),g(x)}≤f (x)<0,故函数h(x)在x∈(1,+∞)时无零点;②当x=1时,f(1)=0,,若,则g(1)≥0,h(x)=f(1)=0,故x=1是函数h(x)的一个零点;若,则g(1)<0,∴h(x)=g(x)<0,故x=1时函数h(x)无零点.③当x∈(0,1)时,f(x)=﹣lnx>0,因此只需要考虑g(x),由题意,,g'(x)=3x2﹣a,(一)当a≤0时,g'(x)≥0恒成立,∴g(x)在(0,1)上单调递增,,∴g(x)>0在x∈(0,1)恒成立,即g(x)在(0,1)内无零点,也即h(x)在(0,1)内无零点;(二)当a≥3时,x∈(0,1),g'(x)<0恒成立,∴g(x)在(0,1)上单调递减,即g(x)在(0,1)内有1个零点,也即h(x)在(0,1)内有1个零点;(三)a∈(0,3)时,函数g(x)在上单调递减,∴,若,即时,g(x)在(0,1)内无零点,也即h(x)在(0,1)内无零点;若,即时,g(x)在(0,1)内有唯一的一个零点,也即h(x)在(0,1)内有唯一的零点;若,即时,由,,∴时,g(x)在(0,1)内有两个零点.综上所述,当a∈()时,函数有3个零点.5.(2023•潮州二模)已知函数(e是自然对数的底数)有两个零点.(1)求实数a的取值范围;(2)若f(x)的两个零点分别为x1,x2,证明:.【答案】(1)(e,+∞);(2)证明见解析.【解答】解:(1)有两个零点,等价于h(x)=xe x﹣a(lnx+x)=xe x﹣aln(xe x)(x>0)有两个零点,令t=xe x,则t′=(x+1)e x>0,在x>0时恒成立,所以t=xe x在x>0时单调递增,所以h(x)=xe x﹣aln(xe x)有两个零点,等价于g(t)=t﹣alnt有两个零点,,①当a≤0时,g′(t)>0,g(t)单调递增,不可能有两个零点;②当a>0时,令g′(t)>0,得t>a,g(t)单调递增,令g′(t)<0,得0<t<a,g(t)单调递减,所以g(t)min=g(a)=a﹣alna,若g(a)>0,得0<a<e,此时g(t)>0恒成立,没有零点;若g(a)=0,得a=e,此时g(t)有一个零点;若g(a)<0,得a>e,因为g(1)=1>0,g(e)=e﹣a<0,g(e a)=e a﹣a2>0,所以g(t)在(1,e),(e,e a)上各存在一个零点,符合题意,综上,a的取值范围为(e,+∞).(2)证明:要证只需证,即证,由(1)知,,所以只需证lnt1+lnt2>2,因为alnt1=t1,alnt2=t2,所以a(lnt2﹣lnt1)=t2﹣t1,a(lnt2+lnt1)=t2+t1,所以,只需证,设0<t1<t2,令,则t>1,所以只需证即证,令,t>1,则,h(t)>h(1)=0,即当t>1时,成立,所以lnt1+lnt2>2,即,即.6.(2023•广东二模)已知f(x)=x2﹣ae x,存在x1<x2<x3,使得f(x1)=f(x2)=f (x3)=0.(1)求实数a的取值范围;(2)试探究x1+x2+x3与3的大小关系,并证明你的结论.【答案】(1)(0,);(2)x1+x2+x3>3,证明见解析.【解答】解:(1)由题意得f(x)=x2﹣ae x有三个零点,所以方程x2﹣ae x=0有三个根,即方程有三个根,所以函数y=a与函数的图象有三个公共点,设,则,令g′(x)>0,解得0<x<2;令g′(x)<0,解得x<0或x>2,所以g(x)在(0,2)上单调递增,在(﹣∞,0)和(2,+∞)上单调递减,因为当x→﹣∞时,g(x)→+∞,当x→+∞时,g(x)→0,且g(0)=0,,所以g(0)<a<g(2),所以,即实数a的取值范围为(0,).(2)x1+x2+x3>3,证明如下:因为x1<x2<x3,由(1)得x1<0<x2<2<x3,由,得2lnx2﹣x2=2lnx3﹣x3,设h(x)=2lnx﹣x,则h(x2)=h(x3),求导得,令h′(x)>0,解得0<x<2,令h'(x)<0,解得x>2,所以h(x)在(0,2)上单调递增,在(2,+∞)上单调递减,设m(x)=h(4﹣x)﹣h(x),0<x<2,则m(x)=2ln(4﹣x)﹣4+x﹣2lnx+x=2ln(4﹣x)﹣2lnx+2x﹣4,0<x<2,求导得恒成立,所以m(x)在(0,2)上单调递减,所以m(x)>m(2)=0,即h(4﹣x)>h(x),因为0<x2<2,所以h(4﹣x2)>h(x2)=h(x3),又因为x3>2,4﹣x2>2,h(x)在(2,+∞)上单调递减,所以4﹣x2<x3,即x2+x3>4,设且x0<0,则,因为g(x)在(﹣∞,0)上单调递减,所以x1>x0,因为e3>4,所以,所以,因为g(x)在(﹣∞,0)上单调递减,所以x0>﹣1,所以x1>x0>﹣1,所以x1+x2+x3>4﹣1=3.7.(2023•湛江二模)已知函数.(1)求曲线y=f(x)在x=1处的切线方程.(2)若存在x1≠x2使得f(x1)=f(x2),证明:(i)m>0;(ii)2m>e(lnx1+lnx2).【答案】(1)y=(1﹣m)x+m+;(2)(i)证明见解析;(ii)证明见解析.【解答】(1)解:因为f'(x)=e x﹣1﹣x+1﹣,所以f'(1)=1﹣m,又f(1)=,所以曲线y=f(x)在x=1处的切线方程为y﹣=(1﹣m)(x﹣1),即y=(1﹣m)x+m+;(2)证明:(i)依题意可知f'(x)有零点,即m=x(e x﹣1﹣x+1)有正数解,令φ(x)=e x﹣1﹣x+1,则φ'(x)=e x﹣1﹣1.当x∈(0,1)时,φ'(x)<0,φ(x)单调递减;当x∈(1,+∞)时,φ'(x)>0,φ(x)单调递增,所以φ(x)≥φ(1)=1>0,所以m>0.(ii)不妨设x1>x2>0.由f(x1)=f(x2)可得m=,因为x1>x2,所以lnx1>lnx2,要证2m>e(lnx1+lnx2),只要证﹣+x1﹣(lnx1)2>﹣+x2﹣(lnx2)2,令g(x)=e x﹣1﹣x2+x﹣(lnx)2,即只要证g(x1)>g(x2),即只要证y=g(x)在(0,+∞)上单调递增,即只要证g'(x)=e x﹣1﹣x+1﹣e•≥0在(0,+∞)上恒成立,即只要证e x﹣1﹣x+1≥e•在(0,+∞)上恒成立.令h(x)=,则h'(x)=,当x∈(0,e)时,h'(x)>0,h(x)单调递增:当x∈(e,+∞)时,h'(x)<0,h (x)单调递减,所以h(x)≤h(e)=l.由(i)知,φ(x)=e x﹣1﹣x+1≥1在(0,+∞)上恒成立,所以e x﹣1﹣x+1≥1≥在(0,+∞)上恒成立,故2m>e(lnx1+lnx2).8.(2023•佛山二模)已知函数,其中a≠0.(1)若f(x)有两个零点,求a的取值范围;(2)若f(x)≥a(1﹣2sin x),求a的取值范围.【答案】(1)(,+∞);(2)(0,1].【解答】解:(1)∵有两个零点,∴=有两个根,设g(x)=,则g′(x)==,当x<1时,则g′(x)>0,g(x)单调递增,当x>1时,则g′(x)<0,g(x)单调递减,∴当x=1时,g(x)max=,当x→+∞时,g(x)→0,当x→﹣∞时,g(x)→﹣∞,∴0<<,∴a>,∴a的取值范围为(,+∞);(2)设h(x)=e x﹣3x﹣a(1﹣2sin x),由h(0)≥0,h()≥0,则0<a≤1,下面证明:当0<a≤1时,e x﹣3x﹣a(1﹣2sin x)≥0,即证e x﹣x+2sin x﹣1≥0,设=b(b≥1),即证b2e x﹣3bx+2sin x﹣1≥0,令t(b)=b2e x﹣3bx+2sin x﹣1(b≥1),则二次函数的开口向上,对称轴为b=,由①得,≤<1,∴t(b)在[1,+∞)单调递增,∴t(b)≥t(1)=e x﹣3x+2sin x﹣1,下面再证明:e x﹣3x+2sin x﹣1≥0,即证:﹣1≤0,设F(X)=﹣1,则F′(X)=,设m(x)=2﹣3x+2sin x﹣2cos x,则m′(x)=﹣3+2sin x﹣2cos x=2sin(x﹣)﹣3<0,∴m(x)单调递减,且m(0)=0,则当x>0时,F′(X)<0,F(X)单调递减,当x<0时,F′(X)>0,F(X)单调递增,∴F(X)≤F(0)=1﹣1=0,即﹣1≤0,则e x﹣3x﹣a(1﹣2sin x)≥0,综上,a的取值范围为(0,1].四.直线与椭圆的综合(共1小题)9.(2023•潮州二模)已知椭圆过点和点A(x0,y0)(x0y0≠0),T的上顶点到直线的距离为2,如图过点A的直线l与x,y轴的交点分别为M,N,且,点A,C关于原点对称,点B,D关于原点对称,且.(1)求|MN|的长度;(2)求四边形ABCD面积的最大值.【答案】(1)3;(2)4.【解答】解:(1)T的上顶点(0,b)到直线的距离,解得b=1,又椭圆过点,则,解得a2=4,所以椭圆方程为,因为点A(x0,y0)(x0y0≠0)在椭圆上,所以,由题意直线l的斜率存在,设过点A的直线l方程为y﹣y0=k(x﹣x0),令x=0,则y=y0﹣kx0,令y=0,则,即,由,得,所以,所以,所以=;(2)由(1)得直线MN的斜率,因为,所以,所以直线BD的方程为,即2y0x+yx0=0,联立,解得,所以|x|=,所以,点A到直线BD的距离,又因,所以,由椭圆的对称性可得四边形S△ABD=S△CBD,所以四边形ABCD面积,,当且仅当,即时取等号,则,,所以,即四边形ABCD面积的最大值为4.五.直线与抛物线的综合(共1小题)10.(2023•广东二模)已知A,B是抛物线E:y=x2上不同的两点,点P在x轴下方,PA 与抛物线E交于点C,PB与抛物线E交于点D,且满足,其中λ是常数,且λ≠1.(1)设AB,CD的中点分别为点M,N,证明:MN垂直于x轴;(2)若点P为半圆x2+y2=1(y<0)上的动点,且λ=2,求四边形ABDC面积的最大值.【答案】(1)证明见解析;(2).【解答】(1)证明:因为,且P,A,C共线,P,B,D共线,所以AB ∥CD,所以直线AB和直线CD的斜率相等,即k AB=k CD,设,,,,则点M的横坐标,点N的横坐标,由k AB=k CD,得,因式分解得,约分得x2+x1=x4+x3,所以,即x M=x N,所以MN垂直于x轴.(2)解:设P(x0,y0),则,且﹣1≤y0<0,当λ=2时,C为PA中点,则,,因为C在抛物线上,所以,整理得,当λ=2时,D为PB中点,同理得,所以x1,x2是方程的两个根,因为,由韦达定理得x1+x2=2x0,,所以,所以PM也垂直于x轴,所以,因为,所以===,﹣1≤y0<0,当时,取得最大值,所以,所以四边形ABDC面积的最大值为.六.直线与双曲线的综合(共1小题)11.(2023•茂名二模)已知F1,F2分别为双曲线E:=1({a>0,b>0})的左、右焦点,P为渐近线上一点,且|PF1|=|PF2|,cos∠F1PF2=.(1)求双曲线的离心率;(2)若双曲线E实轴长为2,过点F2且斜率为k的直线l交双曲线C的右支不同的A,B两点,Q为x轴上一点且满足|QA|=|QB|,试探究是否为定值,若是,则求出该定值;若不是,请说明理由.【答案】(1)e=2.(2)证明见解析.【解答】解:(1)由|PF1|=|PF2|,可设|PF1|=x,|PF2|=x,在△PF1F2中cos∠F1PF2=,∴|F1F2|2=7x2+3x2﹣2x•x=4x2,即|F1F2|=2x,∴|PF1|2=|PF2|2+|F1F2|2,∴△PF1F2为直角三角形,∴在△OPR2中,PF2⊥OF2,|PF2|=x,|OF2|=x,=,则双曲线的离心率为e====2.(2)在双曲线中=,且实轴长为2,所以a=1,b=,所以双曲线E方程为.由F2(2,0),故设斜率为k的直线l为y=k(x﹣2),y=k(x﹣2)代入.可得(3﹣k2)x2+4k2x﹣4k2﹣3=0,∵直线l与双曲线右支交于不同两点,∴,解得k2≥3,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,则=,=k(﹣2)=,即A,B的中点坐标为(,),因为Q为x轴上一点,满足|QA|=|QB|,故Q为AB的垂直平分线与x轴的交点,AB的垂直平分线的方程为:y﹣=﹣(x﹣﹣),令y=0,则得x=,即Q(,0),∴|QF2|=|﹣﹣2|=,又|AB|==•=,又因为A,B在双曲线的右支上,故|AF1|﹣|AF2|=2a=2,|BF1|﹣|BF2|=2,故|AF1|+|BF1|﹣|AF2|﹣|BF2|=4,即|AF1|+|BF1|﹣4=|AB|,故===2,即为定值.七.直线与圆锥曲线的综合(共3小题)12.(2023•高州市二模)在一张纸上有一个圆C:=4,定点,折叠纸片使圆C上某一点S1好与点S重合,这样每次折叠都会留下一条直线折痕PQ,设折痕PQ与直线S1C的交点为T.(1)求证:||TC|﹣|TS||为定值,并求出点T的轨迹C′方程;(2)设A(﹣1,0),M为曲线C′上一点,N为圆x2+y2=1上一点(M,N均不在x轴上).直线AM,AN的斜率分别记为k1,k2,且k2=﹣,求证:直线MN过定点,并求出此定点的坐标.【答案】(1)||TC|﹣|TS||=2,点T的轨迹C′的方程:;(2)直线MN过定点T(1,0),证明见解析.【解答】解:(1)证明:由题意得|TS|=|TS1|,所以,即T的轨迹是以C,S为焦点,实轴长为2的双曲线,即点T的轨迹C′的方程:;(2)证明:由已知得直线AM的方程:y=k1(x+1),直线AN的方程:y=k2(x+1),联立直线方程与双曲线方程,消去y,整理可得,由韦达定理得,所以,即,所以,联立直线方程与圆方程,消去y,整理得,由韦达定理得,所以,即,因为,即,所以,若直线MN所过定点,则由对称性得定点在x轴上,设定点T(t,0),由三点共线得k MT=k NT,即,,解得t=1,所以直线MN过定点T(1,0).13.(2023•汕头二模)如图,F1(﹣c,0)、F2(c,0)为双曲线的左、右焦点,抛物线C2的顶点为坐标原点,焦点为F2,设C1与C2在第一象限的交点为P(m,n),且|PF1|=7,|PF2|=5,∠PF2F1为钝角.(1)求双曲线C1与抛物线C2的方程;(2)过F2作不垂直于x轴的直线l,依次交C1的右支、C2于A、B、C、D四点,设M 为AD中点,N为BC中点,试探究是否为定值.若是,求此定值;若不是,请说明理由.【答案】(1);(2)是定值.【解答】解:(1)由双曲线的定义可知:|PF1|﹣|PF2|=7﹣5=2a⇒a=1,设抛物线方程为:y2=2px,则由题意可得,即y2=4cx;由抛物线定义可得:,代入抛物线方程得:,代入双曲线方程得:,故双曲线方程为:;抛物线方程为:y2=8x;(2)由题意可设l:x=ky+2,点A、B、C、D的纵坐标依次为y1、y2、y3、y4,分别联立直线l与双曲线、抛物线方程可得:,化简整理可得,(3k2﹣1)y2+12ky+9=0、y2﹣8ky﹣16=0,由双曲线性质可得:,故有,因为M、N分别为AD、BC的中点,故其纵坐标依次为:,所以=是定值.14.(2023•广州二模)已知点F(1,0),P为平面内一动点,以PF为直径的圆与y轴相切,点P的轨迹记为C.(1)求C的方程;(2)过点F的直线l与C交于A,B两点,过点A且垂直于l的直线交x轴于点M,过点B且垂直于的直线交x轴于点N.当四边形MANB的面积最小时,求l的方程.【答案】(1)y2=4x.(2)x±y﹣=0.【解答】解:(1)设点P(x,y),以PF为直径的圆的圆心为M,⊙M的半径为r,设⊙M与y轴相切于点N,过点P作PQ⊥y轴,垂足为Q,则r=|MN|==,|PF|=2r=x+1,∴点P到点F的距离等于点P到直线x=﹣1的距离,∴点P的轨迹为以点F为焦点,直线x=﹣1为准线的抛物线,∴C的方程为y2=4x.(2)由题意直线l的斜率存在,设直线l的方程为:y=k(x﹣1),A(x1,y1),B(x2,y2),联立,化为k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,设直线l的倾斜角为θ,则|AM|=|AF||tanθ|,|BN|=|BF||tanθ|,∴|AM|+|BN|=|AF||tanθ|+|BF||tanθ|=|AB||tanθ|=k|AB|,又|AB|=|AF|+|BF|=x1+1+x2+1=.∴梯形MANB的面积S====,令t=|k|∈(0,+∞),则S(t)=8(t++),S′(t)=8(1﹣﹣)=,∴t∈(0,)时,S′(t)<0,此时函数S(t)单调递减;t∈(,+∞)时,S′(t)>0,此时函数S(t)单调递增.∴t=|k|=时,即k=±时,四边形MANB的面积S取得极小值即最小值,此时直线l的方程为:y=±(x﹣1),即x±y﹣=0.八.离散型随机变量的期望与方差(共2小题)15.(2023•高州市二模)春节过后,文化和旅游业逐渐复苏,有意跨省游、出境游的旅客逐渐增多.某旅游景区为吸引更多游客,计划在社交媒体平台和短视频平台同时投放宣传广告并进行线上售票,通过近些年的广告数据分析知,一轮广告后,在短视频平台宣传推广后,目标用户购买门票的概率为,在社交媒体平台宣传推广后,目标用户购买门票的概率为q;二轮广告精准投放后,目标用户在短视频平台进行复购的概率为p,在社交媒体平台复购的概率为.(1)记在短视频平台购票的4人中,复购的人数为X,若,试求X的分布列和期望;(2)记在社交媒体平台的3名目标用户中,恰有1名用户购票并复购的概率为P,当P 取得最大值时,q为何值?(3)为优化成本,该景区决定综合渠道投放效果的优劣,进行广告投放战略的调整.已知景区门票100元/人,在短视频平台和社交媒体平台的目标用户分别在90万人和17万人左右,短视频平台和社交媒体平台上的广告投放费用分别为4元/100人和5元/100人,不计宣传成本的景区门票利润率分别是2%和5%,在第(2)问所得q值的基础上,试分析第一次广告投放后,景区在两个平台上的目标用户身上可获得的净利润总额.【答案】(1)分布列见解析;当时,期望为1;当时,期望为3;(2);(3)805500元.【解答】解:(1)由题意得,在短视频平台购票的人中,复购概率为p,复购的人数X 满足二项分布,即X~B(4,p),故,故或.又知X的所有可能取值为0,1,2,3,4,①当时,,,P(X=2)=,,P(X=4)==,所以X得分布列为:X01234P此时数学期望E(X)==1.②p=时,P(X=0)==,P(X=1)==,P(X=2}==,P(X=3)==,P(X=4)==,所以X得分布列为:X01234P此时数学期望E(X)=4×=3.(2)设在社交媒体平台的目标用户购票并复购的概率为q1,由题得,.,,令P′=0,得或1,所以时,P′>0,函数P单调递增,当时,P′<0,函数P单调递减.故当取得最大值.由可得,.(3)短视频平台:(元),社交媒体平台:(元),净利润总额:364000+441500=805500(元).故景区在两个平台上的目标用户身上可获得的净利润总额为805500元.16.(2023•茂名二模)马尔可夫链是因俄国数学家安德烈•马尔可夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n﹣1,n﹣2,n﹣3,…次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n(n∈N*)次操作后,记甲盒子中黑球个数为X n,甲盒中恰有1个黑球的概率为a n,恰有2个黑球的概率为b n.(1)求X1的分布列;(2)求数列{a n}的通项公式;(3)求X n的期望.【答案】(1)X1的分布列如下表:X1012P(2)a n=+;(3)1.【解答】解:(1)由题可知,X1的可能取值为0,1,2,由相互独立事件概率乘法公式可知:P(X1=0)=,P(X1=1)=,P(X1=2)==,故X1的分布列如下表:X1012P(2)由全概率公式可知:P(X n+1=1)=P(X n=1)P(X n+1=1|X n=1)+P(X n=2)P(X n+1=1|X n=2)+P(X n=0)P(X n+1=1|X n=0)=()P(X n=1)+()P(X n=2)+(1×)P(X n=0)=P(X n=1)+P(X n=2)+P(X n=0),即:a n+1=,所以a n+1=,所以a n+1﹣=(),又a1=P(X1=1)=,所以,数列{}是以为首项,以为公比的等比数列,所以=,即:a n=+.(3)由全概率公式可得:P(X n+1=2)=P(X n=1)P(X n+1=2|X n=1)+P(X n=2)P (X n+1=2|X n=2)+P(X n=0)P(X n+1=2|X n=0)=()P(X n=1)+()P(X n=2)+0×P(X n=0),即:b n+1=+,又a n=+,所以b n+1=+,所以b n+1﹣+=,又b1=P(X1=2)=,所以==0,所以b n﹣+=0,所以,所以E(X n)=a n+2b n+0×(1﹣a n﹣b n)=a n+2b n=1.。

2023年广东省茂名市高考数学二模数学试卷【答案版】

2023年广东省茂名市高考数学二模数学试卷【答案版】

2023年广东省茂名市高考数学二模数学试卷一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤1},B ={x |2x ﹣a <0},若A ⊆B ,则实数a 的取值范围是( ) A .(2,+∞)B .[2,+∞)C .(﹣∞,2)D .(﹣∞,2]2.若复数z 满足iz =4+3i ,则|z |=( ) A .√5B .3C .5D .253.已知平面α,直线m ,n 满足m ⊄a ,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件4.从1、2、3、4、5中任选3个不同数字组成一个三位数,则该三位数能被3整除的概率为( ) A .110B .15C .310D .255.已知平面xoy 内的动点P ,直线l :x sin θ+y cos θ=1,当θ变化时点P 始终不在直线l 上,点Q 为⊙C :x 2+y 2﹣8x ﹣2y +16=0上的动点,则|PQ |的取值范围为( ) A .(√17−2,√17) B .(√17−2,√17+2] C .[√17−2,√17+2)D .(√17−2,√17+2)6.如图所示,正三棱锥P ﹣ABC ,底面边长为2,点P 到平面ABC 距离为2,点M 在平面P AC 内,且点M 到平面ABC 的距离是点P 到平面ABC 距离的23,过点M 作一个平面,使其平行于直线PB 和AC ,则这个平面与三棱锥表面交线的总长为( )A .24+16√39B .12+16√39C .12+8√39D .24+8√397.黎曼函数R (x )是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R (x )在[0,1]上的定义为:当x =qp (p >q ,且p ,q 为互质的正整数)时,R(x)=1p ;当x =0或x =1或x 为(0,1)内的无理数时,R (x )=0,则下列说法错误的是( ) A .R (x )在[0,1]上的最大值为12B .若a ,b ∈[0,1],则R (a •b )≥R (a )•R (b )C .存在大于1的实数m ,使方程R(x)=mm+1(x ∈[0,1])有实数根 D .∀x ∈[0,1],R (1﹣x )=R (x )8.已知函数f (x )=2sin x cos x +4cos 2x ﹣1,若实数a 、b 、c 使得af (x )﹣bf (x +c )=3对任意的实数x 恒成立,则2a +b ﹣cos c 的值为( ) A .12B .32C .2D .52二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.小爱同学在一周内自测体温(单位:℃)依次为36.1,36.2,36.1,36.5,36.3,36.6,36.3,则该组数据的( ) A .平均数为36.3 B .方差为0.04C .中位数为36.3D .第80百分位数为36.5510.已知O 为坐标原点,椭圆C :x 216+y 29=1的左、右焦点分别为F 1、F 2,椭圆的上顶点和右顶点分别为A 、B ,点P 、Q 都在C 上,且PO →=OQ →,则下列说法正确的是( ) A .△PQF 2周长的最小值为14B .四边形PF 1QF 2可能是矩形C .直线PB ,QB 的斜率之积为定值−916D .△PQF 2的面积最大值为3√7 11.已知f (x )={−x 2+2x +1,x <0x e x,x ≥0,若关于x 的方程4ef 2(x )﹣af (x )+1e =0恰好有6个不同的实数解,则a 的取值可以是( ) A .174B .194C .214D .23412.如图所示,有一个棱长为4的正四面体P ﹣ABC 容器,D 是PB 的中点,E 是CD 上的动点,则下列说法正确的是( )A .若E 是CD 的中点,则直线AE 与PB 所成角为π2B .△ABE 的周长最小值为4+√34C .如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为√63D .如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为√6−2 三、填空题:本大题共4小题,每小题5分,共20分.13.已知实数a ,b 满足lga +lgb =lg (a +2b ),则a +b 的最小值是 .14.已知函数f (x )的图象关于直线x =1对称,且x ≤1时,f (x )=e x +x ﹣1,则曲线y =f (x )在点P (2,f (2))处的切线方程为 .15.已知抛物线y 2=6x 的焦点为F ,准线为l ,过F 的直线与抛物线交于点A 、B ,与直线l 交于点D ,若AF →=λFB →(λ>1)且|BD →|=4,则λ= .16.修建栈道是提升旅游观光效果的一种常见手段.如图,某水库有一个半径为1百米的半圆形小岛,其圆心为C 且直径MN 平行坝面.坝面上点A 满足AC ⊥MN ,且AC 长度为3百米,为便于游客到小岛观光,打算从点A 到小岛建三段栈道AB 、BD 与BE ,水面上的点B 在线段AC 上,且BD 、BE 均与圆C 相切,切点分别为D 、E ,其中栈道AB 、BD 、BE 和小岛在同一个平面上.此外在半圆小岛上再修建栈道MÊ、DN ̂以及MN ,则需要修建的栈道总长度的最小值为 百米.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知数列{a n }的前n (n ∈N *)项和S n 满足S n +1+S n =2(n +1)2,且a 1=1. (1)求a 2,a 3,a 4;(2)若S n 不超过240,求n 的最大值.18.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足tanB =sin(C+π3)sin(C−π6).(1)求A ;(2)若D 为边BC 上一点,且2CD =AD =BD ,试判断△ABC 的形状.19.(12分)在四棱锥P ﹣ABCD 中,平面P AD ⊥平面ABCD ,P A =PD ,O 为AD 的中点. (1)求证:PO ⊥BC ;(2)若AB ∥CD ,AB =8,AD =DC =CB =4,PO =2√7,点E 在棱PB 上,直线AE 与平面ABCD 所成角为π6,求点E 到平面PCD 的距离.20.(12分)已知F 1,F 2分别为双曲线E :x 2a 2−y 2b 2=1({a >0,b >0})的左、右焦点,P 为渐近线上一点,且√3|PF 1|=√7|PF 2|,cos ∠F 1PF 2=√217.(1)求双曲线的离心率;(2)若双曲线E 实轴长为2,过点F 2且斜率为k 的直线l 交双曲线C 的右支不同的A ,B 两点,Q 为x 轴上一点且满足|QA |=|QB |,试探究2|QF 2||AF 1|+|BF 1|−4是否为定值,若是,则求出该定值;若不是,请说明理由.21.(12分)已知函数f (x )=x 22+lnx ﹣2ax ,a 为常数,且a >0. (1)判断f (x )的单调性;(2)当0<a <1时,如果存在两个不同的正实数m ,n 且f (m )+f (n )=1﹣4a ,证明:m +n >2. 22.(12分)马尔可夫链是因俄国数学家安德烈•马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n ﹣1,n ﹣2,n ﹣3,…次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n (n ∈N *)次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n . (1)求X 1的分布列; (2)求数列{a n }的通项公式; (3)求X n 的期望.2023年广东省茂名市高考数学二模数学试卷参考答案与试题解析一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤1},B ={x |2x ﹣a <0},若A ⊆B ,则实数a 的取值范围是( ) A .(2,+∞)B .[2,+∞)C .(﹣∞,2)D .(﹣∞,2]解:由已知可得A ={x ||x |≤1}={x |﹣1≤x ≤1},B ={x |2x ﹣a <0}={x |x <a2}, 因为A ⊆B ,所以a2>1,即a >2,故选:A .2.若复数z 满足iz =4+3i ,则|z |=( ) A .√5B .3C .5D .25解:由iz =4+3i ,得﹣z =4i ﹣3,得z =3﹣4i ,则|z |=√32+(−4)2=5, 故选:C .3.已知平面α,直线m ,n 满足m ⊄a ,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件解:若“m ∥n ”则“m ∥α”成立,即充分性成立, ∵m ∥α,∴m 不一定平行n ,即“m ∥n ”是“m ∥α”的充分不必要条件, 故选:D .4.从1、2、3、4、5中任选3个不同数字组成一个三位数,则该三位数能被3整除的概率为( ) A .110B .15C .310D .25解:从1,2,3,4,5中任选3个不同数字组成一个三位数, 有n =A 53=60种选法,要使该三位数能被3整除,只需数字和能被3整除, ∴数字为1,2,3时,有A 33有6种, 数字为1,3,5时,有A 33有6种, 数字为2,3,4时,有A 33有6种, 数字为3,4,5时,有A 33有6种,共有m =6×4=24种,∴该三位数能被3整除的概率为P =m n =2460=25. 故选:D .5.已知平面xoy 内的动点P ,直线l :x sin θ+y cos θ=1,当θ变化时点P 始终不在直线l 上,点Q 为⊙C :x 2+y 2﹣8x ﹣2y +16=0上的动点,则|PQ |的取值范围为( ) A .(√17−2,√17) B .(√17−2,√17+2] C .[√17−2,√17+2)D .(√17−2,√17+2)解:由圆点O 到直线l :x sin θ+y cos θ=1的距离为d =|0+0−1|√cos 2θ+sin 2θ=1,可知直线l 是圆O :x 2+y 2=1的切线,又动直线始终不经过点P , ∴点P 在圆O 内,∵点Q 为⊙C :x 2+y 2﹣8x ﹣2y +16=0上的动点,且C (4,1),r =1, ∴|OC |﹣2<|PQ |<|OC |+2,|OC |=√(4−0)2+(1−0)2=√17, ∴|PQ |的取值范围为(√17−2,√17+2). 故选:D .6.如图所示,正三棱锥P ﹣ABC ,底面边长为2,点P 到平面ABC 距离为2,点M 在平面P AC 内,且点M 到平面ABC 的距离是点P 到平面ABC 距离的23,过点M 作一个平面,使其平行于直线PB 和AC ,则这个平面与三棱锥表面交线的总长为( )A .24+16√39B .12+16√39C .12+8√39D .24+8√39解:因为三棱锥P ﹣ABC 为正三棱锥,所有三角形ABC 为等边三角形并且边长为2,即AB =AC =BC =2,又因为P ﹣ABC 为正三棱锥,因此过点P 作底面ABC 的垂线PO ,垂足为O ,则点O 为三角形ABC 的中心,过B 作AC 的垂线于H ,由三角形ABC 为等边三角形,因此AH =CH =1,BH =√22−12=√3,OH =13BH =√33,在直角三角形AHO 中,AO =√AH 2+OH 2=√12+(√33)2=2√33, 又因为PO =2,在直角三角形AOP 中,AP =√AO 2+OP 2=√(2√33)2+22=4√33,故AP =BP =CP =4√33, 因为三棱锥P ﹣ABC 为正三棱锥,因此△APC ,△APB ,△BPC 均为等腰三角形, 又M 到平面ABC 距离为点P 到平面ABC 距离的23,因此M 为PH 的三等分点(靠近P ),过点M 作Q 1Q 2∥AC 交PC 于Q 1,交P A 于Q 2,过点Q 1作Q 1Q 4∥BP 交BC 于Q 4,过点Q 4作Q 3Q 4∥AC 交AB 于Q 3,连接Q 3Q 4,所以Q 1Q 2∥AC ∥Q 3Q 4,则Q 1,Q 2、Q 3、Q 4四点共面, 因为Q 1Q 4∥BP ,Q 1Q 4⊂面Q 1Q 2Q 3Q 4,BP ⊄面Q 1Q 2Q 3Q 4, 所以BP ∥面Q 1Q 2Q 3Q 4,所以面Q 1Q 2Q 3Q 4即为过点M 且平行于直线PB 和AC 的平面, 利用三角形相似可得:Q 1Q 2=Q 3Q 4=13AC =23,Q 2Q 3=Q 1Q 4=23BP =8√39, 这个平面与三棱锥表面交线的总长为Q 1Q 2+Q 2Q 3+Q 3Q 4+Q 1Q 4=2×8√39+2×23=12+16√39. 故选:B .7.黎曼函数R (x )是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R (x )在[0,1]上的定义为:当x =q p(p >q ,且p ,q 为互质的正整数)时,R(x)=1p;当x =0或x =1或x 为(0,1)内的无理数时,R (x )=0,则下列说法错误的是( ) A .R (x )在[0,1]上的最大值为12B .若a ,b ∈[0,1],则R (a •b )≥R (a )•R (b )C .存在大于1的实数m ,使方程R(x)=mm+1(x ∈[0,1])有实数根 D .∀x ∈[0,1],R (1﹣x )=R (x )解:对于A ,由题意,R (x )的值域为{0,12,13,⋯⋯,1p ,⋯⋯},其中p 是大于等于2的正整数,选项A 正确;对于B ,①若a ,b ∈(0,1],设a =qp,b =n m (p ,q 互质,m ,n 互质),a ⋅b =q p ⋅n m ≥1p ⋅1m,则R (a •b )≥R (a )•R (b ),②若a ,b 有一个为0,则R (a •b )≥R (a )•R (b )=0,选项B 正确; 对于C ,若n 为大于1的正数,则n n+1>12,而R (x )的最大值为12,所以该方程不可能有实根,选项C 错误;对于D ,x =0,1或(0,1)内的无理数,则R (x )=0,R (1﹣x )=0,R (x )=R (1﹣x ), 若x 为(0,1)内的有理数,设x =qp (p ,q 为正整数,qp为最简真分数),则R(x)=R(1−x)=1p ,选项D 正确. 故选:C .8.已知函数f (x )=2sin x cos x +4cos 2x ﹣1,若实数a 、b 、c 使得af (x )﹣bf (x +c )=3对任意的实数x 恒成立,则2a +b ﹣cos c 的值为( ) A .12B .32C .2D .52解:f (x )=sin2x +2(1+cos2x )﹣1=sin2x +2cos2x +1=√5sin(2x +θ)+1,其中tan θ=2,0<θ<π2, ∴由af (x )﹣bf (x +c )=3得,√5asin(2x +θ)−√5bsin(2x +θ+c)+a −b −3=0, ∴√5(a −bcosc)sin(2x +θ)−√5bsinc ⋅cos(2x +θ)+a −b −3=0, 由已知条件,上式对任意x ∈R 恒成立,故必有{a −bcosc =0①bsinc =0②a −b −3=0③,若b =0,则a =0,由③得﹣3=0,∴b ≠0,由②得sin c =0,若cos c =1,由①得a ﹣b =0,与③矛盾,∴cos c =﹣1,∴{a +b =0a −b −3=0,解得{a =32b =−32, ∴2a +b −cosc =3−32+1=52. 故选:D .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.小爱同学在一周内自测体温(单位:℃)依次为36.1,36.2,36.1,36.5,36.3,36.6,36.3,则该组数据的( ) A .平均数为36.3B .方差为0.04C .中位数为36.3D .第80百分位数为36.55解:根据题意,将7个数据从小到大排列:36.1,36.1,36.2,36.3,36.3,36.5,36.6, 由此分析选项:对于A ,其平均数x =17(36.1+36.1+36.2+36.3+36.3+36.5+36.6)=36.3,A 正确; 对于B ,其方差S 2=17(0.04+0.04+0.01+0+0+0.04+0.09)=22700,B 错误; 对于C ,其中位数为第4个数据,即36.3,C 正确;对于D ,7×80%=5.6,则该组数据的第80百分位数为36.5,D 错误. 故选:AC .10.已知O 为坐标原点,椭圆C :x 216+y 29=1的左、右焦点分别为F 1、F 2,椭圆的上顶点和右顶点分别为A 、B ,点P 、Q 都在C 上,且PO →=OQ →,则下列说法正确的是( ) A .△PQF 2周长的最小值为14B .四边形PF 1QF 2可能是矩形C .直线PB ,QB 的斜率之积为定值−916 D .△PQF 2的面积最大值为3√7 解:由PO →=OQ →,可知P ,Q 关于原点对称,对于A ,根据椭圆的对称性,|PQ |+|PF 2|+|QF 2|=|PQ |+|PF 2|+|PF 1|=|PQ |+8,当PQ 为椭圆的短轴时,|PQ |有最小值6,所以△PQF 2周长的最小值为14,故A 正确; 对于B ,因为tan ∠F 1AO =c b =√73,所以∠F 1AO <π4, 则∠F 1AF 2<π2,故椭圆上不存在点P ,使得∠F 1PF 2=π2,又四边形PF 1QF 2是平行四边形,所以四边形PF 1QF 2不可能是矩形,故B 不正确; 对于C ,由题意得B (4,0),设P (x ,y ),则Q (﹣x ,﹣y ), 所以k PB ⋅k QB=y x−4⋅−y (−x)−4=y 2x 2−16=9(1−x 216)x 2−16=−916,故C 正确; 对于D ,设△PF 2Q 的面积为S =12|OF||y P −y Q |,所以当PQ 为椭圆的短轴时,|y P ﹣y Q |=6最大, 所以S =12|OF||y P −y Q |≤12×√7×6=3√7,故D 正确. 故选:ACD .11.已知f (x )={−x 2+2x +1,x <0x e x,x ≥0,若关于x 的方程4ef 2(x )﹣af (x )+1e =0恰好有6个不同的实数解,则a 的取值可以是( ) A .174B .194C .214D .234解:令g (x )=x e x ,则g '(x )=1−xex ,所以g (x )在[0,1)上单调增,在(1,+∞)上单调减, 所以f (x )的大致图像如下所示:令t =f (x ),所以关于x 的方程4ef 2(x )﹣af (x )+1e=0有6个不同实根等价于关于t 方程4et 2﹣at +1e=0在t ∈(0,1e)内有2个不等实根,即h (t )=4et +1et 与y =a 在t ∈(0,1e)内有2个不同交点, 又因为h ′(t )=4e −1et 2=4e 2t 2−1et 2,令h ′(t )=0,则t =±12e,所以当t ∈(0,12e)时,h ′(t )<0,h (t )单调递减;当t ∈(12e,+∞)时,h ′(t )>0,h (t )单调递增; 所以h (t )=4et +1et的大致图像如下所示:又h (12e)=4,h (1e)=5,所以a ∈(4,5).对照四个选项,AB 符合题意. 故选:AB .12.如图所示,有一个棱长为4的正四面体P ﹣ABC 容器,D 是PB 的中点,E 是CD 上的动点,则下列说法正确的是( )A .若E 是CD 的中点,则直线AE 与PB 所成角为π2B .△ABE 的周长最小值为4+√34C .如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为√63D .如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为√6−2 A 选项,连接AD ,如图所示:在正四面体P ﹣ABC 中,D 是PD 的中点,所以PB ⊥AD ,PB ⊥CD ,因为AD ⊂平面ACD ,CD ⊂平面ACD ,AD ∩CD =D ,所以直线PB ⊥平面ACD ,因为AE ⊆平面ACD ,所以PB ⊥AE ,所以直线AE 与PB 所成角为π2;故A 选项正确;B 选项,把△ACD 沿着CD 展开与面BCD 同一平面内,由AD =CD =2√3,AC =4,cos ∠ACD =13,所以cos ∠ADB =cos (π2+∠ADC )=﹣sin ∠ADC =−2√23,所以AB 2=22+(2√3)2−2×2×2√3×(−2√23)=16+16√63≠34,所以△ABC 的周长最小值为4+√34不正确,故B 选项错误; C 选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设半径为r ,由等体积法可知,V P−ABC =13S △ABC ×ℎ=13S 表×r ,所以半径r =14ℎ=√612×4=√63,故C 选项正确;D 选项,10个小球分三层,(1个,3个,6个)放进去,要使小球半径最大,则外层小球与四个面相切,设小球半径为r ,四个角小球球心连线M ﹣NGF 是棱长为4r 的正四面体,其高为4√63r ,由正四面体内切球的半径为高的14得,如图正四面体P ﹣HIJ ,则MP =3r ,正四面体P ﹣ABC 的高为3r +4√63r +r =√63×4,得r =√6−2,故D 选项正确. 故选:ACD .三、填空题:本大题共4小题,每小题5分,共20分.13.已知实数a ,b 满足lga +lgb =lg (a +2b ),则a +b 的最小值是 3+2√2 . 解:因为lga +lgb =lg (a +2b ),所以ab =a +2b ,a >0,b >0,所以1b+2a=1,故a +b =(a +b )(2a +1b )=3+2ba +ab ≥3+2√2,当且仅当a =√2b 时取等号.故答案为:3+2√2.14.已知函数f (x )的图象关于直线x =1对称,且x ≤1时,f (x )=e x +x ﹣1,则曲线y =f (x )在点P (2,f (2))处的切线方程为 2x +y ﹣4=0 .解:∵函数f (x )图象关于直线x =1对称,∴f (x )=f (2﹣x ) ∵当x ≤1,f (x )=e x +x ﹣1, ∴x >1时,2﹣x <1,∴f (x )=f (2﹣x )=e 2﹣x +2﹣x ﹣1=e 2﹣x ﹣x +1.则f ′(x )=﹣e 2﹣x ﹣1,可得f ′(2)=﹣2,f (2)=0.∴曲线y =f (x )在点P (2,f (2))处的切线方程为y =﹣2(x ﹣2),即2x +y ﹣4=0. 另解:由函数f (x )的图象关于直线x =1对称,可得f (2)=f (0)=0,即P (2,0),由x ≤1时,f (x )=e x +x ﹣1,导数为f ′(x )=e x +1,可得f (x )在(0,0)处的切线的斜率为2, 则f (x )在(2,0)处的切线的斜率为﹣2,可得曲线y =f (x )在点P (2,f (2))处的切线方程为y =﹣2(x ﹣2),即2x +y ﹣4=0. 故答案为:2x +y ﹣4=0.15.已知抛物线y 2=6x 的焦点为F ,准线为l ,过F 的直线与抛物线交于点A 、B ,与直线l 交于点D ,若AF →=λFB →(λ>1)且|BD →|=4,则λ= 3 .解:设准线与x 轴的交点为K ,作AA 1⊥l ,BB 1⊥l ,垂足分别为A 1,B 1,则BB 1∥FK ∥AA 1.根据抛物线定义知|BB 1|=|BF |,|AA 1|=|AF |,又若AF →=λFB →(λ>1),且|BD →|=4, 因为BB 1∥FK ∥AA 1,设|BF |=m , 则|BB 1||KF|=|BD||FD|,∴m p=44+m,又p =3,解得m =2,∴|AF |=λ|FB |=2λ,所以|BA |=2+2λ, 因为BB 1∥FK ∥AA 1, 所以|BB 1||AA 1|=|BD||AD|,∴1λ=44+2+2λ,解得λ=3.故答案为:3.16.修建栈道是提升旅游观光效果的一种常见手段.如图,某水库有一个半径为1百米的半圆形小岛,其圆心为C 且直径MN 平行坝面.坝面上点A 满足AC ⊥MN ,且AC 长度为3百米,为便于游客到小岛观光,打算从点A 到小岛建三段栈道AB 、BD 与BE ,水面上的点B 在线段AC 上,且BD 、BE 均与圆C 相切,切点分别为D 、E ,其中栈道AB 、BD 、BE 和小岛在同一个平面上.此外在半圆小岛上再修建栈道MÊ、DN ̂以及MN ,则需要修建的栈道总长度的最小值为 2π3+5 百米.解:连接CD ,CE ,由半圆半径为1得:CD =CE =1,由对称性,设∠CBE =∠CBD =θ,又CD ⊥BD ,CE ⊥BE ,所以BE =BD =CD tanθ=1tanθ,BC =CDsinθ=1sinθ, 易知∠MCE =∠NCD =θ,所以MÊ,ND ̂的长为θ, 又AC =3,故AB =AC ﹣BC =3−1sinθ∈(0,2),故sin θ∈(13,1),令sin θ0=13,且θ0∈(0,π6),则f (θ)=5−1sinθ+2tanθ+2θ,θ∈(θ0,π2),所以f ′(θ)=−cosθ(2cosθ−1)sin 2θ,所以栈道总长度最小值f (θ)min =f (3)=2π3+5. 故答案为:2π3+5.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知数列{a n }的前n (n ∈N *)项和S n 满足S n +1+S n =2(n +1)2,且a 1=1. (1)求a 2,a 3,a 4;(2)若S n 不超过240,求n 的最大值.解:(1)当n =1时,S 2+S 1=a 2+a 1=2(1+1)2=8,又a 1=1,a 2=6, 当n =2时,S 3+S 2=a 3+2a 2+2a 1=2(2+1)2=18,a 3=4,当n =3时,S 4+S 3=a 4+2a 3+2a 2+2a 1=2(3+1)2=32,又a 1=1,a 4=10; (2)∵S n +1+S n =2(n +1)2①,当n =1时,S 2+S 1=a 2+a 1=2(1+1)2=8,又a 1=1,S 2=8﹣S 1=7, 当n ≥2时,S n +S n ﹣1=2n 2②, ①﹣②得:S n +1﹣S n ﹣1=4n +2, 当n (n >2)为偶数时,S n ﹣S 2=(4×4﹣2)+(4×6﹣2)+⋯+(4n ﹣2)={14+(4n−2)]2•(12n ﹣1)=n 2+n ﹣6, ∴S n =n (n +1)+1, 当n (n >2)为奇数时,S n ﹣S 1=(4×3﹣2)+(4×5﹣2)+⋯+(4n ﹣2)={10+(4n−2)]2•(n−12)=n 2+n ﹣2,∴S n =n (n +1)﹣1,由15×(15+1)﹣1=239<240,16×17+1=273>240, ∴n 的最大值为15.18.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足tanB =sin(C+π3)sin(C−π6).(1)求A ;(2)若D 为边BC 上一点,且2CD =AD =BD ,试判断△ABC 的形状.解:(1)因为tanB =sin(C+π3)sin(C−π6),所以sinBcosB=12sinC+√32cosC √32sinC−12cosC , 化简得sin C cos B +sin B cos C =√3(sin B sin C ﹣cos B cos C ), 所以sin (B +C )=−√3cos (B +C ), 所以sin A =√3cos A ,即tan A =√3, 又A 为三角形内角, 所以A =π3;(2)设∠BAD =θ,θ∈(0,π3),则∠ADC =2θ,∠DAC =π3−θ,∠ACD =2π3−θ, △ADC 中,由正弦定理得AD sin(2π3−θ)=DC sin(π3−θ),即2sin (π3−θ)=sin (2π3−θ)),所以√3cos θ﹣sin θ=√32cos θ+12sin θ, 化简得tan θ=√33,故θ=π6,∠ACD =π2, 所以△ABC 为直角三角形.19.(12分)在四棱锥P ﹣ABCD 中,平面P AD ⊥平面ABCD ,P A =PD ,O 为AD 的中点. (1)求证:PO ⊥BC ;(2)若AB ∥CD ,AB =8,AD =DC =CB =4,PO =2√7,点E 在棱PB 上,直线AE 与平面ABCD 所成角为π6,求点E 到平面PCD 的距离.(1)证明:∵P A =PD ,O 为AD 的中点,∴PO ⊥AD , 又∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , ∴PO ⊥平面ABCD ,又BC ⊂平面ABCD , ∴PO ⊥BC .(2)解:由AB =8,AD =DC =CB =4,可知ABCD 四边形为等腰梯形,易知BD =4√3, ∵AD 2+BD 2=AB 2,∴AD ⊥BD , 建立如图所示的空间直角坐标系,P(0,0,2√7),A (2,0,0),B(−2,4√3,0),C(−4,2√3,0),D (﹣2,0,0), 平面ABCD 的法向量为n →=(0,0,1), 设E =(x ,y ,z ),则AE →=(x −2,y ,z), PE →=(x ,y ,z −2√7),PB →=(−2,4√3,−2√7), ∵直线AE 与平面ABCD 所成角为π6, ∴sin π6=|cos〈n →,AE →〉|=√(x−2)+y 2+z 2=12,∴x 2﹣4x +4+y 2﹣3z 2=0①∵点E 在棱PB 上,∴PE →=λPB →(0<λ<1), 即(x ,y ,z −2√7)=λ(−2,4√3,−2√7),∴x =﹣2λ,y =4√3λ,z =2√7−2√7λ,代入①解得λ=12或λ=5(舍去), PE →=(−1,2√3,−√7),PD →=(−2,0,−2√7),PC →=(−4,2√3,−2√7), 设m →=(x 1,y 1,z 1)为平面PCD 的一个法向量, 则{m →⋅PD →=−2x 1−2√7z 1=0m →⋅PC →=−4x 1+2√3y 1−2√7z 1=0, 令z 1=1,得x 1=−√7,y 1=−√213,∴平面PCD 的法向量m →=(−√7,−√213,1),∴点E 到平面PCD 的距离d =|PE →⋅m →||m →|=2√7√313=2√2131=2√65131.20.(12分)已知F 1,F 2分别为双曲线E :x 2a 2−y 2b 2=1({a >0,b >0})的左、右焦点,P 为渐近线上一点,且√3|PF 1|=√7|PF 2|,cos ∠F 1PF 2=√217.(1)求双曲线的离心率;(2)若双曲线E 实轴长为2,过点F 2且斜率为k 的直线l 交双曲线C 的右支不同的A ,B 两点,Q 为x 轴上一点且满足|QA |=|QB |,试探究2|QF 2||AF 1|+|BF 1|−4是否为定值,若是,则求出该定值;若不是,请说明理由.解:(1)由√3|PF 1|=√7|PF 2|,可设|PF 1|=√7x ,|PF 2|=√3x , 在△PF 1F 2中cos ∠F 1PF 2=√217,∴|F 1F 2|2=7x 2+3x 2﹣2√7x •√3x ⋅√217=4x 2, 即|F 1F 2|=2x ,∴|PF 1|2=|PF 2|2+|F 1F 2|2,∴△PF 1F 2为直角三角形, ∴在△OPR 2中,PF 2⊥OF 2,|PF 2|=√3x ,|OF 2|=x ,b a=|PF 2||OF 2|=√3,则双曲线的离心率为e =c a =√1+(ba )2=√1+3=√4=2.(2)在双曲线中b a=√3,且实轴长为2,所以a =1,b =√3,所以双曲线E 方程为x 2−y 23=1. 由F 2(2,0),故设斜率为k 的直线l 为y =k (x ﹣2), y =k (x ﹣2)代入x 2−y 23=1.可得(3﹣k 2)x 2+4k 2x ﹣4k 2﹣3=0, ∵直线l 与双曲线右支交于不同两点,∴{Δ=36(k 2+1)>0−4k 23−k 2>0−4k 2−33−k 2>0,解得k 2≥3,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k2k 2−3,x 1x 2=4k 2+3k 2−3,则x 1+x 22=2k 2k 2−3,y 1+y 22=k (2k 2k 2−3−2)=6k k 2−3,即A ,B 的中点坐标为(2k 2k 2−3,6kk 2−3),因为Q 为x 轴上一点,满足|QA |=|QB |,故Q 为AB 的垂直平分线与x 轴的交点,AB 的垂直平分线的方程为:y −6kk 2−3=−1k (x −2k 2k 2−3−),令y =0,则得x =8k2k 2−3,即Q (8k 2k 2−3,0),∴|QF 2|=|8k 2k 2−3−−2|=6(k 2+1)|k 2−3|,又|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2•√(4k2k 2−3)2−4×4k 2+3k 2−3=6(k 2+1)|k 2−3|,又因为A ,B 在双曲线的右支上,故|AF 1|﹣|AF 2|=2a =2,|BF 1|﹣|BF 2|=2, 故|AF 1|+|BF 1|﹣|AF 2|﹣|BF 2|=4,即|AF 1|+|BF 1|﹣4=|AB |, 故2|QF 2||AF 1|+|BF 1|−4=2|QF 2||AB|=2×6(k 2+1)|k 2−3|6(k 2+1)|k 2−3|=2,即2|QF 2||AF 1|+|BF 1|−4为定值.21.(12分)已知函数f (x )=x 22+lnx ﹣2ax ,a 为常数,且a >0. (1)判断f (x )的单调性;(2)当0<a <1时,如果存在两个不同的正实数m ,n 且f (m )+f (n )=1﹣4a ,证明:m +n >2. 解:(1)因为f (x )=x 22+lnx ﹣2ax , 所以f ′(x )=x +1x −2a =x 2−2ax+1x,x ∈(0,+∞), 设g (x )=x 2﹣2ax +1,Δ=(﹣2a )2﹣4≤0,即0<a ≤1时,g (x )=x 2﹣2ax +1≥0恒成立, 所以f ′(x )≥0在(0,+∞)上恒成立, 所以f (x )在(0,+∞)上单调递增,Δ=(﹣2a )2﹣4>0,即a >1时,方程有两个不等的实数根,且x 1=2a+√4a 2−42=a −√a 2−1>0,x 2=2a+√4a 2−42=a +√a 2−1>0,所以任意x ∈(0,a −√a 2−1),x 2﹣2ax +1>0,f ′(x )>0,f (x )单调递增, 任意x ∈(a −√a 2−1,a +√a 2−1),x 2﹣2ax +1>0,f ′(x )<0,f (x )单调递减, 任意x ∈(a +√a 2−1,+∞),x 2﹣2ax +1>0,f ′(x )>0,f (x )单调递增, 综上所述,当0<a ≤1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(0,a −√a 2−1),(a +√a 2−1,+∞)上单调递增,在(a −√a 2−1,a +√a 2−1)上单调递减.(2)证明:因为f (1)=12−2a , 所以f (m )+f (n )=1﹣4a =2f (1),由(1)可得0<a <1时,f (x )在(0,+∞)上单调递增, 不妨设0<m <1<n ,要证m +n >2,即证n >2﹣m >1, 所以f (n )>f (2﹣m ), 所以1﹣4a ﹣f (m )>f (2﹣m ), 所以f (m )+f (2﹣m )<1﹣4a ,设F (x )=f (x )+f (2﹣x ),x ∈(0,1),F ′(x )=f ′(x )﹣f ′(2﹣x )=x +1x −2a ﹣(2﹣x )−12−x +2a =−(x−1)3x(2−x),所以x ∈(0,1)时,F ′(x )>0,F (x )单调递增, 所以F (x )<F (1)=2f (1)=1﹣4a , 所以m +n >2.22.(12分)马尔可夫链是因俄国数学家安德烈•马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n ﹣1,n ﹣2,n ﹣3,…次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n (n ∈N *)次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n . (1)求X 1的分布列; (2)求数列{a n }的通项公式; (3)求X n 的期望.解:(1)由题可知,X 1的可能取值为0,1,2,由相互独立事件概率乘法公式可知: P (X 1=0)=13×23=29,P (X 1=1)=13×13+23×23=59,P (X 1=2)=23×13=29, 故X 1的分布列如下表:(2)由全概率公式可知:P (X n +1=1)=P (X n =1)P (X n +1=1|X n =1)+P (X n =2)P (X n +1=1|X n =2)+P (X n =0)P (X n +1=1|X n =0) =(13×13+23×23)P (X n =1)+(23×1)P (X n =2)+(1×23)P (X n =0)=59P (X n =1)+23P (X n =2)+23P (X n =0), 即:a n +1=59a n +23b n +23(1−a n −b n ),所以a n +1=−19a n +23, 所以a n +1−35=−19(a n −35), 又a 1=P (X 1=1)=59,所以,数列{a n −35}是以a 1−35为首项,以−19为公比的等比数列, 所以a n −35=−245×(−19)n−1=25×(−19)n , 即:a n =35+25×(−19)n . (3)由全概率公式可得:P (X n +1=2)=P (X n =1)P (X n +1=2|X n =1)+P (X n =2)P (X n +1=2|X n =2)+P (X n =0)P (X n +1=2|X n =0)=(23×13)P (X n =1)+(13×1)P (X n =2)+0×P (X n =0),即:b n +1=29a n +13b n , 又a n =35+25×(−19)n ,所以b n +1=13b n +29×[35+25×(−19)n ], 所以b n +1−15+15×(−19)n+1=13×[b n −15+15×(−19)n ], 又b 1=P (X 1=2)=29, 所以b 1−15+15×(−19)=29−15−145=0, 所以b n −15+15×(−19)n =0, 所以b n =15−15×(−19)n , 所以E (X n )=a n +2b n +0×(1﹣a n ﹣b n )=a n +2b n =1.。

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析河南省六市联考高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.66.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.27.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.99.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm310.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.1211.如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE 上,当E从D运动到C,则K所形成轨迹的长度为()A.B.C.D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为______.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为______.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为______.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|=______.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.63519.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;(2)若BD=,A1D=2,求二面角A1﹣BD﹣B1的大小.20.已知椭圆C:的左、右焦点分别为F1(﹣c,0)、F2(c,0),P为椭圆C 上任意一点,且最小值为0.(Ⅰ)求曲线C的方程;(Ⅱ)若动直线l2,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,使得点B到l1,l2的距离之积恒为1?若存在,请求出点B的坐标;若不存在,请说明理由.21.设函数f(x)=e x+ln(x+1)﹣ax.(1)当a=2时,判断函数f(x)在定义域内的单调性;(2)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.[选修4-1几何证明选讲]22.自圆O外一点P引圆O的两条割线PAB和PDC,如图所示,其中割线PDC过圆心O.AB= OA,PD=,∠P=15°,(1)求∠PCB的大小;(2)分别球线段BC和PA的长度.[选修4-4坐标系与参数方程]23.已知曲线C的极坐标方程为ρsinθ+2ρcosθ=20,将曲线C1:(α为参数)经过伸缩变换后得到C2(1)求曲线C2的参数方程;(2)若点M在曲线C2上运动,试求出M到曲线C的距离d的取值范围.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣5|﹣|x+a|(1)当a=3时,不等式f(x)≥k+2的解集不是R,求k的取值范围;(2)若不等式f(x)≤1的解集为{x|x≥},求a的值.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}【考点】交集及其运算.【分析】分别求解一元二次不等式与指数不等式化简集合A,B,然后利用交集运算得答案.【解答】解:由x2+x≥0,得x≤﹣1或x≥0,∴A={x|x2+x≥0}={x|x≤﹣1或x≥0},由5x≥5,得x≥1,∴B={x|5x≥5}={x|x≥1},∴A∩B={x|x≤﹣1或x≥0}∩{x|x≥1}={x|x≥1}.故选:C.2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3【考点】复数代数形式的混合运算.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1 另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.3.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)【考点】奇偶性与单调性的综合.【分析】判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:y=sinx是奇函数,但是,[﹣1,1]上单调增函数.y=﹣|x+1|不是奇函数,对于,因为f(﹣x)==﹣=﹣f(x),所以是奇函数,在[﹣1,1]上单调减函数,y=(2x+2﹣x)是偶函数,[﹣1,1]上单调递增.故选:C.4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断命题A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断命题B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断命题C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断命题D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴命题A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴命题B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴命题C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,命题D正确.故选:B.5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.6【考点】等比数列的前n项和.【分析】由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.【解答】解:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,∴由等比数列的求和公式可得=381,解得a=3,∴顶层有3盏灯,故选:B.6.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.2【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,y=5,不满足输出条件,故x=5,再次执行循环体后,y=11,不满足输出条件,故x=11,再次执行循环体后,y=23,满足输出条件,故输出的y值为23,故选:A.7.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程=1(a>0,b>0)得y=,即M(c,).在△MF1F2中tan45°==1即,解得e==+1.故选:C.8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.9【考点】简单线性规划.【分析】作出不等式组对应的平面区域要使z=最大,则x最小,y最大即可,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则x≥1,y≥1,要使z=的最大,则x最小,y最大即可,由图象知当z=经过点A时,z取得最大值,由,得x=1,y=3,即A(1,3),则z=的最大值是z==9,故选:D.9.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm3【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,直四棱锥底面是一个边长为1.5、4的矩形,高是3,由俯视图得三棱锥的底面是直角三角形,直角边为1、4,由正视图得高即四棱锥的侧棱为3,∴几何体的体积V=+1.5×4×3=20(cm3)故选:A.10.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.12【考点】轨迹方程.【分析】根据向量加法的几何意义得出P点轨迹,利用正弦定理解出AB,得出△ABC的面积,从而求出围成封闭区域的面积.【解答】解:设=.∵=+(1﹣λ)=+(1﹣λ).∴C,D,P三点共线.∴P点轨迹为直线CD.在△ABC中,sinA=.sinC=.由正弦定理得AB==.sinB=sin (A+C )=sinAcosC+cosAsinC==.∴S △ABC ==.∴S △ACD =S △ABC =.故选:B .11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .【考点】轨迹方程.【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.【解答】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣【考点】利用导数研究函数的极值.【分析】求函数的导数,根据函数存在极小值等价为f′(x)=﹣x+b=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.【解答】解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣x+b,若函数f(x)=alnx﹣x2+bx存在极小值,则f′(x)=﹣x+b=0有解,即﹣x2+bx+a=0有两个不等的正根,则,得b>2,(a<0),由f′(x)=0得x1=,x2=,分析易得f(x)的极小值点为x1,∵b>2,(a<0),∴x1==∈(0,),则f(x)极小值=f(x1)=alnx1﹣x12+bx1=alnx1﹣x12+x12﹣a=alnx1+x12﹣a,设g(x)=alnx+x2﹣a,x∈(0,),f(x)的极小值恒大于0等价为g(x)恒大于0,∵g′(x)=+x=<0,∴g(x)在(0,)上单调递减,故g(x)>g()=aln﹣a≥0,得ln≤,即﹣a≤e3,则a≥﹣e3,故a的最小值为是﹣e3,故选:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[0,]上的最小值.【解答】解:将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后,得到y=sin(2x++φ)的图象,再根据所得图象关于原点对称,可得+φ=kπ,即φ=kπ﹣,k∈Z,又|φ|<,∴φ=﹣,f(x)=sin(2x﹣).∵x∈[0,],∴2x﹣∈[﹣,],故当2x﹣=﹣时,f(x)取得最小值为﹣,故答案为:﹣.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为84 .【考点】二项式系数的性质.【分析】写出二项式(x+)n的展开式的通项,可得y3(x+)n 的展开式的通项,再由x,y的指数为0求得n,r的值,则答案可求.【解答】解:二项式(x+)n的展开式的通项为,则要使y3(x+)n(n∈N*)的展开式中存在常数项,需,即n=9,r=3.∴常数项为:.故答案为:84.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为 4 .【考点】等差数列的性质.【分析】由等比中项的性质、等差数列的通项公式列出方程求公差d,代入等差数列的通项公式、前n项和公式求出a n、S n,代入利用分离常数法化简后,利用基本不等式求出式子的最小值.【解答】解:因为a1,a3,a13成等比数列,所以,又a1=1,所以(1+2d)2=1×(1+12d),解得d=2或d=0(舍去),所以a n=1+(n﹣1)×2=2n﹣1,S n==n2,则====﹣2≥2﹣2=4,当且仅当时取等号,此时n=2,且取到最小值4,故答案为:4.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|= 16 .【考点】抛物线的简单性质.【分析】设AB方程y=k(x﹣1),与抛物线方程y2=4x联立,利用tan∠AMB=,建立k的方程,求出k,即可得出结论.【解答】解:焦点F(1,0),M(﹣1,0),设AB方程y=k (x﹣1),设A(x1,y1),B(x2,y2)∵tan∠AMB=,∴=,整理可得2k(x1﹣x2)=(x1+1)(x2+1)+y1y2…(*)y=k(x﹣1),与y2=4x联立可得k2x2﹣(2k2+4)x+k2=0 可得x1x2=1,x1+x2=+2,y1y2=﹣4代入(*)可得2k(x1﹣x2)=?,∴x1﹣x2=,∴(+2)2﹣4=()2,∴k=±,∴x1+x2=+2=14,∴|AB|==16.故答案为:16.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简可得tanA=tanB,于是C=π﹣2A,代入sin2A(2﹣cosC)=cos2B+化简可求得A;(2)利用正弦定理用B表示出b,c,得到面积S关于B的函数,求出B的范围,得出S的范围.【解答】解:(1)∵,,∴tanA=tanB,∴A=B.∴C=π﹣2A.∵sin2A(2﹣cosC)=cos2B+,∴sin2A(2+cos2A)=cos2A+,即(1﹣cos2A)(2cos2A+1)=cos2A+,解得cos2A=,∵A+B+C=π,A=B,∴A,∴cosA=,∴A=,C=π﹣2A=.(2)由正弦定理得,∴b=2sinB,c=2sinC=2sin()=2sinB+2cosB.∴S==2sin2B+2sinBcosB=sin2B﹣cos2B+1=sin(2B﹣)+1.∵△ABC为锐角三角形,∴,∴.∴<2B﹣<,∴2<sin(2B﹣)≤1+.∴△ABC面积的取值范围是(2,1+].18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.635【考点】独立性检验的应用.【分析】(1)计算K2的值,与临界值比较,可得结论;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,可得结论.(3)X的取值为1,2,3,再求出X取每一个值的概率,即可求得X的分布列和数学期望.【解答】解:(1)由题意,K2=≈0.65<0.708,∴没有60%的把握认为“微信控”与“性别”有关;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,所抽取的5人中“微信控”有3人,“非微信控”的人数有2人;(3)X=1,2,3,则P(X=1)==0.3,P(X=2)==0.6,P(X=3)==0.1.X的分布列为:X 1 2 3P 0.3 0.6 0.1X的数学期望为EX=1×0.3+2×0.6+3×0.1=1.8.19.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;。

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。

广东省2023年高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)

广东省2023年高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)

广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)一.命题的真假判断与应用(共1小题)(多选)1.(2023•茂名二模)如图所示,有一个棱长为4的正四面体P﹣ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是( )A.若E是CD的中点,则直线AE与PB所成角为B.△ABE的周长最小值为C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为D.如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为二.函数的最值及其几何意义(共1小题)2.(2023•茂名二模)黎曼函数R(x)是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R(x)在[0,1]上的定义为:当(p>q,且p,q为互质的正整数)时,;当x=0或x=1或x为(0,1)内的无理数时,R(x)=0,则下列说法错误的是( )A.R(x)在[0,1]上的最大值为B.若a,b∈[0,1],则R(a•b)≥R(a)•R(b)C.存在大于1的实数m,使方程有实数根D.∀x∈[0,1],R(1﹣x)=R(x)三.抽象函数及其应用(共1小题)(多选)3.(2023•高州市二模)已知定义在R上的函数f(x)满足f(﹣1﹣x)=f(7+x),函数f(x+2)﹣1为奇函数,且对∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af(b)+bf(a).函数与函数f(x)的图象交于点(x1,y1),(x2,y2),…,(x m,y m),给出以下结论,其中正确的是( )A.f(2022)=2022B.函数f(x+1)为偶函数C.函数f(x)在区间[4,5]上单调递减D.四.对数值大小的比较(共1小题)4.(2023•广东二模)已知,,,则(参考数据:ln2≈0.7)( )A.a>b>c B.b>a>c C.b>c>a D.c>a>b五.三角函数的周期性(共1小题)(多选)5.(2023•广东二模)已知f(x)=cos x+tan x,则下列说法正确的是( )A.f(x)是周期函数B.f(x)有对称轴C.f(x)有对称中心D.f(x)在上单调递增六.正弦函数的图象(共1小题)6.(2023•佛山二模)已知函数f(x)=sin(2x+φ)(|φ|<),若存在x1,x2,x3∈(0,),且x3﹣x2=2(x2﹣x1)=4x1,使f(x1)=f(x2)=f(x3)>0,则φ的值为( )A.B.C.D.七.函数的零点与方程根的关系(共1小题)(多选)7.(2023•茂名二模)已知f(x)=,若关于x的方程4ef2(x)﹣af(x)+=0恰好有6个不同的实数解,则a的取值可以是( )A.B.C.D.八.函数与方程的综合运用(共2小题)8.(2023•韶关二模)定义||x ||(x ∈R )为与x 距离最近的整数(当x 为两相邻整数算术平均数时,||x ||取较大整数),令函数f (x )=||x ||,如:,,,,则=( )A .17B .C .19D .9.(2023•潮州二模)已知函数f (x )=|sin x |,g (x )=kx (k >0),若f (x )与g (x )图像的公共点个数为n ,且这些公共点的横坐标从小到大依次为x 1,x 2,…,x n ,则下列说法正确的是( )A .若n =1,则k >1B .若n =3,则C .若n =4,则x 1+x 4>x 2+x 3D .若,则n =2023九.数列递推式(共1小题)(多选)10.(2023•高州市二模)已知数列{p n }和{q n }满足:p 1=1,q 1=2,p n +1=p n +3q n ,q n +1=2p n +q n ,n ∈N *,则下列结论错误的是( )A .数列是公比为的等比数列B .仅有有限项使得C .数列是递增数列D .数列是递减数列一十.利用导数研究函数的单调性(共3小题)11.(2023•广州二模)已知偶函数f (x )与其导函数f '(x )的定义域均为R ,且f '(x )+e ﹣x +x也是偶函数,若f (2a ﹣1)<f (a +1),则实数a 的取值范围是( )A .(﹣∞,2)B .(0,2)C .(2,+∞)D .(﹣∞,0)∪(2,+∞)12.(2023•深圳二模)已知ε>0,,且e x +εsin y =e y sin x ,则下列关系式恒成立的为( )A .cos x ≤cos yB .cos x ≥cos yC .sin x ≤sin yD .sin x ≥sin y(多选)13.(2023•佛山二模)已知函数f(x)=e x﹣﹣1,对于任意的实数a,b,下列结论一定成立的有( )A.若a+b>0,则f(a)+f(b)>0B.若a+b>0,则f(a)﹣f(﹣b)>0C.若f(a)+f(b)>0,则a+b>0D.若f(a)+f(b)<0,则a+b<0一十一.利用导数研究函数的最值(共1小题)14.(2023•湛江二模)对于两个函数与,若这两个函数值相等时对应的自变量分别为t1,t2,则t2﹣t1的最小值为( )A.﹣1B.﹣ln2C.1﹣ln3D.1﹣2ln2一十二.平面向量数量积的性质及其运算(共1小题)(多选)15.(2023•潮州二模)设向量,则( )A.B.C.D.在上的投影向量为(1,0)一十三.三角形中的几何计算(共1小题)(多选)16.(2023•汕头二模)在△ABC中,已知AB=2,AC=5,∠BAC=60°,BC,AC 边上的两条中线AM,BN相交于点P,下列结论正确的是( )A.B.C.∠MPN的余弦值为D.一十四.棱柱、棱锥、棱台的体积(共1小题)(多选)17.(2023•汕头二模)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,B.V存在最大值C.当r在区间(0,2)内变化时,V逐渐减小D.当r在区间(0,2)内变化时,V先增大后减小一十五.空间中直线与平面之间的位置关系(共1小题)(多选)18.(2023•广东二模)已知直线m与平面α有公共点,则下列结论一定正确的是( )A.平面α内存在直线l与直线m平行B.平面α内存在直线l与直线m垂直C.存在平面γ与直线m和平面α都平行D.存在过直线m的平面β与平面α垂直一十六.直线与平面所成的角(共1小题)(多选)19.(2023•潮州二模)在正方体ABCD﹣A1B1C1D1中,AB=1,点P满足,其中λ∈[0,1],μ∈[0,1],则下列结论正确的是( )A.当B1P∥平面A1BD时,B1P与CD1可能为B.当λ=μ时,的最小值为C.若B1P与平面CC1D1D所成角为,则点P的轨迹长度为D.当λ=1时,正方体经过点A1、P、C的截面面积的取值范围为一十七.二面角的平面角及求法(共1小题)(多选)20.(2023•佛山二模)四面体ABCD中,AB⊥BD,CD⊥BD,AB=3,BD=2,CD =4,平面ABD与平面BCD的夹角为,则AC的值可能为( )A.B.C.D.一十八.点、线、面间的距离计算(共2小题)(多选)21.(2023•梅州二模)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AD 的中点,点P为线段D1B上的动点,设D1P=λD1B,则( )A.当时,EP∥平面AB1CB.当时,|PE|取得最小值,其值为C.|PA|+|PC|的最小值为D.当C1∈平面CEP时,(多选)22.(2023•广州二模)已知正四面体A﹣BCD的长为2,点M,N分别为△ABC和△ABD的重心,P为线段CN上一点,则下列结论正确的是( )A.若AP+BP取得最小值,则CP=PNB.若CP=3PN,则DP⊥平面ABCC.若DP⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为D.直线MN到平面ACD的距离为一十九.直线与圆的位置关系(共1小题)23.(2023•潮州二模)已知圆M:x2+y2﹣4x+3=0,则下列说法正确的是( )A.点(4,0)在圆M内B.若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则a=9C.直线与圆M相离D.圆M关于4x+3y﹣2=0对称二十.椭圆的性质(共3小题)24.(2023•高州市二模)若椭圆的离心率为,两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),M为椭圆C上异于顶点的任意一点,点P是△MF1F2的内心,连接MP并延长交F1F2于点Q,则=( )A.2B.C.4D.25.(2023•韶关二模)韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段AB,且AB过椭圆的下焦点,AB=44米,桥塔最高点P距桥面110米,则此椭圆的离心率为( )A.B.C.D.26.(2023•深圳二模)设椭圆C:)的左、右焦点分别为F1,F2,直线l过点F1.若点F2关于l的对称点P恰好在椭圆C上,且,则C 的离心率为( )A.B.C.D.二十一.抛物线的性质(共1小题)(多选)27.(2023•深圳二模)设抛物线C:y=x2的焦点为F,过抛物线C上不同的两点A,B分别作C的切线,两条切线的交点为P,AB的中点为Q,则( )A.PQ⊥x轴B.PF⊥AB C.∠PFA=∠PFB D.|AF|+|BF|=2|PF|二十二.直线与抛物线的综合(共1小题)(多选)28.(2023•高州市二模)阿波罗尼奥斯是古希腊著名的数学家,与欧几里得、阿基米德齐名,他的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.其中给出了抛物线一条经典的光学性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.此性质可以解决线段和的最值问题,已知抛物线C:y2=2px(p>0),M是抛物线C上的动点,焦点,N(4,2),下列说法正确的是( )A.C的方程为y2=x B.C的方程为y2=2xC.|MF|+|MN|的最小值为D.|MF|+|MN|的最小值为二十三.直线与双曲线的综合(共1小题)(多选)29.(2023•广州二模)已知双曲线Γ:x2﹣y2=a2(a>0)的左,右焦点分别为F1,F2,过F2的直线l与双曲线Γ的右支交于点B,C,与双曲线Γ的渐近线交于点A,D(A,B在第一象限,C,D在第四象限),O为坐标原点,则下列结论正确的是( )A.若BC⊥x轴,则△BCF1的周长为6aB.若直线OB交双曲线Γ的左支于点E,则BC∥EF1C.△AOD面积的最小值为4a2D.|AB|+|BF1|的取值范围为(3a,+∞)二十四.正态分布曲线的特点及曲线所表示的意义(共1小题)(多选)30.(2023•湛江二模)廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量M(单位:g)服从正态分布N(165,σ2),且P (M<162)=0.15,P(165<M<167)=0.3.下列说法正确的是( )A.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167g的概率为0.7 B.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167g~168g的概率为0.05C.若从种植园成熟的红橙中随机选取600个,则质量大于163g的个数的数学期望为480D.若从种植园成熟的红橙中随机选取600个,则质量在163g~168g的个数的方差为136.5广东省2023年各地区高考数学模拟(二模)试题按题型难易度分层分类汇编(12套)-01选择题(提升题)参考答案与试题解析一.命题的真假判断与应用(共1小题)(多选)1.(2023•茂名二模)如图所示,有一个棱长为4的正四面体P﹣ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是( )A.若E是CD的中点,则直线AE与PB所成角为B.△ABE的周长最小值为C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为D.如果在这个容器中放入10个完全相同的小球(全部进入),则小球半径的最大值为【答案】ACD【解答】A选项,连接AD,如图所示:在正四面体P﹣ABC中,D是PD的中点,所以PB⊥AD,PB⊥CD,因为AD⊂平面ACD,CD⊂平面ACD,AD∩CD=D,所以直线PB⊥平面ACD,因为AE⊆平面ACD,所以PB⊥AE,所以直线AE与PB所成角为;故A选项正确;B选项,把△ACD沿着CD展开与面BCD同一平面内,由AD=CD=,AC=4,,所以cos∠ADB=cos()=﹣sin∠ADC=﹣,所以×,所以△ABC的周长最小值为不正确,故B选项错误;C选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设半径为r,由等体积法可知,,所以半径r=,故C选项正确;D选项,10个小球分三层,(1个,3个,6个)放进去,要使小球半径最大,则外层小球与四个面相切,设小球半径为r,四个角小球球心连线M﹣NGF是棱长为4r的正四面体,其高为,由正四面体内切球的半径为高的得,如图正四面体P﹣HIJ,则MP=3r,正四面体P﹣ABC的高为3r+r+r=,得r=,故D选项正确.故选:ACD.二.函数的最值及其几何意义(共1小题)2.(2023•茂名二模)黎曼函数R(x)是由德国数学家黎曼发现并提出的,它是一个无法用图象表示的特殊函数,此函数在高等数学中有着广泛的应用,R(x)在[0,1]上的定义为:当(p>q,且p,q为互质的正整数)时,;当x=0或x=1或x为(0,1)内的无理数时,R(x)=0,则下列说法错误的是( )A.R(x)在[0,1]上的最大值为B.若a,b∈[0,1],则R(a•b)≥R(a)•R(b)C.存在大于1的实数m,使方程有实数根D.∀x∈[0,1],R(1﹣x)=R(x)【答案】C【解答】解:对于A,由题意,R(x)的值域为,其中p是大于等于2的正整数,选项A正确;对于B,①若a,b∈(0,1],设(p,q互质,m,n互质),,则R(a•b)≥R(a)•R(b),②若a,b有一个为0,则R(a•b)≥R(a)•R(b)=0,选项B正确;对于C,若n为大于1的正数,则,而R(x)的最大值为,所以该方程不可能有实根,选项C错误;对于D,x=0,1或(0,1)内的无理数,则R(x)=0,R(1﹣x)=0,R(x)=R(1﹣x),若x为(0,1)内的有理数,设(p,q为正整数,为最简真分数),则,选项D正确.故选:C.三.抽象函数及其应用(共1小题)(多选)3.(2023•高州市二模)已知定义在R上的函数f(x)满足f(﹣1﹣x)=f(7+x),函数f(x+2)﹣1为奇函数,且对∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af (b)+bf(a).函数与函数f(x)的图象交于点(x1,y1),(x2,y2),…,(x m,y m),给出以下结论,其中正确的是( )A.f(2022)=2022B.函数f(x+1)为偶函数C.函数f(x)在区间[4,5]上单调递减D.【答案】BCD【解答】解:因为f(﹣1﹣x)=f(7+x),所以f(x)=f(6﹣x),f(x)的图象关于x=3对称,因为函数f(x+2)﹣1为奇函数,所以f(x)的图象关于点(2,1)对称,且f(0+2)﹣1=0⇒f(2)=1,又f(﹣x+2)﹣1=1﹣f(x+2)⇒f(x+2)=2﹣f(2﹣x),所以f(x)=2﹣f(4﹣x)=2﹣f[6﹣(2+x)]=2﹣f(2+x)=2﹣[2﹣f(2﹣x)]=f(2﹣x)=f[6﹣(2﹣x)]=f(x+4),即f(x)=f(x+4),所以f(x)的周期为4,所以f(2022)=f(2)=1,故A错误;由上可知,f(x)=f(2﹣x),f(x+1)=f[2﹣(x+1)]=f(1﹣x),故B正确;因为∀a,b∈[2,3],当a≠b时,都有af(a)+bf(b)>af(b)+bf(a),即(a﹣b)[f(a)﹣f(b)]>0,所以f(x)在区间[2,3]单调递增,因为f(x)的图象关于点(2,1)对称,所以f(x)在区间[1,2]单调递增,又f(x)的图象关于x=3对称,所以f(x)在区间[4,5]单调递减,C正确;因为,所以g(x)的图象关于点(2,1)对称,所以f(x)与g(x)的交点关于点(2,1)对称,不妨设x1<x2<x3<•<x m,则x1+x m=x2+x m﹣1=x3+x m﹣2=⋅⋅⋅=4,y1+y m=y2+y m﹣1=y3+y m﹣2=⋅⋅⋅=2,所以x1+x2+⋯+x m=2m,y1+y2+⋯+y m=m,所以,D正确.故选:BCD.四.对数值大小的比较(共1小题)4.(2023•广东二模)已知,,,则(参考数据:ln2≈0.7)( )A.a>b>c B.b>a>c C.b>c>a D.c>a>b【答案】B【解答】解:因为,,考虑构造函数,则,当0<x<e时,f′(x)>0,函数f(x)在(0,e)上单调递增,当x>e时,f′(x)<0,函数f(x)在(e,+∞)上单调递减,因为ln2≈0.7,所以e0.7≈2,即,所以,所以,即,又,所以,故b>a>c.故选:B.五.三角函数的周期性(共1小题)(多选)5.(2023•广东二模)已知f(x)=cos x+tan x,则下列说法正确的是( )A.f(x)是周期函数B.f(x)有对称轴C.f(x)有对称中心D.f(x)在上单调递增【答案】ACD【解答】解:因为f(x)=cos x+tan x,所以f(x+2π)=cos(x+2π)+tan(x+2π)=cos x+tan x=f(x),所以函数f(x)为周期函数,A正确;因为,,所以,所以函数为奇函数,故函数的图象关于原点对称,所以为函数f(x)的中心对称,C正确;当时,,因为0<cos x<1,0<sin x<1,所以f′(x)>0,所以函数f(x)在上单调递增,D正确;由可得,当时,由0<cos x≤1,﹣1<sin x<1,可得f′(x)>0,函数f(x)在上单调递增,当,由﹣1≤cos x<0,﹣1<sin x<1,可得f′(x)>0,函数f(x)在上单调递增,又f(0)=1,f(π)=﹣1,作出函数f(x)在的大致图象可得:结合函数f(x)是一个周期为2π的函数可得函数f(x)没有对称轴,B错误.故选:ACD.六.正弦函数的图象(共1小题)6.(2023•佛山二模)已知函数f(x)=sin(2x+φ)(|φ|<),若存在x1,x2,x3∈(0,),且x3﹣x2=2(x2﹣x1)=4x1,使f(x1)=f(x2)=f(x3)>0,则φ的值为( )A.B.C.D.【答案】A【解答】解:∵x3﹣x2=2(x2﹣x1)=4x1,∴x2=3x1,x3=7x1,又f(x1)=f(x2)=f(x3)>0,且x1,x2,x3∈(0,),∴x3﹣x1=6x1=π,,,∴π﹣2x1﹣φ=2x2+φ,即,∴.故选:A.七.函数的零点与方程根的关系(共1小题)(多选)7.(2023•茂名二模)已知f(x)=,若关于x的方程4ef2(x)﹣af(x)+=0恰好有6个不同的实数解,则a的取值可以是( )A.B.C.D.【答案】AB【解答】解:令g(x)=,则g'(x)=,所以g(x)在[0,1)上单调增,在(1,+∞)上单调减,所以f(x)的大致图像如下所示:令t=f(x),所以关于x的方程4ef2(x)﹣af(x)+=0有6个不同实根等价于关于t方程4et2﹣at+=0在t∈(0,)内有2个不等实根,即h(t)=4et+与y=a在t∈(0,)内有2个不同交点,又因为h′(t)=4e﹣=,令h′(t)=0,则t=±,所以当t∈(0,)时,h′(t)<0,h(t)单调递减;当t∈(,+∞)时,h′(t)>0,h(t)单调递增;所以h(t)=4et+的大致图像如下所示:又h()=4,h()=5,所以a∈(4,5).对照四个选项,AB符合题意.故选:AB.八.函数与方程的综合运用(共2小题)8.(2023•韶关二模)定义||x||(x∈R)为与x距离最近的整数(当x为两相邻整数算术平均数时,||x||取较大整数),令函数f(x)=||x||,如:,,,,则=( )A.17B.C.19D.【答案】C【解答】解:根据题意,函数f(x)=||x||,当1≤n≤2时,有0.5<<1.5,则f()=1,则有=1,当3≤n≤6,有1.5<<2.5,则f()=2,则有=,当7≤n≤12,有2.5<<3.5,则f()=3,则有=,……,由此可以将重新分组,各组依次为(1,1)、(、、、)、(、、、、、)、……,第n组为2n个,则每组中各个数之和为2n×=1,前9组共有=90个数,则是第10组的第10个数,则=2×9+10×=19.故选:C.9.(2023•潮州二模)已知函数f(x)=|sin x|,g(x)=kx(k>0),若f(x)与g(x)图像的公共点个数为n,且这些公共点的横坐标从小到大依次为x1,x2,…,x n,则下列说法正确的是( )A.若n=1,则k>1B.若n=3,则C.若n=4,则x1+x4>x2+x3D.若,则n=2023【答案】B【解答】解:对于A:当k=1时,令y=sin x﹣x,则y′=cos x﹣1<0,即函数y=sin x﹣x在定义域上单调递减,又当x=0时,y=0,所以函数y=sin x﹣x有且仅有一个零点为0,同理易知函数y=﹣sin x﹣x有且仅有一个零点为0,即f(x)与g(x)也恰有一个公共点,故A错误;对于B:当n=3时,如下图:2易知在x=x3,且x3∈(π,2π),f(x)与g(x)图象相切,由当x∈(π,2π)时,f(x)=﹣sin x,则f′(x)=﹣cos x,g′(x)=k,故,从而x3=tan x3,所以+x3=tan x3+===,故B 正确;对于C:当n=4时,如下图:则x1=0,π<x4<2π,所以x1+x4<2π,又f(x)图象关于x=π对称,结合图象有x3﹣π>π﹣x2,即有x2+x3>2π>x1+x4,故C错误;对于D:当时,由f()=g()=1可得,f(x)与g(x)的图象在y轴右侧的前1012个周期中,每个周期均有2个公共点,共有2024个公共点,故D错误.故选:B.九.数列递推式(共1小题)(多选)10.(2023•高州市二模)已知数列{p n}和{q n}满足:p1=1,q1=2,p n+1=p n+3q n,q n+1=2p n+q n,n∈N*,则下列结论错误的是( )A.数列是公比为的等比数列B.仅有有限项使得C.数列是递增数列D.数列是递减数列【答案】ABD【解答】解:由题意可知,第二个式子乘以λ后与第一和式子相加可得,令,解得,取可得,因为p1=1,q1=2,所以,所以,所以数列是公比为的等比数列,选项A说法错误;因为p1=1,q1=2,所以,所以当n为正奇数时,,即,当n为正偶数时,,即,选项B说法错误;由p1=1,q1=2,p n+1=p n+3q n,q n+1=2p n+q n,可知p n>0,q n>0,且数列{p n}和{q n}均为递增数列,而,所以数列是递增数列,选项C说法正确;因为,所以数列是递增数列,选项D说法错误.故选:ABD.一十.利用导数研究函数的单调性(共3小题)11.(2023•广州二模)已知偶函数f(x)与其导函数f'(x)的定义域均为R,且f'(x)+e﹣x+x也是偶函数,若f(2a﹣1)<f(a+1),则实数a的取值范围是( )A.(﹣∞,2)B.(0,2)C.(2,+∞)D.(﹣∞,0)∪(2,+∞)【答案】B【解答】解:因为f(x)为偶函数,则f(x)=f(﹣x),等式两边求导可得f′(x)=﹣f′(﹣x),①因为函数f'(x)+e﹣x+x为偶函数,则f′(x)+e﹣x+x=f′(﹣x)+e x﹣x,②联立①②可得f′(x)=﹣x,令g(x)=f′(x),则g′(x)=﹣1≥﹣1=0,且g′(x)不恒为零,所以函数g(x)在R上为增函数,即函数f′(x)在R上为增函数,故当x>0时,f′(x)>f′(0)=0,所以函数f(x)在[0,+∞)上为增函数,由f(2a﹣1)<f(a+1),可得f(|2a﹣1|)<f(|a+1|),所以|2a﹣l|<|a+1|,整理可得a2﹣2a<0,解得0<a<2.故选:B.12.(2023•深圳二模)已知ε>0,,且e x+εsin y=e y sin x,则下列关系式恒成立的为( )A.cos x≤cos y B.cos x≥cos y C.sin x≤sin y D.sin x≥sin y【答案】A【解答】解:构造函数f(x)=,x∈,则f′(x)=,当x∈时,cos x>sin x,f′(x)=>0,因为0<e x,0<e y,当=,eɛ>1,0<sin x<sin y时,则>>0,所以>x>y>0,y=cos x,x∈(0,)单调递增,所以cos x<cos y,当=<0,eɛ>1,sin x<sin y<0时,则<<0,所以﹣<x<y<0,y=cos x,x∈(﹣,0)单调递减,所以cos x<cos y.当=,eɛ>1,sin x=sin y=0时,则x=y=0,此时cos x=cos y,综上,cos x≤cos y.故选:A.(多选)13.(2023•佛山二模)已知函数f(x)=e x﹣﹣1,对于任意的实数a,b,下列结论一定成立的有( )A.若a+b>0,则f(a)+f(b)>0B.若a+b>0,则f(a)﹣f(﹣b)>0C.若f(a)+f(b)>0,则a+b>0D.若f(a)+f(b)<0,则a+b<0【答案】ABD【解答】解:f(x)=e x﹣﹣1,则f′(x)=e x﹣x,f″(x)=e x﹣1,当x∈(0,+∞)时,f″(x)>0,f′(x)单调递增,当x∈(﹣∞,0)时,f″(x)<0,f′(x)单调递减,所以f′(x)≥f′(0)=1,所以f(x)在R上单调递增,且f(0)=0,若a+b>0,则a>﹣b,所以f(a)>f(﹣b),则f(a)﹣f(﹣b)>0,故B正确;f(b)+f(﹣b)=e b﹣b2﹣1+(e﹣b﹣b2﹣1)=e b+e﹣b﹣b2﹣2,令h(b)=e b+e﹣b﹣b2﹣2,h′(b)=e b﹣e﹣b﹣2b,令h′(b)=u(b),u′(b)=e b+e﹣b﹣2≥0,u(b)在R上单调递增,而h′(0)=u(0)=0,故h(b)在(0,+∞)上单调递增,在(﹣∞,0)上单调递减,故h(b)≥h(0)=0,所以f(b)+f(﹣b)≥0⇒f(a)+f(b)≥f(a)﹣f(﹣b)>0,故A正确;对于D,若f(a)+f(b)<0⇒f(a)<﹣f(b)≤f(﹣b)⇒a<﹣b,即a+b<0,故D 正确;设f(c)=﹣f(b),若c<a<﹣b,则f(c)=﹣f(b)<f(a),满足f(a)+f(b)>0,但a+b<0,故C错误.故选:ABD.一十一.利用导数研究函数的最值(共1小题)14.(2023•湛江二模)对于两个函数与,若这两个函数值相等时对应的自变量分别为t1,t2,则t2﹣t1的最小值为( )A.﹣1B.﹣ln2C.1﹣ln3D.1﹣2ln2【答案】B【解答】解:由题意可得=ln(2t2﹣1)+2,∴t1=1+ln(ln(2t2﹣1)+2),t1,t2>,∴t2﹣t1=t2﹣1﹣ln(ln(2t2﹣1)+2)=ln(),令h(x)=,x∈(,+∞),h′(x)=,令u(x)=ln(2x﹣1)+2﹣在x∈(,+∞)上单调递增,且u(1)=0,∴x∈(,1)时,h′(x)<0,函数h(x)单调递减;x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增.∴x=1时,函数h(x)取得极小值即最小值,h(1)=,∴函数y=ln()取得最小值ln,即﹣ln2.即t2﹣t1的最小值为﹣ln2,故选:B.一十二.平面向量数量积的性质及其运算(共1小题)(多选)15.(2023•潮州二模)设向量,则( )A.B.C.D.在上的投影向量为(1,0)【答案】ACD【解答】解:因为,所以=(﹣1,﹣1),对A:||=,||=,所以||=||,故A正确;对B:因为1×(﹣1)﹣(﹣1)×(﹣1)=﹣2≠0,所以与不平行,故B错误;对C:()•=﹣1+1=0,所以()⊥,故C正确;对D:在上的投影为==1,则在上的投影向量为(1,0),故D正确;故选:ACD.一十三.三角形中的几何计算(共1小题)(多选)16.(2023•汕头二模)在△ABC中,已知AB=2,AC=5,∠BAC=60°,BC,AC 边上的两条中线AM,BN相交于点P,下列结论正确的是( )A.B.C.∠MPN的余弦值为D.【答案】ABD【解答】解:连接PC,并延长交AB于Q,△ABC中,AB=2,AC=5,∠BAC=60°,BC,AC边上的两条中线AM,BN相交于点P,则,,,,,,,====,故A正确;===,故B正确;===.故C错误;,故D正确.故选:ABD.一十四.棱柱、棱锥、棱台的体积(共1小题)(多选)17.(2023•汕头二模)已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为r(0<r<2),设圆台的体积为V,则下列选项中说法正确的是( )A.当r=1时,B.V存在最大值C.当r在区间(0,2)内变化时,V逐渐减小D.当r在区间(0,2)内变化时,V先增大后减小【答案】BD【解答】解:设圆台的上底面的圆心为O1,下底面的圆心为O,点A为上底面圆周上任意一点,圆台的高为h,球的半径为R,如图所示,则=,对选项不正确;,设f(r)=﹣3r3﹣4r2+4r+8,则f'(r)=﹣9r2﹣8r+4,令f'(r)=0可得9r2+8r﹣4=0,解得,,易知r2∈(0,2),且当r∈(0,r2),f'(r)>0;r∈(r2,2),f'(r)<0,f(r)在(0,r2)单调递增,在(r2,2)单调递减,由f(0)=8,f(1)=5,f(2)=﹣24,∃r0∈(1,2),使得f(r0)=0,当r∈(0,r0),f(r)>0,即V'>0;当r∈(r0,2),f(r)<0,即V'<0,所以V在(0,r0)单调递增,在(r0,2)单调递减,则B,D正确,C错误.故选:BD.一十五.空间中直线与平面之间的位置关系(共1小题)(多选)18.(2023•广东二模)已知直线m与平面α有公共点,则下列结论一定正确的是( )A.平面α内存在直线l与直线m平行B.平面α内存在直线l与直线m垂直C.存在平面γ与直线m和平面α都平行D.存在过直线m的平面β与平面α垂直【答案】BD【解答】解:对于A选项,若直线m与α相交,且平面α内存在直线l与直线m平行,由于m⊄α,则m∥α,这与直线m与α相交矛盾,假设不成立,A错;对于B选项,若m⊂α,则在平面α内必存在l与直线m垂直,若直线m与α相交,设m⋂α=A,如下图所示:若m⊥α,且l⊂α,则m⊥l,若m与α斜交,过直线m上一点P(异于点A)作PB⊥α,垂足点为B,过点A作直线l,使得l⊥AB,因为PB⊥α,l⊂α,则l⊥PB,又因为l⊥AB,PB∩AB=B,PB、AB⊂平面PAB,所以l⊥平面PAB,因为m⊂平面PAB,所以l⊥m,综上所述,平面α内存在直线l与直线m垂直,B正确;对于C选项,设直线l与平面α的一个公共点为点A,假设存在平面γ,使得α∥β且m∥β,过直线m作平面γ,使得γ⋂β=l,因为m∥γ,m⊂β,γ⋂β=l,则l∥m,因为γ∥α,记β⋂α=n,又因为γ⋂β=l,则n∥l,因为在平面β内有且只有一条直线与直线l平行,且A∈n,故m、n重合,所以,m⊂α,但m不一定在平面α内,当m与α相交时,则m与γ也相交,C错误;对于D选项,若m⊥α,则过直线m的任意一个平面都与平面α垂直,若m与α不垂直,设直线m与平面的一个公共点为点A,则过点A有且只有一条直线l与平面α垂直,记直线l、m所确定的平面为γ,则α⊥β,D正确.故选:BD.一十六.直线与平面所成的角(共1小题)(多选)19.(2023•潮州二模)在正方体ABCD﹣A1B1C1D1中,AB=1,点P满足,其中λ∈[0,1],μ∈[0,1],则下列结论正确的是( )A.当B1P∥平面A1BD时,B1P与CD1可能为B.当λ=μ时,的最小值为C.若B1P与平面CC1D1D所成角为,则点P的轨迹长度为D.当λ=1时,正方体经过点A1、P、C的截面面积的取值范围为【答案】AC【解答】解:建立如图所示的空间直角坐标系A﹣xyz,则根据题意可得:A(0,0,0),B(1,0,0),D(0,1,0),C(1,1,0),A1(0,0,1),C1(1,1,1),D1(0,1,1),B1(1,0,1),∴,,设平面A1BD的一个法向量为,则,取,若B1P∥平面A1BD,则,∴(﹣λ,1,μ﹣1)⋅(1,1,1)=﹣λ+1+μ﹣1=0,∴λ=μ,故,其中,令,解得λ=0或1,∴B1P与CD1可能是,∴A正确;对B选项,∵λ=μ,∴P点在棱CD1上,将平面CDD1与平面A1BCD1沿着CD1展成平面图形,如图所示,线段A1D=≥A1D,由余弦定理可得:,∴,∴B错误;对C选项,∵B1C1⊥平面CC1D1D,连接C1P,则∠B1PC1即为B1P与平面CC1D1D所成角,若B1P与平面CC1D1D所成角为,则,所以C1P=B1C1=1,即点P的轨迹是以C1为圆心,以1为半径的个圆,于是点P的轨迹长度为,C正确;D选项,当λ=1时,P点在DD1上,过点A1作A1H∥CP交BB1于点H,连接CH,则CH∥A1P,所以平行四边形CHA1P即为正方体过点A1、P、C的截面,设P(0,1,t),∴,∴,,∴点P到直线A1C的距离为,∴当时,,△PA1C的面积取得最小值,此时截面面积最小为,当t=0或1时,,△PA1C的面积取得最大值,此时截面面积最大为,故截面面积的取值范围为,D错误.故选:AC.一十七.二面角的平面角及求法(共1小题)(多选)20.(2023•佛山二模)四面体ABCD中,AB⊥BD,CD⊥BD,AB=3,BD=2,CD =4,平面ABD与平面BCD的夹角为,则AC的值可能为( )A.B.C.D.【答案】AD【解答】解:由AB⊥BD,CD⊥BD,平面ABD与平面BCD的夹角为,∴与所成角为或,=++,∴2=2+2+2+2•+2•+2•,当与所成角为,∴2=2+2+2+2•+2•+2•=9+4+16﹣2×3×4×cos=17,∴AC=,当与所成角为,∴2=2+2+2+2•+2•+2•=9+4+16﹣2×3×4×cos=41,∴AC=,综上所述:AC=或.故选:AD.一十八.点、线、面间的距离计算(共2小题)(多选)21.(2023•梅州二模)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AD 的中点,点P为线段D1B上的动点,设D1P=λD1B,则( )A.当时,EP∥平面AB1CB.当时,|PE|取得最小值,其值为C.|PA|+|PC|的最小值为D.当C1∈平面CEP时,【答案】BC【解答】解:在棱长为2的正方体ABCD﹣A1B1C1D1中,建立如图所示的空间直角坐标系,则A(2,0,0),B(2,2,0),C(0,2,0),D1(0,0,2),B1(2,2,2),E(1,0,0),所以,则点P(2λ,2λ,2﹣2λ),对于A,,,,而,显然,即是平面AB1C 的一个法向量,而,因此不平行于平面AB1C,即直线EP 与平面AB1C不平行,A错误;对于B,,则,因此当时,|PE|取得最小值,B正确;对于C,,于是,当且仅当时取等号,C正确;对于D,取A1D1的中点F,连接EF,C1F,CE,如图,因为E为边AD的中点,则EF∥DD1∥CC1,当C1∈平面CEP时,P∈平面CEFC1,连接B1D1∩C1F=Q,连接BD∩CE=M,连接MQ,显然平面CEFC1∩平面BDD1B1=MQ,因此MQ∩D1B=P,BB1∥CC1,CC1⊂平面CEFC1,BB1⊄平面CEFC1,则BB1∥平面CEFC1,即有MQ∥BB1,而,所以,D错误.故选:BC.(多选)22.(2023•广州二模)已知正四面体A﹣BCD的长为2,点M,N分别为△ABC和△ABD的重心,P为线段CN上一点,则下列结论正确的是( )A.若AP+BP取得最小值,则CP=PNB.若CP=3PN,则DP⊥平面ABCC.若DP⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为D.直线MN到平面ACD的距离为【答案】BCD【解答】解:易得DE⊥AB,CE⊥AB,又DE∩CE=E,则AB⊥面CDE,又CN⊂面CDE,则AB⊥CN,同理可得CN⊥BD,AB∩BD=B,则CN⊥平面ABD,又AN,BN⊂平面ABD,所以CN⊥BN,CN⊥AN,则当点P与点N重合时,AP+BP取得最小值,又AN=BN=DN=DE=×=,则最小值为AN+BN=,故A错误;在正四面体ABCD中,因为DP⊥平面ABC,易得P在DM上,所以DM∩CN=P,又点M,N也是△ABC和△ABD的内心,则点P为正四面体ABCD内切球的球心,CM=CE=,DM==,设正四面体ABCD内切球的半径为r,因为V D﹣ABC=V P﹣ABC+V P﹣ABD+V P﹣BCD+V P﹣ACD,所以S△ABC•DM=S△ABC•r+S△ABD•r+S△BCD•r+S△ACD•r,解得r=MP=DM=,即DP=DM,故CP=3PN,故B正确;设三棱锥P﹣ABC外接球的球心为O,半径为R,易得球心O在直线DN上,且ON⊥NC,则R2=OC2=CN2+(OP﹣NP)2,解得R=,故三棱锥P﹣ABC外接球的表面积为4πR2=,故C正确;∵DM==,即D到平面ABC的距离为,则B到平面ACD的距离为,∵E是AB的中点,∴E到平面ACD的距离为×,∵CM=CE,∴M到平面ACD的距离为××=,∴直线MN到平面ACD的距离为,故D正确.故选:BCD.一十九.直线与圆的位置关系(共1小题)23.(2023•潮州二模)已知圆M:x2+y2﹣4x+3=0,则下列说法正确的是( )A.点(4,0)在圆M内B.若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则a=9C.直线与圆M相离D.圆M关于4x+3y﹣2=0对称【答案】B【解答】解:∵圆M:x2+y2﹣4x+3=0可化为:(x﹣2)2+y2=1,∴圆心为O1(2,0),半径为r1=1,对于A:因为(4﹣2)2+02>1,所以点(4,0)在圆M外,故A错误;对于B:若圆M与圆x2+y2﹣4x﹣6y+a=0恰有三条公切线,则两圆外切,圆x2+y2﹣4x﹣6y+a=0可化为(x﹣2)2+(y﹣3)2=13﹣a,圆心为O2(2,3),半径为,因为|O1O2|=r1+r2,所以,解得a=9,故B正确;对于C:∵O1(2,0)到直线的距离为,∴直线与圆M相切,故C错误;对于D:显然圆心O1(2,0)不在直线4x+3y﹣2=0上,则圆M不关于4x+3y﹣2=0对称,故D错误;故选:B.二十.椭圆的性质(共3小题)24.(2023•高州市二模)若椭圆的离心率为,两个焦点分别为F1(﹣c,0),F2(c,0)(c>0),M为椭圆C上异于顶点的任意一点,点P是△MF1F2的内心,连接MP并延长交F1F2于点Q,则=( )A.2B.C.4D.【答案】A【解答】解:如图,连接PF1,PF2,设P到x轴距离为d P,M到x轴距离为d M,则设△PF1F2内切圆的半径为r,则,===(c+a)r∴不妨设|PQ|=cm,则|MQ|=(c+a)m(m>0),∴|PM|=|MQ|﹣|PQ|=am(m>0),因为椭圆的离心率为,∴,故选:A.25.(2023•韶关二模)韶州大桥是一座独塔双索面钢砼混合梁斜拉桥,具有桩深,塔高、梁重、跨大的特点,它打通了曲江区、浈江区、武江区交通道路的瓶颈,成为连接曲江区与芙蓉新城的重要交通桥梁,大桥承担着实现韶关“三区融合”的重要使命,韶州大桥的桥塔外形近似椭圆,若桥塔所在平面截桥面为线段AB,且AB过椭圆的下焦点,AB=44米,桥塔最高点P距桥面110米,则此椭圆的离心率为( )A.B.C.D.【答案】D【解答】解:按椭圆对称轴所在直线建立直角坐标系,则椭圆方程为,令y=﹣c,有一个,所以有,所以,所以=,所以e==.故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省高考数学二模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A={x|2x2﹣7x<0},B={0,1,2,3,4},则(∁R A)∩B=()A.{0} B.{1,2,3} C.{0,4} D.{4}2.已知复数z满足(z+1)(1+i)=1﹣i,则|z|=()A.1 B.C.D.3.在等差数列{a n}中,a10=a14﹣6,则数列{a n}的前11项和等于()A.132 B.66 C.﹣132 D.﹣664.已知向量=(1,2),=(2,﹣3),若m+与3﹣共线,则实数m=()A.﹣3 B.3 C.﹣D.5.某个零件的三视图如图所示,网格上小正方形的边长为1,则该零件的体积等于()A.24﹣2πB.24﹣4πC.32﹣2πD.48﹣4π6.运行如图所示的程序框图,输出的结果是()A.5 B.8 C.10 D.137.将函数f(x)=sinπx的图象向左平移个单位后得到函数g(x)的图象,若f(x)和g(x)在区间[﹣1,2]上的图象交于A,B,C三点,则△ABC的面积是()A.B.C.D.8.设f(x)=,则不等式f(x)<3的解集为()A.(﹣∞,)B.(﹣∞,3)C.(﹣∞,1)∪[2,)D.(﹣∞,1)∪[2,3)9.对于函数f(x)=x2+,下列结论正确的是()A.∃a∈R,函数f(x)是奇函数B.∀a∈R,函数f(x)是偶函数C.∀a>0,函数f(x)在(﹣∞,0)上是减函数D.∃a>0,函数f(x)在(0,+∞)上是减函数10.正四棱锥P﹣ABCD的底面是边长为2的正方形,侧棱的长度均为,则该四棱锥的外接球体积为()A. B.πC.πD.9π11.双曲线﹣=1(a>0,b>0)的右焦点为F,点P在双曲线的左支上,且PF 与圆x2+y2=a2相切于点M,若M恰为线段PF的中点,则双曲线的离心率为()A.B.C. D.212.已知函数f(x)=x+xlnx,若m∈Z,且f(x)﹣m(x﹣1)>0对任意的x>1恒成立,则m的最大值为()A.2 B.3 C.4 D.5二、填空题(本大题共4小题,每小题5分,共20分)13.袋中有5个除了颜色外完全相同的小球,包括2个红球,2个黑球和1个白球,从中随机摸出2个球,则这2个球颜色不同的概率为.14.已知实数x,y满足,则2x﹣2y+1的最大值是.15.已知抛物线C:y2=6x的焦点为F,点A(0,m),m>0,射线FA于抛物线C交于点M,与其准线交于点N,若|MN|=2|FM|,则m= .16.在数列{a n}中,a1=1,(n2+n)(a n+1﹣a n)=2,则a20= .三、解答题(本大题共5小题,共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且2acosB=2c﹣b.(1)求cos(A+)的值;(2)若∠B=,D在BC边上,且满足BD=2DC,AD=,求△ABC的面积.18.已知在四棱锥P﹣ABCD中,底面ABCD是平行四边形,且有PB=PD,PA⊥BD.(1)求证:平面PAC⊥平面ABCD;(2)若∠DAB=∠PDB=60°,AD=2,PA=3,求四棱锥P﹣ABCD的体积.19.某公司要推出一种新产品,分6个相等时长的时段进行试销,并对卖出的产品进行跟踪以及收集顾客的评价情况(包括产品评价和服务评价),在试销阶段共卖出了480件,通过对所卖出产品的评价情况和销量情况进行统计,一方面发现对该产品的好评率为,对服务的好评率为0.75,对产品和服务两项都没有好评有30件,另一方面发现销量和单价有一定的线性相关关系,具体数据如下表:时段123456单价x(元)800820840860880900销量y(件)908483807568(1)能否在犯错误的概率不超过0.001的前提下,认为产品好评和服务好评有关?(2)该产品的成本是500元/件,预计在今后的销售中,销量和单价仍然服从这样的线性相关关系(=x+),该公司如果想获得最大利润,此产品的定价应为多少元?(参考公式:线性回归方程=x+中系数计算公式分别为:=,=﹣;K2=,其中n=a+b+c+d)(参考数据P(K2≥k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828 x i y i=406600,x i2=4342000)20.过椭圆C:+y2=1的右焦点F的直线l交椭圆于A,B两点,M是AB的中点.(1)求动点M的轨迹方程;(2)过点M且与直线l垂直的直线和坐标轴分别交于D,E两点,记△MDF的面积为S1,△ODE的面积为S2,试问:是否存在直线l,使得S1=S2?请说明理由.21.已知函数f(x)=,g(x)=﹣x2+ax+1.(1)求函数y=f(x)在[t,t+2](t>0)上的最大值;(2)若函数y=x2f(x)+g(x)有两个不同的极值点x1,x2(x1<x2),且x2﹣x1>ln2,求实数a的取值范围.四、选修4-4:坐标系与参数方程22.在平面直角坐标系xoy中,过M(2,1)的直线l的倾斜角为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,圆C的极坐标方程为ρ=4sin(θ+).(1)求直线l的参数方程与圆C的直角坐标方程;(2)设圆C与直线l交于A,B两点,求+的值.五、选修4-5:不等式选讲23.设函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)<2;(2)求直线y=3与f(x)的图象所围成的封闭图形的面积.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A={x|2x2﹣7x<0},B={0,1,2,3,4},则(∁R A)∩B=()A.{0} B.{1,2,3} C.{0,4} D.{4}【考点】1H:交、并、补集的混合运算.【分析】解不等式得集合A,根据补集与交集的定义写出(∁R A)∩B即可.【解答】解:集合A={x|2x2﹣7x<0}={x|0<x<},∴∁R A={x|x≤0或x≥},又B={0,1,2,3,4},∴(∁R A)∩B={0,4}.故选:C.2.已知复数z满足(z+1)(1+i)=1﹣i,则|z|=()A.1 B. C. D.【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:∵(z+1)(1+i)=1﹣i,∴z+1====﹣i.∴z=﹣1﹣i.则|z|=.故选:B.3.在等差数列{a n}中,a10=a14﹣6,则数列{a n}的前11项和等于()A.132 B.66 C.﹣132 D.﹣66【考点】85:等差数列的前n项和;84:等差数列的通项公式.【分析】设其公差为d,利用等差数列的通项公式得到a6=﹣12.所以由等差数列的性质求得其前n项和即可.【解答】解:∵数列{a n}为等差数列,设其公差为d,∵a10=a14﹣6,∴a1+9d=(a1+13d)﹣6,∴a1+5d=﹣12,即a6=﹣12.∴数列{a n}的前11项和S11=a1+a2+…+a11=(a1+a11)+(a2+a10)+…+(a5+a7)+a6=11a6=﹣132.故选:C.4.已知向量=(1,2),=(2,﹣3),若m+与3﹣共线,则实数m=()A.﹣3 B.3 C.﹣D.【考点】96:平行向量与共线向量.【分析】根据平面向量的坐标表示与共线定理,列出方程求出m的值.【解答】解:向量=(1,2),=(2,﹣3),则m+=(m+2,2m﹣3),3﹣=(1,9);又m+与3﹣共线,∴9(m+2)﹣(2m﹣3)=0,解得m=﹣3.故选:A.5.某个零件的三视图如图所示,网格上小正方形的边长为1,则该零件的体积等于()A.24﹣2πB.24﹣4πC.32﹣2πD.48﹣4π【考点】L!:由三视图求面积、体积.【分析】由题意,直观图是以主视图为底面,侧棱垂直于底面的棱柱,求出底面面积,即可求出体积.【解答】解:由题意,直观图是以主视图为底面,侧棱垂直于底面的棱柱,底面面积为=6﹣,体积为(6﹣)×4=24﹣2π,故选:A.6.运行如图所示的程序框图,输出的结果是()A.5 B.8 C.10 D.13【考点】EF:程序框图.【分析】模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:a b i c 是否继续循环循环前1 1 1 2/第一圈1 2 2 3 是第二圈2 3 3 5 是第三圈3 5 4 8 是第4圈5 8 5 13 是第5圈8 13 6 否此时c值为13故选D.7.将函数f(x)=sinπx的图象向左平移个单位后得到函数g(x)的图象,若f(x)和g(x)在区间[﹣1,2]上的图象交于A,B,C三点,则△ABC的面积是()A. B. C. D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,结合正弦函数的图象特征求得A、B、C的坐标,可得△ABC的面积.【解答】解:将函数f(x)=sinπx的图象向左平移个单位后得到函数g(x)=sinπ(x+)=cosπx的图象,若f(x)和g(x)在区间[﹣1,2]上的图象交于A,B,C三点,由sinπx=cosπx,可得x=﹣,或x=,或x=,结合图象可得A (﹣,﹣)、B(,)、C(,﹣),则△ABC的面积S=AC•=,故选:C.8.设f(x)=,则不等式f(x)<3的解集为()A.(﹣∞,)B.(﹣∞,3)C.(﹣∞,1)∪[2,)D.(﹣∞,1)∪[2,3)【考点】5B:分段函数的应用;7J:指、对数不等式的解法.【分析】利用分段函数,列出不等式转化求解即可.【解答】解:f(x)=,则不等式f(x)<3,可得:,解得x<1.,解得2≤x<3.则不等式f(x)<3的解集为:(﹣∞,1)∪[2,3).故选:D.9.对于函数f(x)=x2+,下列结论正确的是()A.∃a∈R,函数f(x)是奇函数B.∀a∈R,函数f(x)是偶函数C.∀a>0,函数f(x)在(﹣∞,0)上是减函数D.∃a>0,函数f(x)在(0,+∞)上是减函数【考点】2K:命题的真假判断与应用.【分析】A根据奇函数的定义判断即可;C求出函数的导函数,根据导函数判断函数的单调性;CD由定义判断可得.【解答】解:A中∃a∈R,函数f(x)是奇函数,则f(﹣x)=﹣f(x),可得﹣x2=x2,显然不成立;B中∀a∈R,函数f(x)是偶函数,只有当a=0时,函数才是偶函数,故不成立;C中∀a>0,函数f(x)的导函数f'(x)=2x﹣在(﹣∞,0)上小于零,故函数是减函数,正确;D中∃a>0,函数f(x)在(0,+∞)上是减函数显然错误.故选:C.10.正四棱锥P﹣ABCD的底面是边长为2的正方形,侧棱的长度均为,则该四棱锥的外接球体积为()A. B.πC.πD.9π【考点】LF:棱柱、棱锥、棱台的体积.【分析】求出棱锥的高,设外接球半径为r,根据勾股定理列方程求出r,代入体积公式计算即可.【解答】解:设正四棱锥的底面中心为O,则OA=AC=,∴正四棱锥的高PO==2,设外接球的半径为r,则(2﹣r)2+2=r2,解得r=.∴外接球的体积V==.故选C.11.双曲线﹣=1(a>0,b>0)的右焦点为F,点P在双曲线的左支上,且PF 与圆x2+y2=a2相切于点M,若M恰为线段PF的中点,则双曲线的离心率为()A.B.C. D.2【考点】KC:双曲线的简单性质.【分析】设双曲线的左焦点为F1,由题意,△PF1F,为直角三角形,PF1⊥PF,|PF1|=2a,|PF|=|PF1|+2a=4a,利用勾股定理,建立方程,即可求出双曲线的离心率.【解答】解:由题意,△PF1F为直角三角形,PF1⊥PF,|PF1|=2a,|PF|=|PF1|+2a=4a,在直角△PF1F中,4c2=4a2+16a2,∴c2=5a2,∴e=.故选:B.12.已知函数f(x)=x+xlnx,若m∈Z,且f(x)﹣m(x﹣1)>0对任意的x>1恒成立,则m的最大值为()A.2 B.3 C.4 D.5【考点】6K:导数在最大值、最小值问题中的应用.【分析】问题转化为对任意x∈(1,+∞),m<恒成立,求正整数m的值.设函数h(x)=,求其导函数,得到其导函数的零点x0位于(3,4)内,且知此零点为函数h(x)的最小值点,经求解知h(x0)=x0,从而得到m<x0,则正整数m的最大值可求..【解答】解:因为f(x)=x+xlnx,所以f(x)﹣m(x﹣1)>0对任意x>1恒成立,即m(x﹣1)<x+xlnx,因为x>1,也就是m<对任意x>1恒成立.令h(x)=,则h′(x)=,令φ(x)=x﹣lnx﹣2(x>1),则φ′(x)=1﹣=>0,所以函数φ(x)在(1,+∞)上单调递增.因为φ(3)=1﹣ln3<0,φ(4)=2﹣2ln2>0,所以方程φ(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).当1<x<x0时,φ(x)<0,即h′(x)<0,当x>x0时,φ(x)>0,即h′(x)>0,所以函数h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.所以[h(x)]min=h(x0)==x0∈(3,4).所以m<[g(x)]min=x0,因为x0∈(3,4),故整数m的最大值是3,故选:B.二、填空题(本大题共4小题,每小题5分,共20分)13.袋中有5个除了颜色外完全相同的小球,包括2个红球,2个黑球和1个白球,从中随机摸出2个球,则这2个球颜色不同的概率为.【考点】CB:古典概型及其概率计算公式.【分析】用列举法确定基本事件的情况,由对立事件的概率计算公式得答案.【解答】解:令红球、黑球、白球分别为A,B,a,b,1,则从袋中任取两球有(A,B),(A,a),(A,b),(A,1),(B,a),(B,b),(B,1),(a,b),(a,1),(b,1),共10种取法,其中两球颜色相同有(a,b),(A,B),共2种取法,由古典概型及对立事件的概率公式可得P=1﹣=.故答案为:.14.已知实数x,y满足,则2x﹣2y+1的最大值是7 .【考点】7C:简单线性规划.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:实数x,y满足,作图:易知可行域为一个三角形,平移2x﹣2y+1=0,可知,当直线经过A时,目标函数取得最大值,由解得A(2,﹣1)时,2x﹣2y+1取得最大值7,故答案为:7.15.已知抛物线C:y2=6x的焦点为F,点A(0,m),m>0,射线FA于抛物线C交于点M,与其准线交于点N,若|MN|=2|FM|,则m= 3 .【考点】K8:抛物线的简单性质.【分析】求出抛物线C的焦点F的坐标,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.Rt△MPN中,根据|PN|=2|PM|,tan∠NMP=﹣k=2,从而得到AF的斜率k=2.然后求解m的值.【解答】解:∵抛物线C:y2=6x的焦点为F(,0),点A坐标为(0,m),∴抛物线的准线方程为l:x=﹣,射线FA于抛物线C交于点M,与其准线交于点N,若|MN|=2|FM|,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠NMP=﹣k=2,直线AF的斜率为k=﹣2,∴直线AF为:y=﹣2(x﹣),x=0时,m=3.故答案为:3.16.在数列{a n}中,a1=1,(n2+n)(a n+1﹣a n)=2,则a20= .【考点】8H:数列递推式.【分析】把给出的数列递推式变形裂项,累加后结合a1=1求得a20的值.【解答】解:由a1=1,(n2+n)(a n+1﹣a n)=2,得a n+1﹣a n=an+1﹣an=.则a2﹣a1=2(1﹣).a3﹣a2=2(﹣).a4﹣a3=2(﹣).…a20﹣a19=.累加得:a20﹣a1=2(1﹣).∵a1=1,a20=.故答案为:.三、解答题(本大题共5小题,共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且2acosB=2c﹣b.(1)求cos(A+)的值;(2)若∠B=,D在BC边上,且满足BD=2DC,AD=,求△ABC的面积.【考点】HT:三角形中的几何计算.【分析】(1)根据余弦定理表示出cosB,再根据条件可得b2+c2﹣a2=bc,再利用夹角公式级即可求出A,再根据两角和的余弦公式即可求出,(2)不妨设DC=x,则BD=2x,BC=AC=3x,根据正弦定理和余弦定理即可求出x,再根据三角形的面积公式计算即可【解答】解:(1)∵cosB=,2acosB=2c﹣b.∴2a•=2c﹣b,即b2+c2﹣a2=bc,∴cosA==,∵0<A<π,∴A=,∴cos(A+)=cos(+)=cos cos﹣sin sin=;(2)∵B=,A=,∴AC=BC,C=∵BD=2DC,不妨设DC=x,则BD=2x,BC=AC=3x,由正弦定理可得=,∴AB==3x,由余弦定理可得AD2=AB2+BD2﹣2AB•BD•cosB,即13=27x2+4x2﹣2×3x•2x•,解得x=1,∴BC=AC=3,∴S△ABC=×AC•BC•sinC=×3×3×=.18.已知在四棱锥P﹣ABCD中,底面ABCD是平行四边形,且有PB=PD,PA⊥BD.(1)求证:平面PAC⊥平面ABCD;(2)若∠DAB=∠PDB=60°,AD=2,PA=3,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直的判定.【分析】(1)设AC∩BD=O,则O为BD的中点,由PB=PD,得PO⊥BD,再由已知PA⊥BD,利用线面垂直的判定可得BD⊥平面PAC,进一步得到平面PAC⊥平面ABCD;(2)由(1)知,平面PAC⊥平面ABCD,可得BD⊥AC,则AB=AD,得到四边形ABCD 为菱形,然后求解三角形可得△POA的面积,再由等积法求得四棱锥P﹣ABCD的体积.【解答】(1)证明:如图,设AC∩BD=O,∵底面ABCD是平行四边形,∴O为BD的中点,又PB=PD,∴PO⊥BD,又PA⊥BD,PA∩PO=P,∴BD⊥平面PAC,而BD⊂平面ABCD,∴平面PAC⊥平面ABCD;(2)解:由(1)知,平面PAC⊥平面ABCD,∴BD⊥AC,又O为BD的中点,∴AB=AD,则四边形ABCD为菱形,∵∠BAD=60°,∴△BAD为正三角形,又AD=2,∴AO=,OD=1,在Rt△POD中,由∠PDO=60°,OD=1,可得PD=2,PO=,在△POA中,∵AO=PO=,PA=3,可得PA边上的高为.∴,则.∴=.19.某公司要推出一种新产品,分6个相等时长的时段进行试销,并对卖出的产品进行跟踪以及收集顾客的评价情况(包括产品评价和服务评价),在试销阶段共卖出了480件,通过对所卖出产品的评价情况和销量情况进行统计,一方面发现对该产品的好评率为,对服务的好评率为0.75,对产品和服务两项都没有好评有30件,另一方面发现销量和单价有一定的线性相关关系,具体数据如下表:时段123456单价x(元)800820840860880900销量y(件)908483807568(1)能否在犯错误的概率不超过0.001的前提下,认为产品好评和服务好评有关?(2)该产品的成本是500元/件,预计在今后的销售中,销量和单价仍然服从这样的线性相关关系(=x+),该公司如果想获得最大利润,此产品的定价应为多少元?(参考公式:线性回归方程=x+中系数计算公式分别为:=,=﹣;K2=,其中n=a+b+c+d)(参考数据P(K2≥k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828 x i y i=406600,x i2=4342000)【考点】BK:线性回归方程.【分析】(1)由题意得到2×2列联表,由公式求出K2的观测值,对比参考表格得结论;(2)求出样本的中心点坐标,计算回归方程的系数,写出利润函数w的解析式,求出w(x)的最大值以及对应的x的值.【解答】解:(1)由题意可得产品好评和服务好评的2×2列联表:服务好评服务没有好评总计产品好评31090400产品没有好评503080总计360120480其中a=310,b=90,c=50,d=30,ad﹣bc=4800,代入K2=,得K2=8<10.828.∴不能在犯错误的概率不超过0.001的前提下,认为产品好评和服务好评有关;(2)设获得的利润为w元,根据计算可得,=850,,代入入回归方程得,.∴w=(﹣0.2x+250)(x﹣500)=﹣0.2x2+350x﹣125000.此函数图象为开口向下,对称轴方程为x=875,∴当x=875时,w(x)取的最大值.即该公司如果想获得最大利润,此产品的定价应为875元.20.过椭圆C:+y2=1的右焦点F的直线l交椭圆于A,B两点,M是AB的中点.(1)求动点M的轨迹方程;(2)过点M且与直线l垂直的直线和坐标轴分别交于D,E两点,记△MDF的面积为S1,△ODE的面积为S2,试问:是否存在直线l,使得S1=S2?请说明理由.【考点】KL:直线与椭圆的位置关系;J3:轨迹方程.【分析】(1):(1)设点M的坐标为(x,y),A(x1,y1)、B(x2,y2);过椭圆C:+y2=1的右焦点F(1,0)的直线l为:y=k(x﹣1),联立,消去y,整理得(2k2+1)x2﹣4k2x+2k2﹣1=0,求出动点M 坐标,消去参数k,即可得到动点M 的轨迹方程(2)假设存在直线AB,使得S1=S2,确定G,D的坐标,利用△GFD∽△OED,即可得到结论.【解答】解:(1)设点M的坐标为(x,y),A(x1,y1)、B(x2,y2);过椭圆C:+y2=1的右焦点F(1,0)的直线l为:y=k(x﹣1),联立,消去y,整理得(2k2+1)x2﹣4k2x+2k2﹣1=0,∴x1+x2=,x1x2=;∴x==,y=k(x﹣1)=k(﹣1)=;∴=﹣2k,∴k=;代入l的方程,得y=(x﹣1),化简得x2﹣x+2y2=0,整理得4+8y2=1;∴点M的轨迹方程为4+8y2=1;(2)假设存在直线AB,使得S1=S2,显然直线AB不能与x,y轴垂直.由(1)可得M(,),设D(m,0)因为DG⊥AB,所以k MD×k=﹣1,即⇒m=∵Rt△MDF和Rt△ODE相似,∴若S1=S2,则|MD|=|OD|=(⇒4k4+3k2+1=0因为此方程无解,所以不存在直线AB,使得S1=S221.已知函数f(x)=,g(x)=﹣x2+ax+1.(1)求函数y=f(x)在[t,t+2](t>0)上的最大值;(2)若函数y=x2f(x)+g(x)有两个不同的极值点x1,x2(x1<x2),且x2﹣x1>ln2,求实数a的取值范围.【考点】6D:利用导数研究函数的极值.【分析】(1)求导数,再分类讨论,确定函数在区间上的单调性,即可求得函数的最小值;(2)函数由两个不同的极值点转化为导函数等于0的方程有两个不同的实数根,进而转化为图象的交点问题,由此可得结论.【解答】解:(1)由f′(x)=,令f′(x)>0,解得:x<e,令f′(x)<0,解得:x>e,故f(x)在(0,e)递增,在(e,+∞)递减,①t+2<e即0<t<e﹣2时,f(x)在[t,t+2]递增,f(x)max=f(t+2)=,②t≥e时,f(x)在[t,t+2]递减,f(x)max=f(t)=,③t<e<t+2时,f(x)在[t,e)递增,在(e,t+2]递减,f(x)max=f(e)=;故f(x)max=;(2)y=x2f(x)+g(x)=xlnx﹣x2+ax﹣1,则y′=lnx﹣2x+1+a,题意即为y′=lnx﹣2x+1+a=0有两个不同的实根x1,x2(x1<x2),即a=﹣lnx+2x﹣1有两个不同的实根x1,x2(x1<x2),等价于直线y=a与函数G(x)=﹣lnx+2x﹣1的图象有两个不同的交点∵G′(x)=﹣+2,∴G(x)在(0,)上单调递减,在(,+∞)上单调递增,画出函数图象的大致形状(如右图),由图象知,当a>G(x)min=G())=ln2时,x1,x2存在,且x2﹣x1的值随着a的增大而增大,而当x2﹣x1=ln2时,由题意,两式相减可得ln =2(x1﹣x2)=﹣ln2,∴x2=2x1代入上述方程可得x2=2x1=ln2,此时a=ln2﹣ln()﹣1,所以,实数a的取值范围为a>ln2﹣ln()﹣1.四、选修4-4:坐标系与参数方程22.在平面直角坐标系xoy中,过M(2,1)的直线l的倾斜角为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,圆C的极坐标方程为ρ=4sin(θ+).(1)求直线l的参数方程与圆C的直角坐标方程;(2)设圆C与直线l交于A,B两点,求+的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)利用过M(2,1)的直线l的倾斜角为,求直线l的参数方程,利用极坐标方程与直角坐标方程的转化方法,求出圆C的直角坐标方程;(2)参数方程为(t为参数)代入x2+y2﹣4x﹣4y=0,整理可得,利用参数的几何意义,求+的值.【解答】解:(1)过M(2,1)的直线l的倾斜角为,参数方程为(t 为参数),圆C的极坐标方程为ρ=4sin(θ+),即ρ=4sinθ+4cosθ∴两边都乘以ρ,得ρ2=4ρsinθ+4ρcosθ可得圆C的普通方程是:x2+y2=4x+4y,即x2+y2﹣4x﹣4y=0;(2)参数方程为(t为参数)代入x2+y2﹣4x﹣4y=0,整理可得设A、B对应的参数分别为t1、t2,则t1+t2=,t1t2=﹣7,∴+===,五、选修4-5:不等式选讲23.设函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)<2;(2)求直线y=3与f(x)的图象所围成的封闭图形的面积.【考点】R5:绝对值不等式的解法.【分析】(1)分类讨论,解不等式f(x)<2;(2)直线y=3与f(x)的图象所围成的封闭图形是三角形,即可求出其面积.【解答】解:(1)①当x<﹣1时,不等式f(x)<2即1﹣2x+(﹣x﹣1)<2,∴x >﹣,∴此时无解;②当﹣1≤x<时,不等式即1﹣2x+x+1<2,∴x>0,∴此时0<x<;③当x≥时,原不等式即2x﹣1+x+1<2,∴x<,∴此时≤x<,∴综上,原不等式解集为{x|0<x<};(2)直线y=3与f(x)的图象所围成的封闭图形,如图所示y=3时,x=﹣1或1,x=,y=,∴所求面积为=.。

相关文档
最新文档