信号与系统绪论

合集下载

2 绪论

2 绪论
确定性信号和随机信号 一维信号和多维信号 连续时间信号和离散时间信号 因果信号与非因果信号 周期信号和非周期信号 能量信号和功率信号 实信号和复信号 因果信号与非因果信号
4
信号描述方法
• I 数学描述 – 使用具体的数学表达式,把信号描述 为一个或若干个自变量的函数或序列 的形式。
时域 f (t ) sin( t )
x ( n) a nu ( n)
因此,常可将“信号”与 “函数”和“序列”等同 起来
频域
1 F ( j ) , F (s) 1 j
5
信号描述方法
• II 波形描述 – 按照函数随自变量的变化关系,把信 号的波形画出来。
Sa(t) 1
Sa (t )
35
4 DSP的学科内容
离散时间线性时不变系统分析 离散时间信号时域及频域分析、离散付里 叶变换(DFT)理论。 信号的采集,包括A/D,D/A技术,抽样, 多率抽样,量化噪声理论等。 数字滤波技术 谱分析与快速付里叶变换(FFT),快速 卷积与相关算法。 自适应信号处理
36
33
3 DSP的理论基础
• 数字信号处理的基本工具:微积分,概 率统计,随机过程,高等代数,数值分 析,近代代数,复杂函数。 • 数字信号处理的理论基础:离散线性变 换(LSI)系统理论,离散付里叶变换 (DFT)。
34
3 DSP的理论基础
“数字信号处理”又成为一 些学科的理论基础:
在学科发展上,数字信号处理又和最 优控制,通信理论,故障诊断等紧紧相连 ,成为人工智能,模式识别,神经网络, 数字通信等新兴学科的理论基础。
39
按照预定要求,在处理器中将信号 序列x(n)进行加工处理得到输出信号y(n).

信号系统考研讲义第一论-绪论

信号系统考研讲义第一论-绪论

t
【练习题 1-50】信号
的波形如图所示,试绘出ຫໍສະໝຸດ 的波形。(重庆邮电 2014)
1
-4 -2
02
4t
-1
- 13 -
考研小黄书——找真题就上小黄书
【练习题 1-51】画图题(北京邮电大学 2014)
1、已知信号的数学表达式为
,画出信号波形。
2、信号
如图 1 所示,试画出 的波形。
3、离散时间信号
如图 2 所示,试画出
①连续信号:
②离散信号: (2)功率信号:功率有限,能量无穷大 ①连续信号:
②离散信号:
(3)非能量功率信号:功率能量皆无穷(如 、 )
有用公式:对于
,功率为 (大家自己推导)
对于
,功率为
【例题 1-1】离散时间信号
答案:165J
解析:
`
,求 的能量(天津大学 2017)
【 练 习 题 1-2 】 因 果 信 号
的周期为多少?(哈尔滨工业大学 2011)
【练习题 1-17】若对连续时间信号
以 0.25Hz 进行抽样,得到的离散序列
,该序
列 。(是/否)为周期序列,若是周期序列,请给出周期。若不是,请说明理由。(哈尔滨工业大学 2012)
-4 -
第一论 绪论
【练习题 1-18】对于
,正确选项为( )(东北大学 2013、4)
2. 时变系统和时不变系统 4 可逆性 6 稳定系统和非稳定系统 8 全通系统
-9 -
考研小黄书——找真题就上小黄书
【练习题 1-31】信号
章节练习

信号(功率信号/能量信号)(湖南大学 2014)
【练习题 1-32】下列信号中属于功率信号的是(西安邮电大学 2015)

信号与系统总复习要点

信号与系统总复习要点

《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t)的抽样性质 (式1-14)4.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,频域分析法(FT),复频域分析法(LT)离散子系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法9.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析1.微分方程的齐次解+特解的求法自由响应+强迫响应2.系统的零输入响应+零状态响应求法3.系统的暂态响应+稳态响应求法4.0-→0+跳变量冲激函数匹配法5.单位冲激响应h(t), 单位阶跃响应g(t), 与求法h(t)=g'(t), g(t)=h (-1)(t)类似δ(t)与u(t)的关系6.卷积的计算公式,零状态响应y zs (t)=e(t)*h(t)=∫∞-∞e(τ)h(t-τ)d τ=h(t)*e(t)7.卷积的性质串连系统,并联系统的单位冲激响应f(t)*δ(t)= f(t)f(t)*δ(t-3)= f(t-3)8. 理解系统的线性 P57 (1) (2) (3)第三章 傅立叶变换 t →w1.周期信号FS ,公式,频谱:离散谱,幅度谱2.非周期信号FT ,公式,频谱:连续谱,密度谱3. FT FT -14.吉布斯现象 P100---P1015.典型非周期信号的FT (单矩形脉冲)6.FT 的性质①对称性②信号时域压缩,频域展宽 P127,P128 ()[]⎪⎭⎫ ⎝⎛=a F a at f F ω1()()j t F f t e dt ωω∞--∞=⎰1()()2j t f t F e d ωωωπ∞-∞=⎰③尺度和时移性质 P129④频移性质:频谱搬移 cos(w 0t)的FT⑤时域微积分特性,频域微分特性⑥卷积定理(时域卷积定理、频域卷积定理)7.周期信号的FT :冲激8.抽样信号f s (t)的FT 及频谱F s (ω)9.抽样定理①条件 f s >=2f m w s >=2w m②奈奎斯特频率 f s =2f m③奈奎斯特间隔 T s =1/f s10.关于频谱混叠的概念第四章 拉普拉斯变换、连续时间系统的s 域分析 t →s 1. LT LT -12.典型信号的LT3.LT 性质:时移,频移,尺度,卷积()j 1e baf at b F a a ωω⎛⎫+↔⋅ ⎪⎝⎭0001[()cos()][()()]2F f t t F F ωωωωω=++-()()⎰∞∞--=tt f s F ts d e ()()⎰∞+∞-=j j d e j π21 σσss F t f t s []000()()()e st L f t t u t t F s ---=()e ()αt L f t F s α-⎡⎤=+⎣⎦[]()1() 0s L f at F a a a ⎛⎫=> ⎪⎝⎭4.LT 的逆变换①查表法②部分分式展开法(系数求法)③留数法5.LT 分析法 (第四章课件63张,64张,78张,81张) 求H(s), h(t), y zi (t), y zs (t), y(t)6.系统函数H(s) h(t) 一对拉氏变换对 H(s)的极点决定h(t)的形式H(s)的零点影响h(t)的幅度和相位7.H(s)的零极点 稳定性: ①②极点全在S 面左半面 P241 例4-26 8.连续系统的频响特性 H(jw)=H(s)│s=jw9.全通网络(相位校正),最小相移网络第五章 傅立叶变换应用于通信系统-滤波、调制与抽样1.h(t) H(jw) 构成傅式变换对2.无失真传输概念3.实现无失真传输的系统要满足的时域条件、频域条件4.理想低通滤波器的频响特性,及其单位冲激响应5.信号调制、解调的原理()||h t dt M ∞-∞≤⎰第七章 离散时间系统的时域分析1.离散序列的周期判定:2π/w 0,分三种情况讨论2.离散时间信号的运算、典型离散时间信号3.离散系统的阶次确定4.离散时间系统的差分方程,及模拟图的画法5.u(n), δ(n), g(n), h(n)的关系δ(n)= u(n)- u(n-1) h(n)= g(n)- g(n-1) 6.离散时间系统的时域求解法 (迭代、齐次解+特解、零输入+零状态)7.离散系统的单位冲激响应h(n)及其求法8.卷积和9.系统的零状态响应y zs (n)=x(n)*h(n) 10.有限长两序列求卷积:x 1(n):长N x 2(n):长M 见书例7-16, 对位相乘求和法, 长度:N+M-111.卷积性质:见课件第七章2,第35张12.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n)=0稳定性 h(n)绝对可和()()k u n n k δ∞==-∑0()()k g n h n k ∞==-∑()()()()∑∞-∞=-=*m m n h m x n h n x ()n h n ∞=-∞<∞∑第八章 Z 变换、离散时间系统的Z 域分析1.LT →ZT: z=e sTZ 平面与S 平面的映射关系2. ZTZT -13.典型序列的Z 变换 4.Z 变换的收敛域: 有限长序列 有无0,∞右边序列 圆外左边序列 圆内双边序列 圆环5.逆Z 变换 ①查表法②部分分式展开法(与LT -1不同的,先得除以Z ) ③留数法6.ZT 的性质时移性质 (1)双边序列移位(2)单边序列移位 ①左移 ②右移 序列的线性加权性质序列的指数加权性质卷积定理7.Z 域分析法解差分方程:书P81 例8-16第八章课件2 第33张~37张 ()()n n X z x n z ∞-=-∞=∑()⎰-π=c n z z z X jn x d 21)(18.系统函数H(z) h(n) H(z) Z 变换对 求H(z), h(n), y zs (n), y zi (n), y(n), H(e jw ) *见书P86:例8-19, P109 8-36 8-379.离散系统的稳定性,因果性稳定性 因果性时域 n<0, h(n)=0 频域 H(z)所有极点在单位圆内 收敛域(圆外)含单位圆10.离散系统的频响特性H(e jw )=H(z)│z=ejw =│H(e jw )│e j ψ(w)幅度谱:描点作图,2π为周期相位谱书P98,例8-22, 第八章课件:59张,60张 ()n h n ∞=-∞<∞∑。

信号与系统

信号与系统

《信号与系统》第一章绪论(本章的重点在于系统的模型的分类)1 什么是阶跃信号?什么是冲激信号?它们之间有什么联系?答案:阶跃信号仅仅是用来形容用阶跃函数描述的信号。

积分关系,积分界限的确定(因果系统从0开始)系统在单位冲激作用下产生的零状态响应叫单位冲激响应。

系统在单位阶跃信号作用下产生的零状态响应叫阶跃响应2 解释下面的概念连续时间系统/离散时间系统即时系统/动态系统集总参数系统/分布参数系统线性系统/非线性系统时变系统/时不变系统可逆系统/不可逆系统叠加性与均匀性时不变特性因果性(重点,本章可考的就只有这些)答案:若系统的输入和输出都是连续时间信号,且其内部也未转换为离散时间信号,则称此系统为连续时间系统。

若系统输入和输出都是离散时间信号,则称为离散时间系统。

如果系统的输出信号只取决于同时刻的激励信号,与它过去的工作状态无关,则称次系统为即时系统。

若系统的输出信号不只取决于同时刻的激励信号,还与它过去的工作状态有关,这种系统为动态系统。

只有集中参数元件组成的系统叫集总参数系统,含有分布参数元件的系统叫分布参数系统。

具有叠加性和均匀性的系统称为线性系统,所谓叠加性指当几个激励信号同时作用与系统时,总的输出响应等于每个激励单独作用产生的响应之和。

均匀性指当输入信号乘以某常数时输出信号倍乘同样的常数。

如果系统参数不随时间变化称时不变系统。

如果系统在不同的激励下产生不同的响应,则称此系统为可逆系统。

因果系统指系统在T时刻只与T0=T和T0〈T时刻输入有关。

第二章连续时间系统的时域分析1 本章的重点在于卷积和卷积的性质2 可能问的问题1 什么是零输入相应?什么是零状态相应?什么是自由响应?什么是强迫响应?答案:换路后,电路中无独立的激励电源,仅由储能元件的初始储能维持的响应.也可以表述为,由储能元件的初始储能的作用在电路中产生的响应称为零输入响应通路后,电路中的储能元件无初始储能,仅由激励电源维持的响应.一定要是外部施加的激励产生。

信号与系统引论_课件_郑君里_第1章_绪论

信号与系统引论_课件_郑君里_第1章_绪论

系统(System)
系统:由若干相互作用和相互依赖的事物组合而成的, 具有稳定功能的整体。 例如:太阳系、通信系统、控制系统、经济系统、生 态系统等。
通信系统:为传送消息而装设的全套技术设备。
信息 源 发送 设备 信道 接收 设备 受信 者
发送端 消息 信号
噪声 源 信号
接收端 消息
系统(System)
, 均为实常数
的量纲为1 /s , 的量纲为rad/s 讨论
0, 0 直流信号 0, 0 增长指数信号 0, 0 衰减指数信号
0, 0 等幅 0, 0 增幅振荡 0, 0 衰减
•利用电磁波传送无线电信号。
1901年,马可尼(G.Marconi)成功地实现了横渡大西洋的 无线电通信;全球定位系统GPS;个人通信具有美好的 发展前景。 •光纤通信带来了更加宽广的带宽。
系统理论
系统分析:给定系统,研究系统对于输入 系统理论 激励所产生的输出响应。 系统综合:按照给定的需求设计(综合) 系统。
1.信号的移位 2.信号的反褶 3.信号的尺度变换 4.一般情况
1.信号的位移
将信号f t 沿 t 轴平移 即得时移信号 f t , 为常数 > 0,右移(滞后)
f (t ) f (t )
< 0,左移(超前)
例:
f (t )
1
f(t+1)的波形?
) 1) ff ((tt
第一章 绪
1.1 信号与系统

1.2 信号的描述、分类和典型示例
1.3 信号的运算
1.4 阶跃信号与冲激信号 1.5 信号的分解 1.6 系统模型及分类 1.7 线性时不变系统

信号与系统绪论第一章

信号与系统绪论第一章

= −
1 a
δ(t)dt
证毕。
1 1 1 ∴ 2δ ( t + ) = 2δ [ ( t + 1 )] = 4δ ( t + 1 ) 2 2 2
作业 2t+ 的波形。 1、信号f(t)的波形如图所示。画出信号f(-2t+4)的波形。 信号f(t)的波形如图所示。画出信号f f(t)的波形如图所示
f (t )
意义:在同样起始条件 下,系统的响应与激励 输入的时刻无关。
t0
t0 +T
t
0
t0
t
波形不变,仅延时 t0
1.3 系统的描述与分类
例3:判断以下系统是否为非时变系统。
(1) r (t ) = T [e(t )] = ate(t ). (2) r (t ) = T [e(tቤተ መጻሕፍቲ ባይዱ)] = ae(t )
f (t + t 0 )
左移 1
− t0 − 2 − t0 − t0 + 1
0
f (−t + t 0 )
反转
1
0
f (t )
1
t0 − 1 t0
t0 + 2 t
-2
0 1
t
f (t − t 0 )
1 右移 t0 − 2 t0 t 0 + 1 t
− t0 − 1 − t0 − t0 + 2
f (−t − t 0 )
= k1 [ ae1 ( t ) + b ] + k 2 [ ae2 ( t ) + b ] = a [ k1e1 ( t ) + k 2 e2 ( t )] + bk1 + bk 2
显然 T [ k1e1 ( t ) + k 2 e2 ( t )] ≠ k1r1 ( t ) + k 2 r2 ( t ) 故系统为非线性系统。

信号与系统第一章

信号与系统第一章

f(t)
1 延时
-1 0 1 t
(a)
f(t+1)
1
-2 -1 0 t
(b)
反褶
f(1-2t)
1
0 1t
(d)
尺度变换
f(1-t)
1
012
t
(c)
例1:已知信号波形如图(a)所示,试画出f(1-2t)的波形。
2)反褶,时延,尺度变换 f(t)
1
f(-t)
1
-1 0 1 t
(a)
-1 0 1 t
(b)
离散系统频响、稳定性
第十一章:状态变量分析法 4学时 由IO建立状态方程 状态方程的复频域解
讲课内容:第1~8章、第11章1~5节
如何学好这门课? 1、理解并掌握概念 如调制解调、全通系统等 2、掌握基本分析方法
时域法 拉普拉斯变换法 z变换法等 3、会证明并记住某些公式
第一章 绪论
重点内容: 1、信号的定义、分类及运算 2、系统的定义、分类及特性
信号与线性系统
参考文献: 1、《信号与系统》Alan V.Oppenheim等著, •刘树堂译,西安交通大学出版社 2、《信号与系统》郑君里、杨为理、应启珩编, 高等教育出版社
3、《信号分析与处理》芮坤生、潘孟贤、丁志中编, 高等教育出版社 4、《信号与系统》何子述编, 高等教育出版社
课程要求
考核要求: 平时10%,期中(闭卷)30 % ,期末(闭卷)60% 平时成绩: 课堂作业和课外作业(按章节内容上交)
(d)
例1:已知信号波形如图(a)所示,试画出f(1-2t)的波形。
4)尺度变换,时延,反褶
f(t)
1
f(2t)
1
f(1+2t)

信号与系统(郑君里版河北工程大学)第一章 绪论

信号与系统(郑君里版河北工程大学)第一章  绪论
1 2
反褶
f(2t)
0
1
t
1.2 信号的运算
1 t 代替f(2t)中的t,所得的f(t)波形将是f(2t)波 (3)比例:以 2 形在时间轴上扩展两倍。
4 (t 1)
f (t )
比例 由f(2t)
-1 0 1 2
f(t)
t 两边积分,得

证明: ( at )

1 (t ) |a|
f (t ) f e (t ) f o (t ) f e t f e t e : even f e (t ): 偶分量 f o (t ): 奇分量 f o t f o t
o : odd
1 f e (t ) f (t ) f (t ) 2
一、定义:
系统:是一个有若干互有关联的单元组成的 并具有 某种功能用来达到某些特定目的的有机整体。 系统(电):指的是各种不同复杂程度用作信号传输 和处理的元件或部件的组合体。
1.5 系统的描述与分类
四、系统分类
1、按特性分: 1)线性系统:同时满足齐次性和叠加性的系统。 线性系统和非线性系统 a、齐次性 若 e(t)→r(t) 则 ke(t)→kr(t) b、叠加性 若 e1(t)→r1(t), e2(t)→r2(t) 则 e1(t)+e2(t)→ r1(t)+r2(t) c、齐次性和叠加性 若 e1(t)→r1(t), e2(t)→r2(t) 则 k 1e1(t)+k 2e2(t)→ k1 r1(t)+k2 r2(t)
1.2 信号的运算
例1-1:已知f(t)波形,求 f (t t0 ), f (t t0 )
解:方法一、先反转后平移
f (t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统
Signals and Systems
北京交通大学电气工程学院
教师:刘瑞芳
电话: 51684831
办公室:电气楼203
Email: rfliu@center.njtu.edBiblioteka


Introduction
一、课程性质 专业基础
二、本课程任务 研究信号与系统的基本概念和基本分 析方法。
信号与系统的频域分析
傅立叶变换及其性质,卷积定理,采样定理。 重点:傅立叶变换的由来。 难点:采样定理。
连续时间系统的S域分析
拉普拉斯变换与傅立叶变换的关系,系统函数及其与 零极点关系,系统稳定性分析。 重点:系统函数及其与零极点关系。
Z变换及其应用
Z变换,离散系统Z域分析,离散时间傅立叶变 换,离散时间系统的频率响应。
4. 期末考试:考试是测试学生对所学知识掌握程度。 期末考试为半开卷形式。主要考察学生对本门 课的基本理论和基本原理及重点内容的掌握程度。
五、本课程与其它课程的联系及分工
本课程的先修课程 高等数学、线性代数、电路分析。
微分方程、行列式及矩阵、电路基本分析方 法是本课程的基础。拉普拉斯变换已在电路 分析课中讲解过,本课程从另一角度略作分 析。在讲系统稳定性分析时注意与自动控制 原理课程中部分内容的协调。
三、学习的内容
信号与系统分析导论
信号的分类,系统的描述和系统的分类。 重点:线性时不变系统性质
信号的时域分析
重点:典型信号单位冲激信号及其性质。
系统的时域分析
连续系统和离散系统的时域分析,单位冲激响 应和单位样值响应,卷积积分和卷积和。 重点:差分方程、单位冲激响应和单位样值响 应。 难点:卷积积分和卷积和。
重点:离散系统Z域分析。
系统的状态变量分析
四、本课程教学与学习的按排
1. 本课程学时数少,要求以自学为主。 课堂上主要任务是讲解重点应该掌握的内容和 学生学习中遇到的疑难问题,以及了解学生对所要 求内容的掌握程度。 2. 课堂教学:讲授与讨论相结合。 课堂测试是学习的重要环节。 3. 作业:作业分为课外作业和课堂测试作业。
六 建议教材及教学参考书
1. 陈后今 信号与系统 清华大学出版社,2003 (教材) 2. 郑君里. 信号与系统. 北京: 高等教育出版 社, 2000 3. 吴湘淇.信号、系统与信号处理.北京∶电 子工业出版社,1996
相关文档
最新文档