甘肃省靖远县北湾乡北湾初级中学八年级数学上册6.4数据的离散程度导学案1(无答案)(新版)北师大版
北师大版数学八年级上册6.4数据的离散程度优秀教学案例

师:通过计算,我们得到了跳远比赛成绩的方差和标准差。方差表示数据与其平均值的偏差平方的平均值,标准差则是方差的平方根。它们都可以用来描述数据的波动程度。
3. 教师引导学生学会使用计算器或相关软件进行方差、标准差的计算。
(三)学生小组讨论
3. 小组合作的学习模式
本案例强调小组合作,让学生在合作中学习、成长。学生在小组讨论、交流中,共同完成数据的收集、处理和分析任务,提高了团队协作能力和沟通能力。同时,小组合作也使得学生在互动中相互学习,共同提高。
4. 反思与评价的落实
在教学过程中,本案例注重反思与评价的环节。教师通过课堂小结、作业批改等方式,了解学生的学习情况,及时调整教学策略。学生则通过自我评价和同伴评价,反思自己在学习过程中的优点和不足,不断提高自我认知能力和自主学习能力。
2. 学生分享学பைடு நூலகம்心得,教师给予积极评价。
(五)作业小结
1. 教师布置作业:让学生收集身边的数据,计算其方差和标准差,并分析数据的离散程度。
2. 学生完成作业,巩固所学知识,提高数据处理能力。
3. 教师在课后对学生的作业进行批改和反馈,了解学生的学习情况,为下一步教学做好准备。
五、案例亮点
1. 生活化情境的创设
2. 通过小组合作,让学生在讨论、交流中探究数据离散程度的计算方法,培养团队协作能力和解决问题的能力。
3. 引导学生运用数学知识解决实际问题,培养学生的数学思维能力。
4. 教学过程中,注重培养学生的数据分析观念,使学生掌握研究数据分布特征的一般方法。
(三)情感态度与价值观
1. 培养学生对待数据的严谨态度,认识到数据在现实生活中的重要性。
北师大版-数学-八年级上册-6.4 数据的离散程度(第1课时) 学案

数学北师大版八年级上册6.4 数据的离散程度(第1课时) 学案【学习目标】1.经历表示数据离散程度的几个量度的探索过程;2.了解刻画数据离散程度的三个量度——极差、方差、标准差; 3.能借助计算器求出相应的数值,并在具体问题情境中加以应用; 4.通过实例体会用样本估计总体的思想。
【学习过程】本章前面曾经有一个图,反映了甲乙丙三个选手的射击成绩。
显然,图中甲的成绩整体水平比丙的好。
那么,甲乙两人的射击成绩如何比较呢?除了平均水平外,是否还有其他直播奥反映数据的信息呢。
活动1:认识极差、方差、标准差1.(1)估计甲、乙两位选手射击成绩的平均数;(2)具体算一算甲、乙两位选手射击成绩的平均数,并在图中画出纵坐标等于平均成绩的直线;(3)甲乙的平均成绩差不多,但好像稳定性差别挺大的。
你认为哪个选手更稳定?你是怎么看出来的?(4)一般地,你认为如何刻画一组数据的稳定性。
学习链接1运用•巩固2.分别求甲、乙两位选手射击成绩的极差、方差、标准差,说明选手更稳定。
甲选手:极差= ;方差= ;标准差= ; 乙选手:极差= ;方差= ;标准差= 。
选手 更稳定。
24681012345678910次数环数甲乙丙活动2:在实例中感受极差、方差、标准差的关系1.为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分。
某外贸公司要出口一批规格为75克的鸡腿,现有3个厂家提供货源,它们的价格相同,鸡腿的品质也相近。
质检员分别从甲、乙、丙3个工厂的产品中抽样调查了20个只鸡腿,它们的质量如下图所示:7071727374757677787980甲厂(1(2)依次求出三个工厂抽取的10进行比较。
反思•交流2.极差、方差、标准差三者之间有什么区别和联系?在选择统计量刻画数据的波动水平方面,你有哪些经验,与同伴交流。
活动3:探索用计算器求极差、方差、标准差1.探索用计算器求数据的极差、方差、标准差,并与同伴交流。
提示:与求数据代表类似,总得先进入统计状态,依次输入数据,只是最后选择的统计量不一样了;另外,多数计算器没有方差键,可以先算出标准差,然后再平方。
部编版2020八年级数学上册 6.4 数据的离散程度导学案(无答案)(新版)北师大版

课题:数据的离散程度班级: 姓名: 小组: 评价: 【学习目标】1、能够用极差、方差统计、分析生活中的简单问题.2、通过实际问题的解释,培养学生解决问题的能力.【重点难点】1. 用方差等概念解释统计过程中反映出的问题.2. 在具体情况下,具体分析方差对问题的影响.【导学流程】一、基础感知1.什么叫极差、方差、标准差2.方差的计算公式是什么?3.已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是.4.人数相等的甲、乙两班学生参加了同一次数学测验,班级平均分和方差如下:平均分都为110,甲、乙两班的方差分别为340,280,则成绩较为稳定的班级为()A.甲班B.乙班C.两班成绩一样稳定D.无法确定5.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ()A.4,15B.3,15C.4,16D.3,16二、深入学习利用数据的离散程度来分析问题:1.如图所示的是某一天A,B两地的气温变化图,请回答下列问题: 问题记录(1)这一天A,B两地的平均气温分别是多少?(2)A地这一天气温的极差、方差分别是多少?B地呢?(3)A,B两地的气候各有什么特点?2.某校要从甲、乙两名跳远运动员中挑选一人参加一项比赛.在最近的10次选拔赛中,他们的成绩(单位:cm)如下:甲:585596610598612597604600613601乙:613618580574618593585590598624(1)甲、乙的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?(5)如果历届比赛成绩表明,成绩达到6.10 m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛?总结:1.极差的应用多在统计图中考查,要能够准确分析统计图中的量,根据问题进行解答,折线统计图一般能判断数据的稳定性.2.利用方差的大小判断数据稳定性的步骤:①先计算数据的平均数;②计算方差;③根据方差大小作出判断.三、迁移运用当堂检测:1.方差是指各个数据与平均数差的平方的.2.数据1,6,3,9,8的方差是.3.甲、乙两机器分别罐装每瓶质量为500克的矿泉水,从甲、乙罐装的矿泉水中分别抽取了30瓶,测算它们实际质量的方差是:=4.8,=3.6,那么罐装的矿泉水质量比较稳定.(填“甲”或“乙”)4.小明准备参加学校运动会的跳远比赛,下面是他近期六次跳远的成绩(单位:米):3.6,3.8,4.2,4.0,3.8,4.0,那么这组数据的()A.众数是3.9米B.中位数是3.8米C.极差是0.6米D.平均数是4.0米5.小明和小华本学期都参加了5次数学考试(总分均为100分),数学老师想判断这两位同学谁的数学成绩更稳定,在作统计分析时,老师需比较这两人5次数学成绩的()A.平均数B.方差C.众数D.中位数。
新北师版初中数学八年级上册6.4数据的离散程度公开课优质课导学案

6.4数据的离散程度【预习展示】1、完成课本149页引例2、一组数据中_______与__________的差,称为极差,是刻画数据离散程度的一个统计量。
【探究新知】1、方差是各个数据与平均数差的平方的平均数,即________________ __________2、标准差是方差的_______________3、一般而言,一组数据的极差、方差或标准差越小,数据越_________【典型例题1】甲、乙两位学生本学年每个单元的数学测验成绩如下(单位:分)甲: 90 94 92 89 95 92 乙 100 87 93 99 90 89(1)他们的平均成绩分别是多少?(2)甲、乙的6次单元测验成绩的方差分别是多少?(3)这两位同学的成绩各有什么特点?(4)现要从中选出一人参加“希望杯”竞赛,历届比赛成绩表明,成绩达到95分以上才能进入决赛,你认为应选谁参加这项竞赛更合适,为什么?【典型例题2】如图是某一天A、B两地的气温变化图。
问:(1)这一天A 、B 两地的平均气温分别是多少? (2)A 地这一天气温的极差、方差分别是多少?B 地呢? (3)A 、B 两地的气候各有什么特点?讨论:一组数据的方差越小,这组数据就越稳定,那么,是不是方差越小就表示这组数据离散程度越低?【典型例题3】某校从甲、乙两名优秀选手中选一名参加全市中学生运动会跳远比赛.预先对这两名选手测试了10次,他们的成绩(单位:cm )如下: (1)甲、乙的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少? (3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到596cm 就很可能夺冠,你认为为了夺冠应选谁参加这项比赛? (5)如果历届比赛表明,成绩达到610cm 就能打破记录,你认为为了打破记录应选谁参加这项比赛?【巩固练习】 【A 】:1.计算下列两组数据的平均数、方差与标准差:(1) 1,2,3,4,5; (2)103,102,98,101,99。
北师大版数学八年级上册6.4数据的离散程度教学设计

4.结合网络资源,了解其他衡量数据离散程度的统计量,如变异系数等,并尝试比较它们之间的异同。
要求:撰写一份简短的学习报告,介绍所了解的统计量及其计算方法,并分析其在实际问题中的应用。
5.针对本节课的学习内容,进行自我反思,从知识掌握、学习方法、合作交流等方面进行评价,总结自己的学习收获和不足之处,为下一节课的学习做好准备。
6.教学评价方面,采用多元化评价方式,关注学生的过程性表现,如课堂参与、小组合作、课后作业等,全面评估学生的学习效果。
7.结合课后实践活动,让学生在实际操作中运用所学知识,提高学生的应用意识和实践能力。
四、教学内容与过程
(一)导入新课
1.教师出示一张某班级学生身高的数据表,引导学生观察数据分布的特点,提问:“从这张表中,你能发现什么?这些数据有什么规律?”
2.通过具体的实例,演示方差、标准差的计算过程,让学生理解这些统计量在实际问题中的应用。
3.教师强调方差、标准差在描述数据波动程度方面的重要性,并指出它们在数据分析中的价值。
4.学生动手练习计算方差、标准差,教师巡回指导,解答学生的疑问。
(三)学生小组讨论
1.教师将学生分成若干小组,每组发放一张含有数据表格的练习纸,要求学生计算数据离散程度。
2.学生通过观察,可能会发现身高数据分布较广,ຫໍສະໝຸດ 的学生身高较高,有的学生身高较低。
3.教师继续提问:“如何描述这些数据的波动情况?是否存在一个指标来衡量数据的离散程度?”
4.学生思考、讨论,教师引导过渡到本节课的内容:数据的离散程度。
(二)讲授新知
1.教师讲解数据离散程度的定义,解释方差、标准差的含义和计算方法。
3.教师选取部分学生的作业进行展示,分析解题思路,强调注意事项。
北师大版初二数学上册6.4数据的离散程度(1)教学设计.4数据的离散程度(第1课时)教学设计

第六章数据的分析6.4 数据的离散程度(第 1 课时)一、学情分析学生的技能基础:学生已经学习过平均数、中位数等几个刻画数据的“平均水平”的统计量,具备了一定的数据处理能力和初步的统计思想,但学生对一组数据的波动情况并不了解,它们是否稳定,稳定的依据是什么,学生缺乏直观和理性的认识.学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用,有了一定的活动经验,具备了一定的合作与交流的能力。
二、教学目标1. 知识与技能:了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
2. 过程与方法:经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力。
3. 情感与态度:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。
三、教学过程第一环节:情境引入内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿•现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近。
质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:75747476737675777774甲厂:74757576737673787772乙75787277747573797275厂:80717677737871767375把这些数据表示成下图:质量/g 质量/g(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线。
(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4 )如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由。
北师大版数学八年级上册6.4数据的离散程度(第一课时)说课稿

3.小游戏:设计一个简单的统计小游戏,让学生在游戏中体验数据离散程度的概念,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.创设生活情境:以学生熟悉的生活实例为背景,提出问题,引导学生运用所学知识解决问题,让他们体会数学在现实生活中的应用价值。
2.合作探究:组织学生进行小组讨论,鼓励他们相互交流、共同探究,培养合作精神和解决问题的能力。
3.激励评价:及时对学生的表现给予肯定和鼓励,提高他们的自信心,激发学习积极性。
4.游戏化教学:设计富有挑战性的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣和动机。
北师大版数学八年级上册6.4数据的离散程度(第一课时)说课稿
一、教材分析
(一)内容概述
本节课选自北师大版数学八年级上册第6章“数据的收集与整理”中的6.4节“数据的离散程度”,是学生在学习了如何收集和整理数据的基础上,对数据特征进行进一步研究的课程。这部分内容在整个课程体系中起到了承上启下的作用,既是对前面所学统计知识的深化,也为后续学习概率统计打下基础。
(二)学习障碍
在学习本节课之前,学生已经掌握了数据的收集、整理和描述的基本方法,具备了一定的统计学基础。然而,他们在面对极差、方差和标准差等抽象概念时,可能会感到难以理解。此外,方差和标准差的计算过程较为繁琐,学生在运算过程中可能会出现错误,导致学习障碍。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
这些资源和技术工具能够丰富教学内容,提高学生的学习兴趣,同时也便于学生更好地理解和掌握知识。
八年级数学上册 6.4 数据的离散程度导学案1(新版)北师大版

数据的离散程度学习目标:1.理解极差的定义,知道极差是用来反映数据波动范围的一个量,并会求一组数据的极差。
2. 了解并理解方差的定义和计算公式;理解方差与数据波动的关系;会用方差计算公式来比较两组数据的波动大小学习重点:1.会求一组数据的极差;2. 会用方差计算公式来比较两组数据的波动大小;学习难点:对极差、方差的实际意义的理解预习指导:1. 先精读教材P.149~151的内容,用红色笔勾画知识点。
再针对学案二次阅读教材,完成教材助读设置的问题,依据发现的问题,查阅资料,解决有关问题。
2. 找出自己的疑惑和需要讨论的问题,记录在预习学案上,准备课上讨论质疑。
3. 预习目标:独立,限时完成预习自测,并把自己的疑惑写出来.学习环节:一.自学导航1.极差:叫做这组数据的极差,即:极差=.极差反映的是这组数据的。
2. 方差:叫方差。
方差用符号表示,即:S2=3. 标准差:叫标准差,用符号表示,即:S=4.极差与方差(或标准差)的异同:5. 尝试训练1. 一组数据:47、86、36、77、53、47的极差是,一组数据17、13、-21、-17的极差是 .2. 一组数据3、-1、0、2、x的极差是5,且x为自然数,则x= .3. 下列几个常见统计量中能够反映一组数据波动范围的是()A.平均数B.中位数C.众数D.极差4. 完成课本P.149.引例中4个问题二.合作探究1. 已知甲、乙两支仪仗队10名队员的身高如下(单位:cm):甲队:178,177,179,178,177,178,177,179,178,179乙队:178,179,176,178,180,178,176,178,177,180(1)将下表填完整:(2)甲队队员身高的平均数为_________cm ,乙队队员身高的平均数为_________cm ; (3)这两支仪仗队队员身高的极差、方差分别是多少? ⑷这个极差(或方差)说明什么问题?2. 一组数据X 1、X 2…X n 的极差是8,则另一组数据2X 1+1、2X 2+1…,2X n +1的极差是 ,方差是 ,由此你得到结论是:三.学以致用1. 一组数据-2,-1,0,1,2的方差为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的离散程度
学习目标:1.理解极差的定义,知道极差是用来反映数据波动范围的一个量,并会求一组数据的极差。
2. 了解并理解方差的定义和计算公式;理解方差与数据波动的关系;会用方差计算公式来比较两组数据的波动大小
学习重点:1.会求一组数据的极差;2. 会用方差计算公式来比较两组数据的波动大小;
学习难点:对极差、方差的实际意义的理解
预习指导:
1. 先精读教材P.149~151的内容,用红色笔勾画知识点。
再针对学案二次阅读教材,完成教材助读设置的问题,依据发现的问题,查阅资料,解决有关问题。
2. 找出自己的疑惑和需要讨论的问题,记录在预习学案上,准备课上讨论质疑。
3. 预习目标:独立,限时完成预习自测,并把自己的疑惑写出来.
学习环节:
一.自学导航
1.极差:叫做这组数据的极差,
即:极差=.极差反映的是这组数据的。
2. 方差:叫方差。
方差用符号表示,即:
S2=
3. 标准差:叫标准差,用符号表示,即:
S=
4.极差与方差(或标准差)的异同:
5. 尝试训练
1. 一组数据:47、86、36、77、53、47的极差是,一组数据17、13、-21、-17的极差是 .
2. 一组数据3、-1、0、2、x的极差是5,且x为自然数,则x= .
3. 下列几个常见统计量中能够反映一组数据波动范围的是()
A.平均数
B.中位数
C.众数
D.极差
4. 完成课本P.149.引例中4个问题
二.合作探究
1. 已知甲、乙两支仪仗队10名队员的身高如下(单位:cm):
甲队:178,177,179,178,177,178,177,179,178,179
乙队:178,179,176,178,180,178,176,178,177,180
(1)将下表填完整:
1
2
(2)甲队队员身高的平均数为_________cm ,乙队队员身高的平均数为_________cm ; (3)这两支仪仗队队员身高的极差、方差分别是多少? ⑷这个极差(或方差)说明什么问题?
2. 一组数据X 1、X 2…X n 的极差是8,则另一组数据2X 1+1、2X 2+1…,2X n +1的极差是 ,方差是 ,由此你得到结论是:
三.学以致用
1. 一组数据-2,-1,0,1,2的方差为 。
数据0,-1,6,1,x 的众数是-1,则这组数据的平均数为 ,方差为 。
3. 若一组数据2,4,x ,6,8的平均数是6,则这组数据的方差是 。
4. 在方差的计算[]
21022212
)20()20()20(10
1
-+-+-=
x x x s 中,数字10和20分别表示的意义可以是 四.反思回顾:
五.检测反馈.
11。