计量经济学实验报告二
计量经济学实验报告

《计量经济学》实验报告
一,数据
某年中国部分省市城镇居民家庭人均年可支配收入(X)与消费性支出(Y)统计数据
二,理论
模型的设
计
解释变量:
可支配收入
X
被解释变量:
消费性支出
Y
软件操作:(1)X与Y散点图
从散点图可以粗略的看出,随着可支配收入的增加,消费性支出也在增加,大致呈线性关系。
因此,建立一元线性回归模型:
(2)对模型做OLS估计
OLS估计结果为
三,模型检验
从回归估计结果看,模型拟合较好,可决系数为,表明家庭人均年可消费性支出变化的%可由支
配性收入的变化来解释。
t检验:在5%的显着性水平下
1
β不显着为0,表明可支配收入增加1个单位,消费性支出平均增加单位。
1,预测
现已知2018年人均年可支配收入为20000元,预测消费支出预测值为
0272.36350.75512000015374.3635
Y=+⨯=
E(X)=,Var(X)=
则在95%的置信度下,E(
Y)的预测区间为(,)
2,异方差性检验
对于经济发达地区和经济落后地区,消费支出的决定因素不一定相同甚至差异很大。
如经济越落后储蓄率越高,可能出现异方差性问题。
G-Q检验
对样本进行处理,X按从大到小排序,去掉中间4个,分为两组数据,
128
n n ==
分别回归
于是的F 统计量:
在5%的想着想水平下,0.050.05(6,6) 4.28,(6,6)F F F =>,即拒绝无异方差性假设,说明模型存在异方差性。
(完整word版)计量经济学实践报告 2

课程名称:课程名称:计量经济学学生姓名:阳诗琪学号:201174250203班级: 1102班专业:金融学2013 年 5 月 5日计量经济学实验报告多元回归模型实验【实验目标】:通过上机实验,使学生能够使用 Eviews 软件【实验内容】:1.用Eviews完成多元线性回归模型的统计检验2.对Eviews结果对应的相关统计检验进行解释【实验步骤及分析】:1、经济理论理论上认为影响成品钢材的需求量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
产量、原煤产量1980——1998年的有关数据如下表。
年份成品钢材(万吨)y 原油(万吨)x1生铁(万吨)x2原煤(亿吨)x3发电量(亿千瓦)x4铁路货运量(万吨)x5固定资产投资额(亿元)x6居民消费(亿元)x71980 2716.2105953802.4 6.23006.2111279 910.92317.1 1981 2670.1101223416.6 6.23092.107673 9612604.12、模型估计多元线性回归模型的基本形式:设随机变量y 与一般变量x 1,x 2,...x p 的理论线性回归模型为:y=εββββ+++++p p x x x (22110)其中β1,β2,。
,βp 是p+1个未知参数,β0称为回归常数,β1,β2,。
,βp 称为回归系数。
y 称为被解释变量(因变量),而x 1,x 2,...x p 是p 个可以精确测量并可控制的一般变量,称为解释变量(自变量)。
ε是随机误差。
3、画散点图1982 2902 10212 3551 6.66 3277 11349 1230.4 2867.9 1983 3072 10607 3738 7.15 3514 118784 1430.1 3182.5 1984 3372 11461.3 4001 7.89 3770 124074 1832.9 3674.5 1985 3693 12489.5 4384 8.72 4107 130709 2543.2 4589 1986 4058 13068.8 5064 8.94 4495 135635 3120.6 5175 1987 4356 13414 5503 9.28 4973 140653 3791.7 5961.2 1988 4689 13704.6 5704 9.8 5452 144948 4753.8 7633.1 1989 4859 13764.1 5820 10.54 5848 151489 4410.4 8523.5 1990 5153 13830.6 6238 10.8 6212 150681 4517 9113.2 1991 5638 14009.2 6765 10.87 6775 152893 5594.5 10315.9 1992 6697 14209.7 7589 11.16 7539 157627 8080.1 12459.8 1993 7716 14523.7 8739 11.51 8395 162663 13072.3 15682.4 1994 8482 14608.2974112.49281 163093 17042.1 20809.8 1995 8979.8 15004.94 10529.27 13.61 10070.3 165885 20019.3 26944.5 1996 9338.02 15733.39 10722.513.9710813.116880322974 32152.3 1997 9978.9316074.14 11511.41 13.73 11355.53 16973422913.534854.64、建立模型将原始数据导入到Eviews6.0(破解版)的数据框中,然后用Eviews软件做线性回归分析如下:在Eviews主窗口菜单单击Quick/Estimate Equation,弹出方程估计窗口,再在弹出的窗口清单内填入以下回归方程的书写形式。
计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
计量经济学实验报告_学习总结_总结汇报_实用文档

目录(一) 研究背景 (2)(二) 理论来源 (2)(三) 模型设定 (2)(四) 数据处理 (2)1. 数据来源 (2)2. 解释变量的设置 (3)(五) 先验预期 (3)1.经验预期 (3)2.散点图分析 (3)(六) 参数估计 (4)(七) 显著性检验 (5)(八) 正态性检验 (5)(九) MWD检验 (5)(十) 相关系数 (7)(十一)虚拟变量 (7)(十二)异方差检验、修正 (8)1. 图形检验 (8)2.格莱泽检验 (9)3.帕克检验 (10)4.异方差的修正加权最小二乘法 (10)5.异方差修正后的检验 (11)(十三)自相关检验 (11)1. 图形法 (11)2.德宾-沃森d检验 (12)(十四)最终结果 (12)(一)研究背景中国是一个大国,幅员辽阔,历史上自然地形成了一个极端不平衡发展的格局。
而1978年开始的改革,政府采取了由东向西梯度推进的非均衡发展战略,使已经存在的地区间的差距进一步扩大,不利于整个社会的稳定和发展。
地区发展不平衡问题包括社会发展不平衡,尤其是教育发展的不平衡。
因此关注中国教育发展的地区不平衡性非常迫切。
不仅是因为教育的重要性,还因为当前我国需要进一步推进教育改革的进程,使其朝着更健康的方向发展。
(二)理论来源刘红梅.中国各地区教育发展水平差异的实证分析[J]数理统计与管理.2013.7(三)模型设定⏹Y i=B1+B2X2i+B3X3i+B4X4i+B5X2i 2+B6X4i2+ui⏹Y——地区教育水平,用平均受教育年限表示,(年)⏹X2——学生平均预算内教育经费,(万元/人)⏹X3——人均GDP,(万元/人)⏹X4——平均生师比(四)数据处理1.数据来源:国家统计局官网,选取2014年的数据:1)各省GDP2)各地区总人口3)各地区每十万人拥有的各种受教育程度人口比较数据4)地区在校总学生数5)各地区教育财政投入6)地区每十万总专任教师数2.解释变量的设置:⏹X2=地区预算内教育经费/地区在校总学生数=学生平均预算内教育经费(万元/人)⏹X3=地区总GDP/地区总人口=人均GDP(万元/人)⏹X4=地区每十万人口各级学校平均在校生数的和/地区每十万人口总专任教师数=平均生师比其中:P为各地区每十万人拥有的各种受教育程度人口比较数T为教育年限1,6,9,12,16(五)先验预期1.经验预期:平均受教育年限分别跟学生平均预算内教育经费、人均GDP呈正相关关系,跟平均生师比呈负相关关系。
计量经济学实验二 多元线性回归分析 完成版

练习题1. 在一项对某社区家庭对某种消费品的消费需求调查中,得到下表所示的资料。
序号对某商品的消费支出Y商品单价1X 家庭月收入2X 1591.923.5676202654.524.4491203623.632.07106704647.032.46111605674.031.15119006644.434.14129207680.035.30143408724.038.70159609757.139.631800010706.846.6819300请用Eviews 软件对该社区家庭对该商品的消费需求支出作二元线性回归分析。
解: (1)估计回归方程的参数及随机干扰项的方差,计算及。
2ˆσ2R 2R 222116.847ˆ302.411103iee e n k n k σ'====-----∑20.90220.8743R R ==(2)对方程进行检验,对参数进行检验,并构造参数的置信区间。
F t 95%该社区家庭对该商品的消费需求支出方程为:22ˆ626.50939.790610.02862(15,612)( 3.062)(4.902)0.90220.8743yX X t R R =-+=-==F 检验:22/0.9022/232.29(1)/(1)(10.9022)/7R k F R n k ===----给定显著性水平时,查F 检验分布表,得到临界值,0.05α=0.05(2,7) 4.74F =由于,故模型的线性关系在95%的置信度下是显著成立的。
0.05(2,7)F F >t 检验:两变量的t 值都大于临界值,即:,故模型中引入的两个变0.025||(7) 2.365t t >=量在95%的水平下影响显著,都通过了变量的显著性检验。
参数的置信区间:在的置信度下的置信区间为:1α-ˆjB ˆˆ22ˆˆ(,)jjj j B BB t S B t S αα-⨯+⨯从EViews 中得到:1212ˆˆˆˆ9.7906,0.02863.1978,0.0058B B B B S S =-==-=0.025(7) 2.365t =故的置信区间为:(-17.2934,-2.2878),(-12,ββ0.10857,0.041717)。
计量经济学实验二

实验二〔一〕异方差性【实验目的】掌握异方差性的检验及处理方法【实验内容】建立并检验我国制造业利润函数模型【实验步骤】【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
一、检验异方差性⒈图形分析检验⑴观察销售利润〔Y〕与销售收入〔X〕的相关图(图1):SCAT X Y图1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序〔命令格式为:SORT 解释变量〕,然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图〔或建立方程后在Eviews工作文件窗口中点击resid对象来观察〕。
图2 我国制造业销售利润回归模型残差分布图2显示回归方程的残差分布有明显的扩大趋势,即说明存在异方差性。
⒉Goldfeld-Quant检验⑴将样本安解释变量排序〔SORT X〕并分成两部分〔分别有1到10共11个样本合19到28共10个样本〕⑵利用样本1建立回归模型1〔回归结果如图3〕,其残差平方和为。
SMPL 1 10LS Y C X图3 样本1回归结果⑶利用样本2建立回归模型2〔回归结果如图4〕,其残差平方和为。
SMPL 19 28 LS Y C X图4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性⒊White 检验⑴建立回归模型:LS Y C X ,回归结果如图5。
图5 我国制造业销售利润回归模型⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图6。
2021年计量经济学实验报告2

1.背景经济增加是指一个国家生产商品和劳务能力扩大。
在实际核实中, 常以一国生产商品和劳务总量增加来表示, 即以国民生产总值(GDP )和中国生产总值增加来计算。
古典经济增加理论以社会财富增加为中心, 指出生产劳动是财富增加源泉。
现代经济增加理论认为知识、 人力资本、 技术进步是经济增加关键原因。
从古典增加理论到新增加理论, 都重视物质资本和劳动贡献。
物质资本是指经济系统运行中实际投入资本数量.然而, 因为资本服务流量难以测度, 在这里我们用全社会固定资产投资总额(亿元)来衡量物质资本。
中国拥有十三亿人口, 为经济增加提供了丰富劳动力资源。
所以本文用总就业人数(万人)来衡量劳动力。
居民消费需求也是经济增加关键原因。
经济增加问题既受各国政府和居民关注,也是经济学理论研究一个关键方面。
在1978—31年中,中国经济年均增加率高达9.6%,综合国力大大增强,居民收入水平与生活水平不停提升,居民消费需求数量和质量有了很大提升。
不过,中国现在仍然面临消费需求不足问题。
本文将以中国经济增加作为研究对象, 选择时间序列数据计量经济学模型方法, 将中国中国生产总值与和其相关经济变量联络起来, 建立多元线性回归模型, 研究中国中国经济增加变动趋势, 以及关键影响原因, 并依据所得结论提出相关提议与意见。
用计量经济学方法进行数据分析将得到愈加含有说服力和愈加具体指标, 能够愈加好帮助我们进行估计与决议。
所以, 对中国经济增加计量经济学研究是有意义同时也是很必需。
2.模型建立 2.1 假设模型为了具体分析各要素对中国经济增加影响大小, 我们能够用中国生产总值(Y )这个经济指标作为研究对象; 用总就业人员数(1X )衡量劳动力; 用固定资产投资总额(2X )衡量资本投入: 用价格指数(3X )去代表消费需求。
利用这些数据进行回归分析。
这里被解释变量是, Y: 中国生产总值,与Y-中国生产总值亲密相关经济原因作为模型可能解释变量, 累计3个, 它们分别为:1X 代表社会就业人数, 2X 代表固定资产投资,3X 代表消费价格指数,μ代表干扰项。
实验报告计量经济学

计量经济学实验报告书实验二、实验开设对象本实验的开设对象为《计量经济学》课程的学习者,实验为必修内容、实验目的实验二、掌握计量经济学多元模型的建立,模型形式的设定,模型拟合度、t检验和F 检验判断过程;三、实验环境微型计算机(要求必须能够连接In ternet,且安装有Eviews6.0软件。
)四、实验成果根据所给定的范例数据和要求,利用Eviews6.0软件对其进行分析和处理,并撰写实验报告。
Workflle U*mTLEDViaw | Prc-c d Oku"^1 | P-ranl N HIWH rra«x«DW BL *▼ | I Sia-r^ Tranap-aiiB E-drlI3T ■3MB ■工:xi 沁4b3-¥ XtX2IP 阴rn 丁也电niSb0.6534101985175 479724.11729 0.057131inn. IH ^I I :史Nfl 昭却* n 1*寻 1SB7 壬 g B2S£I7-2-4.13-112 ” D 日皿N 10BS2J.17 3J9 0.74200<5 I 總HP 71. 1 HURT口 TTiflHR?23:7j2S3:21.7S-103 D.7487B6-IB9-I £55 5541 2a.344*ie 0.7300821R>Ri77nn )npeii in 口 口 丁7■口sji-4 鬧 13 S1437 D.76B2&71^94 3&3 E7&& 17-93 17^ 0 61320BTRiR ■刍Hon R,Df»ri in :1:7口□ 口 riAHH433 03:2H 1占:&也斗出-IBBT 4眄 44&Z is.33333 0.9171051DEII1SiD 1 HUA ia CHI 孑pp □ 071斗口 Tis.ess«e 1.006117ZDDD &丁口 48TS 1庁方"5昌 1.069^627DD1 & 1 U 74+4 13 U7Q3Q 1 了曰□斗12002 67& 4-3^2 Ifi 12>D€2 1.^845072QQ3 T33 0&54is1.5301963DD4"iiI 葩 I Grc-up: LflN RJ I LE J D WcdJil*: (JNTTTLE&rLinfcrtiaKT'. J |optic-rii Jupdata Ad-dTri^L ・・l <oraph: UMTTT L ED Wnrkfii ■:: <jNTin"LED::Urrtrt:l«d i,i PtCTc|obj«ct j|^!Print|HMnBCarjpK Opliion-Si—Grap*! typ«-OetalwiSrapH dat-a:Fit Ihnesi!Axi^i tKJV iJdrr :1^1^ ■|~s l li^«■C^K£i[U¥|X1O[k&*朗X21333137?D146 |23 -IBD-IS ft fii 122-41^3-4 1S6.773324 OB&^D0 *£^41Qi^as175.470724 317230EW134fosei laa.teaa24 2D&&1 C €441251537 206.SJ9724 13-112 G1>QS8226.273224 1734&G.742<XM1339 231 aes?22 3G7B40 73511-321>E190237.2836S1.751D30.74^76619912S5.!ifiJ12D 3G4-SB0.73OTB21992286.390613 9DB3D0 7707171393 32i 90531E 519BT0 TBAZUj?363.27C517.BB174 O.S132tlS1995390.SO9S-IE 32DDE.0W7M11995433.932515.BZ244Q WB Mfi19S7ilGgjdiSS15.233BE0/9171Miggg50 1.385 J15.DG7B90 97H4A1199953J.9-392 1 CMW1172000 575.-337915.3E55412001 fiig n7ddldi B7-D59 1 2W4152002 570.J12215.12953 1 ML4W72003 733.CJC5d!15.424BD% si^iggzog 4in* _ b回Groupi UrrrnLED Worwila UNrTTTLEDiiUrt4iecr>. . 5 X[vfcaw] [ Ptlnt] M«n・]rriMM_| [ifWi. F J [ WDrt[Tkiam口■■[lE曰5M(I IL'L;. Grnun: UNTril l O Warlcf ik< UNTITI. ri? IJnfcrilwiA,「召斫i凶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生实验报告学院:经济学院课程名称:计量经济学专业班级:11经济学1班姓名:魏丹丹学号:0112102学生实验报告(经管类专业用)一、实验目的及要求:1、目的利用Eviews软件,使学生在实验过程中全面了解和熟悉计量经济学。
2、内容及要求熟悉Eviews软件的操作与应用二、仪器用具:三、实验方法与步骤:1 经研究发现,家庭书刊消费受家庭收入几户主受教育年数的影响,表中为对某地区部分家庭抽样调查得到样本数据:(2)利用样本数据估计模型的参数;(3)检验户主受教育年数对家庭书刊消费是否有显着影响;(4)分析所估计模型的经济意义和作用答:(1)家庭书刊消费的计量经济学模型是:Dependent Variable: YMethod: Least SquaresDate: 11/27/12 Time: 14:36Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.??C -50.01638 49.46026 -1.011244 0.3279X 0.086450 0.029363 2.944186 0.0101T 52.3703 5.202167 10.06702 0.00001R-squared 0.951235 ????Mean dependentvar755.1222Adjusted R-squared 0.944732 ????S.D. dependentvar258.7206S.E. of regression 60.82273 ????Akaike infocriterion11.20482Sum squared resid 55491.07 ????Schwarz criterion11.35321Log likelihood -97.84334 ????F-statistic146.2974Durbin-Watson stat2.605783 ????Prob(F-statistic)0.00000=^Y -50.0163+0.0865X+52.3703T 标准误 49.4603 0.0294 5.2022 t 值 -1.0112 2.9442 10.0670 p 值 0.3279 0.0101 0.0000 R 2=0.9512 =2R 0.9447总体显着性的F 统计值为146.2974,F 统计量的p 值:0.0000 (2)样本数据估计的模型参数为β1=0.0865,β2=52.3703(3)由回归结果得:户主受教育年限的p 值为0.0000,小于0.05,则拒绝原假设。
说明户主受教育年数对家庭书刊消费具有显着影响。
(4)模型描述了家庭书刊年消费支出受到业主受教育年限和家庭月平均收入这两个变量的影响,即当受教育年限每增加1单位,家庭书刊年消费支出增加52.3703个单位;家庭月平均收入每增加1单位,家庭书刊年消费支出增加0.0865个单位。
2 考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillips curve )”模型: 其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)下表为某国的有关数据,表1. 1970-1982年某国实际通货膨胀率Y (%),失业率X 2(%)和预期通货膨胀率X 3(%)(2)根据此模型所估计结果,作计量经济学的检验。
(3)计算修正的可决系数(写出详细计算过程)。
答:(1)对模型作估计:Dependent Variable: YMethod: Least SquaresDate: 11/27/12 Time: 15:14Sample: 1970 1982Included observations: 13Variable Coefficient Std. Error t-Statistic Prob.??C 7.105975 1.618555 4.390321 0.0014X2 -1.393110.310050 -4.493196 0.00125X31.480674 0.180185 8.217506 0.0000R-squared 0.872759 ????Mean dependentvar7.756923Adjusted R-squared 0.847311 ????S.D. dependentvar3.041892S.E. of regression 1.188632 ????Akaike infocriterion3.382658Sum squared resid 14.12846 ????Schwarz criterion3.513031Log likelihood -18.98728 ????F-statistic34.29559Durbin-Watson stat2.254851 ????Prob(F-statistic)0.000033^Y t =7.1060-1.3931X 2t +1.4807X 3t标准误 1.6186 0.3101 0.1802 t 值 4.3903 -4.4932 8.2175 p 值 0.0014 0.0012 0.0000 R 2=0.8728 2R =0.8473总体显着性的F 统计值为34.2956,F 统计量的p 值:0.000033经济学说明,实际通货膨胀率受到失业率和预期通货膨胀率的影响。
且与失业率成反比,与预期通货膨胀成正比。
计量经济学说明,失业率每增加1单位,实际通货膨胀率下降1.393115个单位,预期通货膨胀率每增加1单位,实际通货膨胀率增加1.480674个单位。
当预期通货膨征率和失业率均为零时实际通货膨胀率为7.105975。
(2)根据三个系数的p 值分别为0.0014,0.0012,0.0000均小于0.05可知,均不能拒绝原假设,所以预期通货膨胀率和失业率对实际通货膨胀率有显着性影响。
(3)修正的可决系数R 2==-TSSRSS10.84733某地区城镇居民人均全年耐用消费品支出、人均年可支配收入及耐用消费品价格指数的统计资料如表所示:和耐用消费品价格指数的回归模型,进行回归分析,并检验人均年可支配收入及耐用消费品价格指数对城镇居民人均全年耐用消费品支出是否有显着影响。
答:回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 11/27/12 Time: 15:19Sample: 1991 2001Included observations: 11Variable Coefficient Std. Error t-Statistic Prob.??C 158.5398 121.8071 1.301564 0.2293X1 0.049404 0.004684 10.54786 0.0000X2 -0.911684 0.989546 -0.921316 0.3838R-squared 0.947989????Mean dependentvar190.4827Adjusted 0.93498????S.D. dependent 79.2912R-squared 6 var7S.E. of regression 20.21757 ????Akaike infocriterion9.077982Sum squared resid 3270.001 ????Schwarz criterion9.186499Log likelihood -46.92890 ????F-statistic72.90647Durbin-Watson stat1.035840 ????Prob(F-statistic)0.000007t Y ^158.5398+0.0494X 1t -0.9117X 2t标准误 121.8071 0.0047 0.9895 t 值 1.3016 10.5479 -0.9213 p 值 0.2293 0.0000 0.3838 R 2=0.9480 2R =0.9350总体显着性的F 统计值为72.9065,F 统计量的p 值:0.000007由回归结果可以知道,X 1和X 2系数的p 值分别为0.0000和0.3838,分别小于和大于0.05。
这表明,人均年可支配收入对人均耐用消费品支出有显着影响,而人均年可支配收入对人均耐用消费品支出影响不显着。
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ?4.下表给出的是1960—1982年间7个OECD 国家的能源需求指数(Y )、实际GDP 指数(X1)、能源价格指数(X2)的数据,所有指数均以1970年为基准(1970=100)函数t t t t u X X Y +++=2ln 1ln ln 210βββ,解释各回归系数的意义,用P 值检验所估计回归系数是否显着。
(2) 再建立能源需求与收入和价格之间的线性回归模型 u X X Y t t t +++=21210βββ,解释各回归系数的意义,用P 值检验所估计回归系数是否显着。
(3 )比较所建立的两个模型,如果两个模型结论不同,你将选择哪个模型,为什么? 答:(1)Dependent Variable: LNY Method: Least Squares Date: 11/27/12 Time: 15:26 Sample: 1960 1982 Included observations: 23VariableCoefficient Std. Error t-Statistic Prob.?? C 1.549504 0.090113 17.19508 0.0000LNX1 0.996923 0.019110 52.16634 0.0000LNX2-0.331364 0.024310 -13.63086 0.0000R-squared 0.994130 ????Mean dependentvar4.412077Adjusted R-squared 0.993543 ????S.D. dependentvar0.224107S.E. of regression 0.018008 ????Akaike infocriterion-5.074916Sum squared resid 0.006486 ????Schwarz criterion-4.926808Log likelihood61.3615????F-statistic1693.6532Durbin-Watson stat0.807846 ????Prob(F-statistic)0.00000^ln t Y =1.5495+0.9969lnX 1t -0.3314lnX 2t标准误 0.0901 0.0191 0.0243 t 值 17.1951 52.1663 -13.6309 p 值 0.0000 0.0000 0.0000 R 2=0.9941 2R =0.9935总体显着性的F 统计值为1693.652,F 统计量的p 值:0.0000回归系数=0β 1.5495表示当实际GDP 指数和能源价格指数为1时,OECD 国家的能源需求指数为1.5495。