精品北京市中考数学复习图形与变换课时训练三十二轴对称
中考数学专项复习《轴对称变换》练习题及答案

中考数学专项复习《轴对称变换》练习题及答案一、单选题1.如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点E,G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S∠AGD=S∠OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确结论的序号是()A.①②③④⑤B.①②③④C.①③④⑤D.①④⑤2.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.63.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF.若AF=5,BE=3,则EF的长为()A.2√3B.√17C.2√5D.3√54.如图,∠ABC中,∠ACB=90°,沿CD折叠∠CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°5.如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,若P1P2=6,则∠PMN的周长为()A.4B.5C.6D.76.已知点M(x,y)在第二象限内,且|x|=2,|y|=3,则点M关于原点对称点的坐标是()A.(-2,-3)B.(-2,3)C.(3,-2)D.(2,-3)7.如图,在正方形方格中,阴影部分是涂黑7 个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.4 种B.3 种C.2 种D.1 种8.已知点A(3,﹣2)和点B关于y轴对称,则点B的坐标是()A.(3,2)B.(﹣3,﹣2)C.(﹣2,﹣3)D.(﹣3,2)9.三角形有3个角,用剪刀剪去一个角,剩下的图形一定不会只有()个角.A.3B.2C.4D.510.下列图形是几家电信公司的标志,其中是轴对称图形的是()A.B.C.D.11.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条12.已知点M(3,a)和N(b,4)关于x轴对称,则(a+b)2015的值为()A.1B.−1C.72015D.−72015二、填空题13.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S∠PAB= 13S矩形ABCD,则点P 到A、B两点的距离之和PA+PB的最小值为.14.如图,在Rt∠ABC中,AB=9,BC=6,∠B=90°,折叠后,点A与BC的中点D恰好重合,折痕为MN,则线段BN的长为.15.一个角的对称轴是它的.16.如图是长为20cm,宽为8cm的矩形纸片,M点为长BC边上的中点,沿过M的直线翻折.若顶点B落在对边AD上,那么折痕长度为cm.17.如图,将矩形ABCD沿对角线AC折叠,使点B翻折到点E处,如果DE∠AC=1∠3,那么AD∠AB=18.如图,在∠ABC 中,∠C=90°,∠A=34°,D ,E 分别为 AB ,AC 上一点,将∠BCD ,∠ADE 沿CD ,DE 翻折,点 A ,B 恰好重合于点 P 处,则∠ACP= .三、综合题19.如图,在矩形ABCD 中,点E 为边CD 上的一点(且ED≤CE ,且E 点不与C 、D 重合),四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 于点P ,连接BE ,若AD=1.(1)证明:AP=PE ; (2)若DE=34,求PE 的值;(3)延长BE 交直线AN 于点G ,当∠AEB=90°时,记DE=x ,四边形APEG 的面积为S ,求S 与x 的函数关系式.20.如图,在长度为1个单位长度的小正方形组成的正方形中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.21.如图,在矩形ABCD中,E是AD的中点,将∠ABE沿BE折叠,点A的对应点为点G.(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是形;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.求证:BF=AB+DF;若AD=√3AB,试探索线段DF与FC的数量关系.22.如图,已知△ABC的三个顶点的坐标分别为A(−2,4),B(−4,0),C(1,3).(1)①画出△ABC关于x轴对称的图形△A1B1C1,并写出点A的对称点A1的坐标;②若直线l上的点横坐标都是1,画出△ABC关于l对称的图形△A2B2C2,并直接写出△A2B2C2三个顶点的坐标;(2)若点D(a,b)是坐标平面内的一点,则点D关于直线l对称的点的坐标为(用含a、b的式子表示).23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=k x(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.24.如图.把边长为2 cm的正方形剪成四个完全重合的直角三角形,请用这四个直角三角形拼成符合下列要求的一个图形.(1)是轴对称图形,但不是中心对称图形的四边形;(2)是中心对称图形,但不是轴对称图形的四边形;(3)既是轴对称图形,又是中心对称图形的四边形;(4)既不是轴对称图形,又不是中心对称图形的四边形.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B10.【答案】C11.【答案】C12.【答案】B13.【答案】4 √214.【答案】415.【答案】角平分线所在的直线16.【答案】5 √5或4 √517.【答案】√2∠118.【答案】22°19.【答案】(1)证明:∵四边形ABCE关于直线AE的对称图形为四边形ANME ∴四边形ABCE四边形ANME∠四边形ANME∴∠AEC=∠AEM∵∠PEC=∠DEM∴∠AEC-∠PEC =∠AEM-∠DEM∴∠AEP=∠AED∵四边形ABCD是矩形∴AB∥CD∴∠AED=∠PAE∴∠AEP=∠PAE∴AP=PE(2)解:如图1,过E作EF∠AB于F,则∠AFE=∠EFP=90°∵四边形ABCD 是矩形 ∴∠D=∠FAD=90° ∴四边形AFED 是矩形 ∴EF=AD=1,AF=DE=34设AP=PE=x ,PF=x -34在Rt∠PFE 中,由勾股定理得PE 2=PF 2+EF 2∴x 2=(x −34)2+12解得x =2524∴PE=2524(3)解:∵四边形ABCE 关于直线AE 的对称图形为四边形ANME ∴四边形ABCE 四边形ANME∠四边形ANME ∴∠BAE=∠NAE ,MN=BC=AD=1 ∵延长BE 交直线AN 于点G ,∠AEB=90° ∴∠AEG=∠AEB=90° 在∠AEB 和∠AEG 中{∠BAE =∠NAE AE =AE ∠AEG =∠AEB∴∠AEB∠∠AEG (ASA ) ∴AB=AG ∵AB=AN ∴AG=AN∴点G 与点N 重合,如图2∵∠CEB+∠AED=180°-∠AEB=90° ∠AED+∠DAE=90° ∴∠CEB=∠DAE ∵∠C=∠D=90° ∴∠CEB∠∠DAE ∴CE AD =BC DE ∴CE 1=1x∴CE =1x∴AB=CD=CE+DE =1x +x =x 2+1x∵AP=PE ∴∠PAE=∠PEA∵∠PAE+∠ABE =∠PEA+∠BEP=90° ∴∠ABE =∠BEP ∴BP=AP=PE∴PE=AP=12AB=x 2+12x∵PE ∥AN∴四边形APEG 是梯形∴四边形APEG 的面积S=12×(PE+AN )×MN=12×(x 2+12x +x 2+1x)×1 =3x 2+34x∴S=3x 2+34x20.【答案】(1)解:如图所示:∠AB′C′即为所求;(2)4(3)21.【答案】(1)正方(2)解:①如图2,连接EF在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°∵E是AD的中点∴AE=DE∵∠ABE沿BE折叠后得到∠GBE∴BG=AB,EG=AE=ED,∠A=∠BGE=90°∴∠EGF=∠D=90°在Rt∠EGF和Rt∠EDF中∵EG=ED,EF=EF∴Rt∠EGF∠Rt∠EDF∴ DF=FG∴ BF=BG+GF=AB+DF;②不妨假设AB=DC=a,DF=b∴AD=BC=√3a由①得:BF=AB+DF∴BF=a+b,CF=a−b在Rt∠BCF中,由勾股定理得:BF2=BC2+CF2∴(a+b)2=(√3a)2+(a−b)2∴4ab =3a 2∵a ≠0∴a =43b ,即:CD=43DF ∵CF=43DF-DF ∴3CF=DF.22.【答案】(1)如图所示, △A 1B 1C 1 即为所求, A 1 的坐标为 (−2,−4) ; (2)如图所示, △A 2B 2C 2 即为所求, 其中 A 2 的坐标为 (4,4) , B 2 的坐标为 (6,0) , C 2 的坐标为(1,3) ;(2)(2−a ,b)23.【答案】(1)解:把(﹣2,a )代入y=﹣2x 中,得a=﹣2×(﹣2)=4∴a=4;(2)解:∵P 点的坐标是(﹣2,4)∴点P 关于y 轴的对称点P′的坐标是(2,4)(3)解:把P′(2,4)代入函数式y= k x,得 4= k 2∴k=8∴反比例函数的解析式是y= 8x24.【答案】(1)解:根据轴对称的概念:把其中的一个图形沿着某条直线折叠,能够与另一个图形重合.则可以把这四个三角形拼成一个等腰梯形,如图所示(2)解:根据中心对称的概念:把一个图形绕着某个点旋转180°能够和另一个图形重合.则可以把这四个三角形拼成一个平行四边形,如图所示;(3)解:根据轴对称和中心对称的概念,则可以把这四个三角形拼成一个菱形或矩形,如图所示(4)解:可以把这四个三角形拼成一个不规则的四边形,如图所示。
2024年中考数学二轮复习模块专练—轴对称和中心对称(含答案)

2024年中考数学二轮复习模块专练—轴对称和中心对称(含答案)一、轴对称1.轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.2.轴对称:对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么这两个图形关于这条直线成轴对称.3.轴对称的性质(1)对应线段相等,对应角相等;(2)对应点所连的线段被对称轴垂直平分;4.轴对称作图(1)找出图形中的关键点;(2)作关键点的对称点:一垂二延三相等;(3)连接关键点;二、中心对称1.中心对称定义:如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.2.中心对称图形定义:把一个图形绕某个点旋转180°如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.区别:中心对称→两个图形的关系,中心对称图形→一种图形的特征.3.中心对称性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对试卷第2页,共12页称中心平分.同心对称具有旋转的性质.4.中心对称图形作图(1)找出图形中的关键点;(2)作关键点的对称点:一连(关键点与对称中心连接)二延三相等;(3)连接关键点;《义务教育数学课程标准》2022年版,学业质量要求:1.理解轴对称和中心对称的概念;2.知道轴对称和中心对称的性质;3.会用轴对称和中心对称的运动认识、理解和表达现实世界中相应的现象;4.理解几何图形的对称性,感悟现实世界中的对称美,知道可以用数学语言表达对称;【例1】(2023·青海西宁·统考中考真题)1.河湟剪纸被列入青海省第三批省级非物质文化遗产名录,是青海劳动人民结合河湟文化,创造出独具高原特色的剪纸.以下剪纸图案既是轴对称图形又是中心对称图形的是()A .B .C .D.【变1】(2023·山东青岛·统考中考真题)2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.【例1】(2023·河北沧州·统考二模)的3.如图由66⨯个边长为1的小正方形组成,每个小正方形的顶点称为格点,ABC绕着点O顺时针三个顶点A,B,C均在格点上,O是AC与网格线的交点,将ABC旋转180︒.以下是嘉嘉和淇淇得出的结论,下列判断正确的是()嘉嘉:旋转后的三角形的三个顶点均在格点上;淇淇:旋转前后两个三角形可形成平行四边形A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对试卷第4页,共12页【例1】(2023·安徽亳州·校联考模拟预测)5.如图,在平面直角坐标系中,(1)作出ABC 关于y 轴对称的A B C ''' ;(2)作出ABC 关于点O 成中心对称的111A B C △;(3)在x 轴上找一点P ,使1PB PC =,并写出点P 的坐标.【变1】(2023·四川广安·统考中考真题)6.将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).一、选择题(2023·江苏·统考中考真题)7.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是().A.B.C.D.(2023·河北衡水·统考二模)8.三个全等的等边三角形按图1所示位置摆放,现添加一个大小相同的等边三角形,使四个等边三角形组成一个中心对称图形(如图2),则添加的等边三角形所放置的位置是()A.①B.②C (2023·黑龙江·统考中考真题)9.如图,在平面直角坐标中,矩形ABCD的边直线OE折叠到如图所示的位置,线段OD恰好经过点A.()1,2B.(-二、填空题(2023·吉林长春·统考中考真题)10.如图,将正五边形纸片ABCDE试卷第6页,共12页(2023·黑龙江绥化·统考中考真题)的半径为2cm,12.如图,O翻折,使点C与圆心O重合,则阴影部分的面积为(2023·湖北武汉·统考中考真题)13.如图,DE平分等边交于,G H两点.若DG(2023·江苏扬州·统考中考真题)14.如图,已知正方形ABCD着EF翻折,点B恰好落在积比为3∶5,那么线段FC的长为(2023·江苏泰州·统考二模)15.如图,在平面直角坐标系中,B-,点D的交点,点(2,0)且D、F两点关于y轴上某点成中心对称,连接(2023·山东济南·统考中考真题)16.如图,将菱形纸片ABCD折痕CP交AD于点P.若三、解答题(2023·浙江温州·统考中考真题)试卷第8页,共12页(1)在图中画一个等腰三角形画出该三角形绕矩形ABCD△(2)在图中画一个Rt PQR角形向右平移1个单位后的图形.(2023·江西南昌·校考二模)18.如图,在矩形ABCD中,(1)在图1中作矩形ABCD关于点E成中心对称的图形.(2)在图2中作以E为顶点的矩形.(2023·湖北宜昌·统考中考真题)(1)画出线段OA绕点O顺时针旋转关于直线OB对称的图形,点(2)画出与AOB∠的度数为_________(3)填空:OCB试卷第10页,共12页(2023·山东枣庄·统考中考真题)20.(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.(2023·江苏南通·统考一模)21.如图,矩形ABCD 中,63AB AD ==,.E 为边AB 上一动点,连接DE .作AF D E ⊥交矩形ABCD 的边于点F ,垂足为G .(1)求证:AFB DEA ∠=∠;(2)若1CF =,求AE 的长;(3)点O 为矩形ABCD 的对称中心,探究OG 的取值范围.(2023·江苏无锡·统考中考真题)22.如图,四边形ABCD 是边长为4的菱形,60A ∠=︒,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时,求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时,设BP x =,四边形BB C C ''的面积为S ,求S 关于x 的函数表达式.(2023·内蒙古通辽·统考中考真题)23.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在正方形内部点M 处,把纸片展平,连接PM 、BM ,延长PM 交CD 于点Q ,连接BQ .(1)如图1,当点M 在EF 上时,EMB ∠=___________度;(2)改变点P 在AD 上的位置(点P 不与点A ,D 重合)如图2,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.(2023·山东枣庄·统考中考真题)24.问题情境:如图1,在ABC 中,1730AB AC BC ===,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .试卷第12页,共12页猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.参考答案:1.D【分析】根据轴对称图形和中心对称图形的特点逐项判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故该选项不符合题意;C.既不是轴对称图形,也不是中心对称图形,故该选项不符合题意;D.既是轴对称图形,又是中心对称图形,故该选项符合题意.故选D.【点睛】本题考查识别轴对称图形与中心对称图形.识别轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.识别中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.D【分析】根据中心对称图形定义:把图形沿某点旋转180︒得到的新图形与原图形重合的图形叫中心对称图形,轴对称图形定义:把一个图形沿某条直线对折两边完全重合的图形叫轴对称图形,逐个判断即可得到答案.【详解】解:由题意可得,A选项图形即是中心对称图形又是轴对称图形,不符合题意,B选项图形即是中心对称图形又是轴对称图形,不符合题意,C选项图形即是中心对称图形又是轴对称图形,不符合题意,D选项图形是中心对称图形但不是轴对称图形,符合题意,故选:D;【点睛】本题考查中心对称图形定义:把图形沿某点旋转180︒得到的新图形与原图形重合的图形叫中心对称图形,轴对称图形定义:把一个图形沿某条直线对折两边完全重合的图形答案第2页,共28页叫轴对称图形.3.C【分析】画出旋转后的图形,根据图形解答.【详解】如图,取格点B ',连接OB ',OB ,取格点E ,F .∵,,AEO CFO AOE COF AE CF ∠=∠∠=∠=,∴AOE COF △≌△,∴OA OF =,∴点A 关于点O 的对称点与点C 重合,点C 关于点O 的对称点与点A 重合.同理可证:点B 与点B '关于点O 对称,∴旋转后的三角形的三个顶点均在格点上,故嘉嘉说法正确;由中心对称的性质得A ABC B C '''≌△△,∴AB A B ''=,BC B C ''=,∴四边形ABA B ''是平行四边形,∴旋转前后两个三角形可形成平行四边形,故淇淇说法正确.故选C .【点睛】本题考查了全等三角形的判定与性质,的关键.4.210【分析】取BC中点H,连接AH,取由折叠可知AD CD DE x===则DF=三角形中位线定理得到15BG=,从而推导出答案第4页,共28页答案第6页,共28页A B C '''∴△即为所求;(2)解:如图所示:111A B C ∴ 即为所求;(3)如图所示:1,0-.【点睛】本题考查作图﹣旋转变换,轴对称变换,熟练掌握基本作图知识是解题的关键.6.见解析(答案不唯一,符合题意即可)【分析】根据轴对称图形和中心对称图形的性质进行作图即可.【详解】解:①要求是轴对称图形但不是中心对称图形,则可作等腰梯形,如图四边形ABCD 即为所求;②要求是中心对称图形但不是轴对称图形,则可作一般平行四边形,如图四边形ABCD即为所求;③要求既是轴对称图形又是中心对称图形,则可作菱形、矩形等,如图四边形ABCD即为所求;④要求既不是轴对称图形又不是中心对称图形,则考虑作任意四边形,如图四边形ABCD即为所求.答案第8页,共28页【点睛】本题考查轴对称图形和中心对称图形的概念及作图,轴对称图形:把一个图形沿着某条直线折叠,能够与另一个图形重合;中心对称图形:把一个图形绕着某个点旋转180 能够和原图形重合.7.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:依题意,添加的等边三角形④,可得中心对称图形,【点睛】本题考查了矩形的判定和性质,理的应用等知识,通过证明三角形相似,10.45【分析】根据题意求得正五边形的每一个内角为'答案第10页,共28页∵将 AB 沿弦AB 翻折,使点∴AC AO =,OC AB⊥答案第12页,共28页答案第14页,共28页则90FGK DHK ∠=∠=︒,记FD 交y 轴于点K ,∵D 点与F 点关于y 轴上的∴KF KD =,答案第16页,共28页【点睛】本题主要考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是熟练掌握菱形和折叠的性质,正确画出辅助线,构造直角三角形求解.17.(1)见解析(2)见解析答案第18页,共28页(2)画法不唯一,如图3或图4.【点睛】本题主要考查了格点作图,解题关键是掌握网格的特点,灵活画出相等的线段和互相垂直或平行的线段.18.(1)见解析;(2)见解析【分析】(1)连接AE 并延长至点M ,使得AE ME =;连接BE 并延长至点N ,使得BE NE =,连接DN 、MN 、CN ,即可得到矩形DCMN 为所求作;(2)连接AC 、BD ,交点为点O ,连接EO 并延长交AB 于点F ,根据中位线定理,得到EF AD BC ∥∥,即可得到矩形ADEF 或矩形BCEF 为所求作.【详解】(1)解:如图1中,矩形DCMN 即为所求;(2)解:如图2中,矩形ADEF 或矩形BCEF 即为所求.【点睛】本题考查了画中心对称图形,矩形的判定和性质,三角形中位线定理等知识,根据相关性质正确作图是解题关键.19.(1)详见解析(2)详见解析(3)45︒【分析】(1)根据题目叙述画出图形即可;(2)根据题目叙述画出图形即可;(3)由(1)作图可得AOB 是等腰直角三角形,且=45A ︒∠,由对称的性质可得45OCB ∠=︒.【详解】(1)在方格纸中画出线段OA 绕点O 顺时针旋转90︒后得到的线段OB ,连接AB ,如图;(2)画出与AOB 关于直线OB 对称的图形,点A 的对称点是C ;如上图所示:(3)由(1)作图可得AOB 是等腰直角三角形,且=45A ︒∠,再根据对称的性质可得45OCB A ∠=∠=︒.故答案为:45︒.【点睛】此题考查了旋转作图及作轴对称图形,解答本题的关键是仔细审题,得出旋转三要素,进而得出旋转后的图形.20.(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是轴对称图形,且面积为4的图形.【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.21.(1)见解析答案第20页,共28页同(1)可证DAF DEA∠=∠tan tanDAF DEA∴∠=∠,∴DF ADAD AE=,即533AE=,95AE∴=,1 AE∴=或9 5;答案第22页,共28页则OG OH HG ≥-.90AGE AGD ∠=∠=︒ ,1322HG AD ∴==,∵点O 为矩形ABCD 的对称中心,∴点O 为AC 的中点.答案第24页,共28页答案第26页,共28页∵1122 CHGS CH HG=⋅=∴154302CG HE⋅=⨯=,平行四边形的判定和性质.熟练掌握相关知识点,并灵活运用,是解题的关键.答案第28页,共28页。
北京市2019年中考数学总复习第八单元几何变换、投影与视图第32课时轴对称课件

[答案] C
图 32-12
高频考向探究
4.[2017·东城一模] 我国传统建筑中,窗框(如图 32-13①)的图 案玲珑剔透、千变万化.如图②,窗框的一部分所展现的图形 是一个轴对称图形,其对称轴有 ( )
[答案] B
A.1 条
B.2 条
图 32-13 C.3 条
D.4 条
高频考向探究
探究二 轴对称性质的应用
[答案] C
图 32-5
A.12
B.89
C.2
D.4
课前双基巩固
5.如图 32-6,将△ ABC 沿直线 DE 折叠,使点 C 与点 A 重合,已知
AB=7,BC=6,则△ BCD 的周长为
.
[答案] 13
图 32-6
课前双基巩固
题组二 易错题
【失分点】 不明白折叠的实质是轴对称;不能利用轴对称解决最短线
高频考向探究
2.[2015·北京 4 题] 剪纸是我国传统的民间艺术,下列剪纸作 品中,是轴对称图形的为 ( )
[答案] D
图 32-11
高频考向探究
拓考向 3.[2016·海淀二模] 中华文化底蕴深厚,地方文化活动丰富多 彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的, 其中是轴对称图形的是 ( )
形 等边三角形
正方形
顶角平分线所在的直线或底 边上的中线(或高)所在的直线
等腰三角形的两个底角相等;等腰三 角形顶角的平分线、底边上的中线、 底边上的高互相重合
任意一个角的平分线或任意 等边三角形的三条边相等,三个内角
一条边的中线(或高)所在的直线 相等
对边中点的连线所在的直线、 正方形的四条边相等,四个内角相等
两条角平分线所在的直线
北京2018年中考数学复习课件32 轴对称

图 32-10
考点聚焦 基础温故 考向探究
第32课时┃ 轴对称
解:(1)如图所示.
考点聚焦
基础温故
考向探究
第32课时┃ 轴对称
例 2 如图 32-10,方格纸中每个小正方形的边长均为 1,四 边形 ABCD 的四个顶点都在小正方形的顶点上, 点 E 在 BC 边上, 且点 E 在小正方形的顶点上,连接 AE. (2)请直接写出△AEF 与四边形 ABCD 重叠部分的面积.
第三部分
第八单元
空间与图形
几何变换、投影与视图
第32课时 轴对称
第32课时┃ 轴对称
考 点 聚 焦
考点1 轴对称与轴对称图形
轴对称 轴对称图形 把一个图形沿着某一条直 如果一个平面图形沿一条 线折叠 , 如果它能够与另 直线折叠,直线两旁的部 定 义
重合, 那么就说 分能够互相 ________ 重合 , 这 一个图形 ____
这两个图形关于这条直线 个图形叫做轴对称图形 , (成轴)对称, 这条直线叫做 这 条 直 线 就 是 它 的 对 称 对称轴.折叠后重合的点 轴.这时我们也说这个图 形关于这条直线 ( 成轴 ) 对 是对应点,叫对称点 称 两个 全等 轴对称图形是指具有特殊 轴对称是指________ 一个 图形 图形之间的相互位置关系 形状的________
矩形
考点聚焦
基础温故
考向探究
第32课时┃ 轴对称
两 条 角 平 分 线 所 菱形的对角线互 菱形 在的直线 相垂直平分 等腰梯形的同一 上底、 下底中点的 等腰梯形 底上的两个内角 连线所在的直线 相等 任意一条直径所 圆 垂径定理 在的直线
考点聚焦
基础温故
考向探究
第32课时┃ 轴对称 考点3 利用轴对称解决路径最短问题
最新-北京市中考数学复习图形与变换课时训练三十三投影与视图-word版

最新-北京市中考数学复习图形与变换课时训练三十三投影与视图-word 版
(限时:20分钟)
|夯实基础|
1.[2017·通州一模] 如图K33-1是某个几何体的三视图,该几何体是 ( )
图K33-1
A.圆锥
B.四棱锥
C.圆柱
D.四棱柱
2.[2018·门头沟期末] 图K33-2是某个几何体,它的主视图是 ( )
图K33-2
图K33-3
3.[2018·西城九年级统一测试] 如图K33-4是某个几何体的三视图,该几何体是(
) 图K33-4
A.三棱柱
B.圆柱
C.六棱柱
D.圆锥
4.[2018·平谷期末] 下列图形中可以作为一个三棱柱的展开图的是 ( )
图K33-5
5.小颖同学领来n 盒粉笔,整齐地摞在讲桌上,其三视图如图K33-6所示,则n 的值是
( )
图K33-6
A.6
B.7
C.8
D.9
6.[2018·丰台二模] 如图K33-7是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字一面的相对面上的字是( )
图K33-7
A.厉
B.害
C.了
D.国
7.[2018·顺义期末] 如图K33-8是一个正方体纸盒的外表面展开图,则这个正方体是
( )
图K33-8
图K33-9
8.如图K33-10,这是一个长方体的主视图与俯视图,由图示数据(单位: cm)可以得出该长方体的体积是 cm3.
图K33-10。
备考2021年中考数学复习专题:图形的变换_轴对称变换_轴对称的性质,单选题专训及答案

;②C,O两点距离的最大值为4;③若AB平分CO,则
AB⊥CO;④斜边AB的中点D运动路径的长为 .
其中正确的是( )
A . ①② B . ①②③ C . ①③④ D . ①②④ 12、 (2017成华.中考模拟) 下列交通标志中,是轴对称图形但不是中心对称图形的是( )
A.
B.
C.
D.
13、 (2016南充.中考真卷) 如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是( )
A . 形状没有改变,大小没有改变 B . 形状没有改变,大小有改变 C . 形状有改变,大小没有改变 D . 形状有改变,大小有改变
11、
(2018中.中考模拟) 如图,在Rt△ABC中,BC 2,∠BAC 30°,斜边AB的两个端点分别在相互垂直的射线OM,
ON上滑动,下列结论: ①若C,O两点关于AB对称,则OA
中, ,则
的度数是( )
,垂足为D,
与
A. B. C. D.
29、
(2018.中考模拟) 在正方形ABCD中,点E为BC边的中点,点 与点B关于AE对称, 与AE交于点F,连接
, ,FC。下列结论:①
;②
为等腰直角三角形;③
;④
。其中正确
的是( )
A . ①② B . ①②④ C . ③④ D . ①②③④ 30、 (2020南宁.中考模拟) 如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好 为AB的中点,则∠B的度数是( )
A.
B . 0.5 C . 1 D .
4、
(2019惠安.中考模拟) 在下列对称图形中,对称轴的条数最少的图形是( )
中考数学复习----《图形的对称变换》知识点总结与专项练习题(含答案解析)

中考数学复习----《图形的对称变换》知识点总结与专项练习题(含答案解析)知识点总结1. 轴对称与轴对称图形的概念:①轴对称的概念:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴。
②轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称。
2. 轴对称的性质:①成轴对称的两个图形全等。
即有对应边相等,对应角相等。
②对称轴是任意一组对应点连线的垂直平分线。
3. 关于坐标轴对称的点的坐标:①关于x 轴对称的点的坐标:横坐标不变,纵坐标互为相反数。
即()b a ,关于x 轴对称的点的坐标为()b a −,。
②关于y 轴对称的点的坐标:纵坐标不变,横坐标互为相反数。
即()b a ,关于y 轴对称的点的坐标为()b a ,−。
③关于原点对称的点的坐标:横纵坐标均互为相反数。
即()b a ,关于原点对称的点的坐标为()b a −−,。
4. 关于直线对称的点的坐标:①关于直线m x =对称,()b a P ,⇒()b a m P ,−2②关于直线n y =对称,()b a P ,⇒()b n a P −22 ,练习题1、(2022•六盘水)下列汉字中,能看成轴对称图形的是( )A .坡B .上C .草D .原【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,B,D选项中的汉字都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的汉字能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C.2、(2022•福建)美术老师布置同学们设计窗花,下列作品为轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.3、(2022•贵港)若点A(a,﹣1)与点B(2,b)关于y轴对称,则a﹣b的值是()A.﹣1B.﹣3C.1D.2【分析】根据两点关于y轴对称的点的坐标的特点列出有关a、b的方程求解即可求得a ﹣b的值.【解答】解:∵点A(a,﹣1)与点B(2,b)关于y轴对称,∴a=﹣2,b=﹣1,∴a﹣b=﹣2﹣(﹣1)=﹣1,故选:A.4、(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.5、(2022•新疆)在平面直角坐标系中,点A(2,1)与点B关于x轴对称,则点B的坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【解答】解:∵点A(2,1)与点B关于x轴对称,∴点B的坐标是:(2,﹣1).故选:A.6、(2022•六盘水)如图,将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到()A.三角形B.梯形C.正方形D.五边形【分析】动手操作可得结论.【解答】解:将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到:正方形.故选:C.。
北京市2019届年数学中考复习图形与变换课时训练三十二轴对称

课时训练(三十二) 轴对称(限时:40分钟)|夯实基础|1.[2017·石景山一模]篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是轴对称图形的为()图K32-12.[2017·通州一模]如图K32-2,将一张矩形的纸对折,再对折,然后沿着图中的虚线剪下,则剪下的纸片打开后的形状一定为()图K32-2A.三角形B.菱形C.矩形D.正方形3.下列三个函数:①y=x+1;②y=;③y=x2-x+1.其图象既是轴对称图形,又是中心对称图形的有()A.0个B.1个C.2个D.3个4.如图K32-3,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()图K32-3A.30°B.45°C.60°D.75°5.[2018·师达中学八年级第二次月考]如图K32-4,高速公路的同一侧有A,B两城镇,它们到高速公路所在直线MN的距离分别为AA'=2 km,BB'=4 km,A'B'=8 km,要在高速公路上的A',B'之间建一个出口P,使A,B两城镇到P的距离之和最小,则这个最短距离为 ()图K32-4A.10 kmB.8 kmC.10 kmD.12 km6.小莹和小博士下棋,小莹执圆子,小博士执方子.如图K32-5,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()图K32-5A.(-2,1)B.(-1,1)C.(1,-2)D.(-1,-2)7.将宽为4 cm的长方形纸片(足够长)折叠成如图K32-6所示的图形,重叠部分是一个三角形,则这个三角形面积的最小值是()图K32-6A. cm2B.8 cm2C. cm2D.16 cm28.如图K32-7,在△ABC中,∠C=90°,点D在AC上,将△BCD沿BD翻折,点C落在斜边AB上.若AC=12 cm,DC=5 cm,则sin A= .图K32-79.如图K32-8,一张三角形纸片ABC,∠C=90°,AC=8 cm,BC=6 cm,现将纸片折叠,使点A与点B重合,那么折痕长等于cm.图K32-810.如图K32-9,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F 处,折痕AP交MN于E;延长PF交AB于G.求证:图K32-9(1)△AFG≌△AFP;(2)△APG为等边三角形.11.[2018·宿迁节选]如图K32-10,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,设BE=x.图K32-10(1)当AM=时,求x的值.(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如果变化,请说明理由;如果不变,请求出该定值.|拓展提升|12.[2018·嘉兴]将一张正方形纸片按如图K32-11所示的步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是 ()图K32-11图K32-12参考答案1.B2.B3.C4.C[解析] 要使白球反弹后能将黑球直接撞入袋中,则∠1=∠2.∵∠2+∠3=90°,∠3=30°,∴∠2=60°,∴∠1=60°.故选C.5.C6.B[解析] 根据题意,可知当第4枚圆子放入棋盘(-1,1)位置时,所有棋子构成一个轴对称图形,对称轴如图所示.7.B8.[解析] 过点D作DE⊥AB于点E.∵△BCD沿BD翻折,点C落在斜边AB上,∴∠ABD=∠CBD.又∵∠C=90°,∴DE=DC.∵DC=5 cm,∴DE=5 cm.∵AC=12 cm,∴AD=12-5=7(cm),∴在Rt△AED中,sin A==.9.[解析] 如图,在Rt△ABC中,因为AC=8 cm,BC=6 cm,根据勾股定理,所以AB=10 cm.设CE=x cm,由折叠的性质得:BD=AD=5 cm,BE=AE=(8-x)cm,在Rt△BCE中,根据勾股定理可知:BC2+CE2=BE2,即62+x2=(8-x)2,解方程得x=.则BE=AE=8-=(cm),∴DE==(cm).10.证明:(1)∵对折矩形纸片ABCD,使AB与CD重合,得到折痕MN,∴MN∥AB且M,N分别为AD,BC中点,∴EF∥AG且E,F分别为PA,PG的中点,∴GF=PF.由折叠的性质得∠GFA=∠D=∠PFA=90°,又AF=AF,∴△AFG≌△AFP(SAS).(2)∵△AFG≌△AFP,∴AP=AG,∠2=∠3,又∵∠2=∠1,∴∠1=∠2=∠3,又∵∠1+∠2+∠3=90°,∴3∠2=90°,∴∠2=30°,∠PAG=2∠2=60°,∴△APG为等边三角形.11.解: (1)由折叠可知ME=BE=x,∴AE=1-x.在Rt△AEM中,由AM=,得2+(1-x)2=x2.解得x=.(2)不发生变化.如图,连接BM,BP,过点B作BH⊥MN,垂足为H.∵EB=EM,∴∠EBM=∠EMB.∵∠EBC=∠EMN,∴∠MBC=∠BMN.∵AD∥BC,∴∠AMB=∠MBC,∴∠AMB=∠BMN,又∵∠A=∠MHB,BM=BM,∴△BAM≌△BHM.∴AM=HM,BH=AB.∵BC=AB,∴BH=BC.又∵BP=BP,∴Rt△BHP≌Rt△BCP.∴HP=PC.∴△MDP的周长=MD+DP+MP=MD+DP+MH+HP=MD+AM+DP+PC=AD+DC=2.∴△MDP的周长为定值,周长为2.12.A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时训练(三十二) 轴对称
(限时:40分钟)
|夯实基础|
1.[2017·石景山一模]篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是轴对称图形的为()
图K32-1
2.[2017·通州一模]如图K32-2,将一张矩形的纸对折,再对折,然后沿着图中的虚线剪下,则剪下的纸片打开后的形状一定为()
图K32-2
A.三角形
B.菱形
C.矩形
D.正方形
3.下列三个函数:①y=x+1;②y=;③y=x2-x+1.其图象既是轴对称图形,又是中心对称图形的有()
A.0个
B.1个
C.2个
D.3个
4.如图K32-3,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()
图K32-3
A.30°
B.45°
C.60°
D.75°
5.[2018·师达中学八年级第二次月考]如图K32-4,高速公路的同一侧有A,B两城镇,它们到高速公路所在直线MN的距离分别为AA'=2 km,BB'=4 km,A'B'=8 km,要在高速公路上的A',B'之间建一个出口P,使A,B两城镇到P的距离之和最小,则这个最短距离为 ()
图K32-4
A.10 km
B.8 km
C.10 km
D.12 km
6.小莹和小博士下棋,小莹执圆子,小博士执方子.如图K32-5,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()
图K32-5
A.(-2,1)
B.(-1,1)
C.(1,-2)
D.(-1,-2)
7.将宽为4 cm的长方形纸片(足够长)折叠成如图K32-6所示的图形,重叠部分是一个三角形,则这个三角形面积的最小值是()
图K32-6
A. cm2
B.8 cm2。