全等三角形的判定(角边角)_说课稿

合集下载

《全等三角形的判定――边角边》说课稿

《全等三角形的判定――边角边》说课稿

《全等三角形的判定――边角边》说课稿海南省海口市金盘实验学校龙清炉一、说教材1、教材的地位及作用说课内容:华东师大版实验教科书《数学》八年级(下)第十九章第二节《全等三角形的判定》中第二个课时——《全等三角形的判定―――边角边》.图形的全等是图形相似的一种特例,是今后学习图形相似的基础.本节课的内容是以前各章中数学说理与逻辑推理的继续,是理性思维的一次飞跃.因此,本节课的知识在初中数学中有着举足轻重的地位和作用.2、教学目标:(1)知识目标:①掌握“边角边”内容及运用“边角边”证明两个三角形全等.②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.(2)技能目标:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.(3)情感目标:通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想,乐于探索的良好品质以及发现问题的能力.3、教学重难点:重点:探究发现三角形全等的条件—边角边,并能运用边角边的判定方法证明两个三角形全等.难点:(1)构造三角形全等,解决实际问题;(2)“两边及其中一边的对应角相等的两个三角形是否全等”的辨析.二、说教法本节课主要是“边角边”这一基本规律的发现及应用,因此在课题教学中我将尽量为学生提供动手操作、合作探究的时间.引导学生自主探究,合作交流.在探究过程中渗透分类讨论和转化的数学思想,让学生自得知识,自寻方法,自觅规律,自悟原理.另外,课前让学生准备直尺、圆规、剪刀、卡纸等教学用具,同时我还在教学中充分利用现代信息技术,通过直观教学,有效的营造了学生探究问题的情境.三、说学法新课标的精神是要改进学生学习方式,让学生经历“做数学”的过程,注重与生活实际紧密联系。

根据教学内容特点,以及新课标的要求,学生主要采用“探究式和应用式”的学习方法.四、说教学程序(一) 创设情境,引入新课在生活中我们经常可以看到工人师傅把两根钢条的中点连在一起,做成一个测量工件内槽宽的工具(卡钳).如图,要测量工具内槽宽,只要测量什么?为什么?[设计意图] 多媒体演示生活中与全等三角形相关的生活实例,有效地营造了学生研究问题的情境,从而激发学生的学习兴趣,为本节课的学习做了很好的铺垫.(二) 探索归纳,发现规律(三) 探索归纳,发现规律-----理清思路、明确方向探索归纳、发现规律 借助图形 探究规律 回到引例 解决问题活动1:探究同一个三角形中两边一角的位置关系.提问:三角形中的两条边与这个三角形中的一角有哪几种位置关系?(两边及其夹角)(两边及其中一边的对角)(四)探索归纳,发现规律-----借助图形、探究规律活动2:已知两条线段和一个角,以这两条线段为边,以这个角为这两条边的夹角,画一个三角形.(1)(2)步骤:1、画一线段AB,使它等于4cm;2、画∠MAB=45°;3、在射线AM上截取AC=3cm;4、连结BC.△ABC即为所求.把你画的三角形剪下来与其他同学所画的三角形相比较,它们全等吗?[设计意图] 让学生动手画图、独立思考、合作探究,得出边角边可判定三角形三全都的初步结论,锻炼了学生动手操作、分析归纳与解决问题能力.用运动变换方法给同学们演示(flash演示).[设计意图] 此环节是本节课的中心环节,用运动变换的方法证实全等三角形“边角边”判定方法,通过学生操作感知、教师引导探究,学生尝试总结概括,媒体辅助攻破难点,成功地实现了由具体形象向抽象思维的过渡,使本节课的重难点得到突破.提问由此你得出什么结论?具备什么样的条件两个三角形一定全等? 由此可得到判定三角形全等的一种简便方法:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简写成“S.A.S.”或(边角边).条件:两个三角形有两边及其夹角分别对应相等. 结论:这两个三角形全等.∵ AB=DE ,∠B=∠BC=EF ,∴ △ABC ≌△注意:在书写过程中注意对应点写在对应的位置上.(五) 探索归纳,发现规律-----借助图形、探究规律填一填1、如图1,AC =DF , BC =EF ,(请补充一个条件)________,使△ABC ≌△DEF ;2、如图2, BC =BD ,∠ABC =∠ABD 图中全等的三角形是_______≌ _______.3、在下列推理中填写需要补充的条件,使结论成立:证明:在△AOB 和△DOC 中∵ AO=DO (已知)______=________ ( )BO=CO (已知)∴△AOB≌△DOC()[设计意图] 设计不同系列的图形变换类型的题目,包括旋转变换和翻折变换,让学生在学习中总结,在练习中提高,在应用中让不同的学生得到不同的发展.题目由学生独立分析解答,运用课件验证学生的结论,使学生体验到成功的喜悦.(六)探索归纳,发现规律----回到引例、解决问题已知:△ABO,A'、B'分别在AO、BO的延长线上,且OA=OA',OB= OB'. 求证:AB=AB'.分析:要证AB=AB'△ABO≌△A'B'O'S A S证两线段(或是两角)相等可以通过证明它们所在的三角形全等.[设计意图] 通过联系生活中的实际问题,引导学生学会用数学的眼光,从数学的角度发现问题、解释生活、阐释现象,进而应用所学解决问题.(七) 掌握运用,强化训练----解析例题例1 如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,求证:△ABD ≌△ACD . 证明: ∵ AD 平分∠BAC ,∴ ∠BAD =∠CAD .在△ABD 与△ACD 中 ,∵AB =AC ,∠BAD =∠CAD , AD =AD ,∴△ABD≌△ACD (S.A.S.).提问:由△ABD 与△ACD 全等,还能证得∠B=∠C,即证得等腰三角形两个底角相等这条定理,你还能证得那些结论?例题推广① 例1 如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,求证:∠B =∠C . 证明: ∵ AD 平分∠BAC ,∴ ∠BAD =∠CAD .在△ABD 与△ACD 中 ,∵ AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD (S.A.S.).∴∠B =∠C (全等三角形对应角相等)若题目的已知条件不变,你还能证得哪些结论?② 例1 如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,求证:BD=CD. ③ 例1 如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,求证:AD ⊥BC.[设计意图] 通过例题变换,培养学生思维发散能力,达到了目标要求,并培养应用意识和解决问题能力.(八)掌握运用,强化训练----学以致用1、如图,AD∥BC,AD=CB,AE=CF .求证: △AFD≌△CEB .2、如图2,两车从路段AB的一端A出发,分别向东,向西行进相同的距离,到达C、D两地,此时C、D到B的距离相等吗?为什么?[设计意图] “学数学而不练,犹如入宝山而空返”(华罗庚语). 放手练习,学生通过充分思考,合作探究,自己动手书写证明过程,做到知识内化,培养学生应用新知和解决问题能力.(九)掌握运用,强化训练----操作验证活动3:(角不夹在两边的中间,形成两边一对角 .)请同学们动手画一画,并与小组讨论一下这种情况一定能判定两个三角形全等吗?课件演示(ppt)结论:两边及其一边所对的角相等,两个三角形不一定全等.[设计意图] 通过让学生动手画和直观的多媒体演示,引导学生深入思考,得出两边及其一边所对的角相等,两个三角形不一定全等.(十)归纳小结,提高认识----学习小结(1)知识层面:三角形全等的条件----边角边;(2)方法层面:①证明两线段(或是两角)相等可转化为证明它们所在的三角形全等;②构造三角形全等,解决实际问题.;(3)学习反思:本节课主要重视学生的动手实践的过程,让学生在参与过程中进一步充分理解判定方法的合理性,然后结合相关的例题和练习巩固对知识的应用.(十一) 归纳小结,提高认识----布置作业必做题:课本 P79 习题19.2 第2题,学习指导P45选做题:如图,在等腰梯形ABCD 中,AD ∥BC, ∠C=600,AD=CD.E 、F 分别在AD 、CD 上,DE=CF,AF 、BE 交于点P.求∠BPF 的度数.[设计意图] 采取分层式作业,即面向全体学生,同时也关注到了学生的个体差异,让学有余力的学生在能力上可以有进一步的提升.(十二) 归纳小结,提高认识----板书设计[设计意图] 通过清楚明了、简单有序的板书,辅助知识的呈现与回顾. 三角形全等的判定方法(1)由此可得到判定三角形全等的一种简便方法:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简写成“S.A.S.”或(边角边).ABCEFD 例题: 在△ABC 和△ DEF 中 ,∵ AB=DE , 证明:∠B=∠E ,BC=EF ,∴ △ABC ≌△DEF (S.A.S.) .投影五、教学评价本节课通过信息技术的有效运用,将图形间的变化联系生动、形象、直观地展示给学生,为课堂教学提供了丰富的感知和表象,为学生实现由具体感知到抽象思维的飞跃架设了桥梁,不仅充分调动起学生的积极性,更化解了本节课的难点,使学生更顺利地掌握重点,让学生经历了真正的学数学用数学的过程.。

《三角形全等的判定--角边角-角角边》说课稿-

《三角形全等的判定--角边角-角角边》说课稿-

(1)三边(SSS)
满足全等三角 形的六组条件 中的三组
(2)两边一角 两边、一夹角(SAS)
两边、一对角(不一定) (3)两角一边
(4)三角
一、教材分析 二、教学目标 三、重点难点 四、教学流程
(二)合作交流、解读探究
1.实验验证(探究5),探索新知(角边角)
(1)分组实验,前后桌4位同学为一组,共同完 成实验。
三、重点与难点
一、教材分析 二、教学目标 三、重点难点
【重点】 用角边角、角角边来确定两个三角形全
等, 以及用全等证明角的相等、线段相等。
【难点】 用角边角、角角边来确定两个三角形全等; 证明三角形全等时的规范的书写格式。
一、教材分析 二、教学目标 三、重点难点 四、教学流程
四、教学流程
(一)创设情境, 孕育新知
3.拓展提高
一、教材分析 二、教学目标 三、重点难点 四、教学流程
如图所示,在△ABC和△DEF 中,已有条件 AB=DE,还需要添加两个条件才能使 △ABC≌△DEF,不能添加的一组是()
A. ∠B=∠E BC=EF B. BC=EF AC=DF C. ∠A=∠D ∠B=∠E D. ∠A=∠D BC=EF
一、教材分析 二、教学目标
二、教学目标
【知识技能】 1.让学生在自主探究的过程中得出A.S.A推 导出A.A.S定, 掌握
【过程与方法】 经历探索三角形全等条件的过程, 体会如何 探索、研究问题, 培养学生合作精神, 让学生初 步体会数学中的分类思想。
【情感态度与价值观】 通过画图、比较、验证, 培养学生注重观察、 善于思考、不断总结的良好思维习惯。
1.生活情境设疑,激发学生兴趣
小明在上美术课时,不慎将一块三角形玻璃调色板打破 成如图所示的三块,小明小心翼翼地将三块碎玻璃板捡起, 准备包好拿去玻璃店配制,老师看到后对小明说,如果只你 拿一块去,你看行吗? 你会拿哪一块呢?

全等三角形的说课稿

全等三角形的说课稿

全等三角形的说课稿一、教学内容分析本次教学内容为“全等三角形”,是初中数学必修二的重点知识之一。

全等三角形是指两个三角形的对应边和对应角相等,因此它们具有相同的形状和大小。

全等三角形在实际生活中广泛应用,例如建筑、制图、测量等领域。

本节课的主要内容包括:全等三角形的定义、判定方法、性质及其应用。

二、教学目标1. 知识与技能:(1)掌握全等三角形的定义和判定方法;(2)了解全等三角形的性质及其应用;(3)能够运用所学知识解决实际问题。

2. 过程与方法:(1)通过观察和思考引导学生发现全等三角形的特征;(2)通过讲解和练习提高学生对全等三角形的理解和掌握;(3)通过实例分析激发学生对数学知识的兴趣。

3. 情感态度与价值观:(1)培养学生认真观察、仔细思考问题的良好习惯;(2)激发学生对数学知识的兴趣和学习热情;(3)培养学生勤奋、认真、负责的学习态度。

三、教学重难点1. 教学重点:(1)全等三角形的定义和判定方法;(2)全等三角形的性质及其应用。

2. 教学难点:(1)如何准确判断两个三角形是否全等;(2)如何应用全等三角形的性质解决实际问题。

四、教学方法与手段1. 教学方法:(1)归纳法:通过观察和思考引导学生发现全等三角形的特征,总结出全等三角形的定义和判定方法。

(2)演绎法:通过讲解和练习提高学生对全等三角形的理解和掌握,引导他们运用所学知识解决实际问题。

(3)启发式教学法:通过实例分析激发学生对数学知识的兴趣,提高他们对数学知识的理解和应用能力。

2. 教具准备:黑板、白板、彩色粉笔、直尺、量角器、图形模型等。

五、教学过程设计1. 导入环节:引出“相似”和“全等”概念(1)通过展示两个相似的图形,引导学生思考相似的含义。

(2)通过展示两个全等的图形,引导学生思考全等的含义。

2. 新课讲解:全等三角形(1)定义:两个三角形的对应边和对应角分别相等时,这两个三角形是全等三角形。

(2)判定方法:① SSS 判定法:若两个三角形的三边分别相等,则它们是全等的。

《全等三角形的判定》说课稿

《全等三角形的判定》说课稿

一、教材分析:学生已经对全等三角形的概念、性质及最基础的判定方法进行了初步的探索,本节是在此基础上对三角形全等的判定方法做进一步的探究。

二、教材的地位和作用:全等三角形是最简单的全等图形,在生活中到处可见,它既体现了“生活中处处有数学”的新课标理念,又易于实现“人人学习有价值的数学”的教学宗旨。

全等三角形是构建“空间与图形”知识大厦的重要奠基石,它在研究四边形和其它图形的性质以及解决实际问题中有着广泛的应用。

探索三角形全等的条件不仅是《全等三角形》知识体系的重要组成部分,而且探索的过程中处处体现着“做数学”的思想。

我们要让学生在做中主动获取知识,在做中体验、感悟三角形全等的数学本质,在做中积累数学活动的经验。

三、教学目标:1、知识目标:(1)掌握已知条件画直角三角形的画图方法;(2)掌握SAS、ASA、 SSS公理和AAS、HL定理;(3)能够运用三角形全等的判定方法进行证明和计算。

2、能力目标:(1)通过画图使学生动手能力得到训练;(2)通过公理和定理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:鼓励学生积极参与讨论交流,敢于发表自己的观点;尊重与理解他人的见解,在交流中获益。

四、教材重难点:1、重点:HL定理的掌握。

2、难点:在探索的过程中培养学生合情推理能力。

五、教法与学法:在课堂教学中运用实践操作法尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。

同时,通过范例和练习培养提高学生解答几何问题的书写格式和应用能力,培养逻辑思维能力。

六、教学流程(一)复习提问,引入课题(1)什么叫做全等三角形?全等三角形有哪些特征?(2)我们已学过识别两个三角形全等的简便方法是什么?(3)如果两个直角三角形有斜边和直角边分别对应相等,这两个直角三角形全等吗?——引入课题设计意图:通过复习提问,使学生轻轻松松的进入了本节课的学习,既交代了本节课要研究和学习的主要问题,使学生对新知识有了期待,为本节课的顺利完成做好了铺垫。

12.2三角形全等的判定(3)ASA、AAS说课稿-2022-2023学年人教版八年级上册数学

12.2三角形全等的判定(3)ASA、AAS说课稿-2022-2023学年人教版八年级上册数学

12.2 三角形全等的判定(3)ASA、AAS说课稿-2022-2023学年人教版八年级上册数学引言《2022-2023学年人教版八年级上册数学》中的第12章是关于三角形的全等的判定的内容,本节课主要介绍了ASA(角边角)和AAS(角角边)两种判定全等的方法。

通过本节课的学习,学生可以了解到三角形全等的几个重要判定方法,提高他们的逻辑思维能力和证明能力。

学情分析在初中数学课程中,全等三角形的判定是非常重要的一部分内容。

在之前的学习中,学生已经学习了SSS、SAS两种判定全等的方法。

本节课主要引入了ASA和AAS这两种新的判定方法,增加了学生的全等三角形判定技巧。

在此之前,学生已经学习过三角形的基本性质、相似三角形的判定和性质等相关内容,为学习本课内容打下了坚实的基础。

在学习ASA和AAS这两种判定方法之前,学生已经学习了角的概念、角的类型和性质等内容。

学生已经具备了对角的认识和理解,并能够运用角的基本知识解决问题。

本节课的学习将进一步拓展学生对角和三角形的认识,培养他们的证明思维和逻辑思维能力。

教学目标•知识目标:了解ASA和AAS这两种判定全等的方法,掌握其应用技巧。

•能力目标:运用ASA和AAS的判定方法解决实际问题,提高证明能力和逻辑思维能力。

•情感目标:培养学生对数学的兴趣和学习的积极态度,培养合作意识和团队精神。

教学重点和难点教学重点•ASA和AAS这两种判定全等的方法的介绍和运用。

•正确理解全等三角形的定义和性质,掌握判定方法的使用技巧。

教学难点•判定问题的证明过程,培养学生的证明能力和逻辑思维能力。

教学过程导入新课1.教师出示两个相似三角形,让学生观察并找出它们的相似性质。

2.引导学生回顾之前学习的相似三角形的判定方法,并复习相似三角形的定义和性质。

提出问题1.教师出示一个例子,让学生观察并思考两个全等三角形的条件。

2.引导学生思考如何判定两个三角形全等。

引入ASA的判定方法1.明确学习目标:学习ASA的判定方法,了解其原理和条件。

人教版数学八年级上册《三角形全等的判定——“边边边”》说课稿(2)

人教版数学八年级上册《三角形全等的判定——“边边边”》说课稿(2)

人教版数学八年级上册《三角形全等的判定——“边边边”》说课稿 (2)一. 教材分析《三角形全等的判定——“边边边”》是人教版数学八年级上册的一节课。

本节课的主要内容是让学生掌握三角形全等的判定方法之一——边边边(SSS)判定方法。

在学习了三角形的基本概念、性质以及三角形的全等概念之后,学生已经具备了一定的数学基础。

本节课通过引导学生探究三角形全等的条件,让学生通过合作、交流、探究的方式,掌握三角形全等的判定方法,为后续学习其他三角形全等判定方法打下基础。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和探究能力,对数学知识有一定的认识和理解。

但部分学生在学习过程中对概念的理解不够深入,容易混淆概念;同时,学生的学习兴趣和学习积极性参差不齐,对数学的学习有一定的恐惧心理。

因此,在教学过程中,需要关注学生的学习兴趣,激发学生的学习积极性,引导学生深入理解概念,提高学生的数学素养。

三. 说教学目标1.知识与技能目标:让学生掌握三角形全等的判定方法之一——边边边(SSS)判定方法,能运用SSS判定方法证明两个三角形全等。

2.过程与方法目标:通过合作、交流、探究的方式,培养学生的动手操作能力、逻辑思维能力和团队协作能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的自主学习能力,使学生在学习过程中体验到数学的乐趣。

四. 说教学重难点1.教学重点:掌握三角形全等的判定方法——边边边(SSS)判定方法。

2.教学难点:理解并运用SSS判定方法证明两个三角形全等。

五. 说教学方法与手段1.教学方法:采用启发式教学法、探究式教学法、合作学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、几何画板等软件,展示三角形全等的判定过程,直观地呈现教学内容。

六. 说教学过程1.导入新课:通过复习三角形的基本概念和性质,引出三角形全等的概念,进而引入本节课的内容——三角形全等的判定方法。

全等三角形的判定说课稿

全等三角形的判定说课稿
(1)一个条件
一边
(2)两个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 × 只有两个条件对应相 两角 × 等的两个三角形不一 两边 × 定全等。
三角
三边 两边一角 两角一边
21
(3)三个条件
65度 65度 35度 80度
35度
80度
22
足下列条件的两个三角形是一定否全等:
× ×
只有一个条件对应相等的 两个三角形不一定全等。
一边一角
三角
(3)三个条件 三边 两边一角
两角一边
15
300
300
9cm
9cm
16
满足下列条件的两个三角形是一定否全等:
(1)一个条件
(2)两个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 ×
一边 两角 两边
三角
(3)三个条件 三边 两边一角
想一想:由上述活动,你有什么发现? 如果两个三角形的三边对应相等,那么这两个 三角形全等。(简记为“边边边”或“sss”)
24
8cm
8cm
25
满足下列条件的两个三角形是否一定全等:
一个条件 一边 一角
× ×
只有一个条件对应相等的 两个三角形不一定全等。
只有两个条件对应相 等的两个三角形不一 定全等。
(1)一个条件
(2)两个条件
(3)三个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 × 只有两个条件对应相 两角 × 等的两个三角形不一 两边 × 定全等。 三角 ×
一边 三边 两边一角
两角一边
23
1.用你手中的细铁丝折一个边长分别是3cm,4cm,6cm的三角形, 把你做的三角形和小组内其他同学做出的三角形进行比较,它们能 重合吗? 2.用你手中的细铁丝,余下1cm,用其余部分折一个边长分别是 3cm,4cm,5cm的三角形,把你做的三角形和其他小组同学做 出的三角形进行比较,它们能重合吗? 3.任取一组能构成三角形的三边长的数据(上面出现的除外), 和小组内同学一起,画出这组数据构成的三角形,各组间比较所 画三角形,它们能重合吗?

12.2 全等三角形的判定:角边角(ASA)说课稿 2022-2023学年人教版八年级数学上册

12.2 全等三角形的判定:角边角(ASA)说课稿 2022-2023学年人教版八年级数学上册

12.2 全等三角形的判定:角边角 (ASA) 说课稿一、教材分析1. 教材内容本说课稿基于《2022-2023学年人教版八年级数学上册》第12章第2节的内容,讲解了全等三角形判断的另一种方法——角边角 (ASA) 判定。

2. 教材地位全等三角形是初中数学中重要的基础内容之一,通过学习全等三角形,可以培养学生观察和推理能力,提高解题能力。

3. 教学目标•理解角边角 (ASA) 判定的基本原理和条件。

•能够运用角边角 (ASA) 判定准确地判断两个三角形是否全等。

•培养学生推理和逻辑思维能力,提高解决实际问题的能力。

4. 教学重点和难点•教学重点:角边角 (ASA) 判定的原理和条件的理解和运用。

•教学难点:通过实例演示,让学生掌握角边角 (ASA) 判定的正确使用方法。

二、教学过程1. 导入新知通过提问,复习前几节学习的全等三角形的判定方法。

•提问1:全等三角形有哪些判定方法?•提问2:通过什么判定两个三角形的角度是否相等?2. 学习新知2.1 角边角 (ASA) 判定的原理通过解析教材中的例题,让学生理解角边角 (ASA) 判定的原理。

例1:已知三角形ABC和三角形DEF,且∠A=∠D,∠C=∠F,AB=DE。

怎样判断它们全等?解析:根据已知条件可以得知∠A=∠D,∠C=∠F,AB=DE,这三个条件正好满足角边角 (ASA) 判定的条件,因此可以判断三角形ABC全等于三角形DEF。

2.2 角边角 (ASA) 判定的条件角边角 (ASA) 判定的条件是:若两个三角形的一个角等于另一个三角形的对应角,两个边分别相等或比例相等,则这两个三角形全等。

通过教材中的例题进行讲解,并给出具体的三角形判定方法。

例2:如何利用角边角 (ASA) 判定判断两个三角形全等?解析:对角边角 (ASA) 判定来说,需要满足三个条件:一个角等于另一个角,两个边分别相等或比例相等。

首先,我们要找到两个角相等;其次,我们要找到两个边分别相等或比例相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于《全等三角形的判定(角边角)》的说课稿
各位评委、各位老师:
大家好!今天我说课的题目是华东师大版实验教科书《数学》八年级上册第13章《全等三角形》第2节第三课时《全等三角形的判定方法——角边角》。

下面,我将从教材分析、教学目标分析、教法学法分析及教学过程等几个方面对本课的设计进行说明。

一、教材分析(说教材):
1、教材所处的地位和作用:
本节在知识结构上,它是同学们在学习了三角形有关要素、全等图形的概念的学习以及学习第一种识别方法“S.A.S”的基础上,进一步学习三角形全等的判定方法,为后续的学习内容奠定了基础,是初中数学的重要内容。

在能力培养上,无论是动手操作能力、逻辑思维能力,还是分析问题、解决问题的能力,都可在全等三角形的教学中得以培养和提高。

利用全等三角形可以证明线段相等、角相等,学好全等三角形对相似三角形的学习打下良好的基础,因此,全等三角形的教学对以后的学习是至关重要的。

2、教学目标:
(1)让学生在探究的过程中得出“A.S.A”公理和推导出“A.A.S”定理。

(2)使学生会运用“A.S.A”公理和“A.A.S”定理解决实际问题。

3、教学重点、难点:
本着课程目标,在充分理解教材的基础上,我确立了如下的教学重点、难点。

教学重点:理解应用“角边角公理”及其推论,并能利用它们判定两个三角形全等。

教学难点:如何引导学生探索发现“A.S.A”公理和推导出“A.A.S”定理并灵活运用。

下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
1、教学手段:
根据本节课的教学特点和学生的实际情况:本节课我采用“创设问题情境→引导探索→发现归纳→运用与拓展”来展开,并用多媒体辅助演示和训练,在探索三角形全等判别方法的过程中,不是简单地让学生去发现课本上给出的判别方法,而是让学生通过动手操作经历知识形成,从而调动、引导学生发现三角形全等的判别方法,给学生创设自主探索、合作交流、独立获取知识的机会,进而让学生更好地理解和掌握三角形全等的判定方法, 教师给于充分肯定。

通过本节课的教学,让学生学会自己探索知识,发现掌握、主动获取知识的能力,逐步养成通过合作交流形成勇于探索的意识,从而养成尊重客观事实和形成质疑的习惯。

2、教学方法:
明确探究方向,创设情境,激发学生的兴趣,让学生明白数学来源于生活,服务于生活。

使学生都能获得学习数学的兴趣和热情,体现了新课程标准“学生是数学学习的主人”的理念。

引导学生从不同角度去观察,培养观察能力、创新能力. 鼓励和提倡解决问题策略的多样化,引导学生与他人合作交流,取长补短,养成良好的学习习惯.
三、学情分析:(说学法)
其内容本身有一定难度,农村中学学生的学习水平参差不齐,在七年级时曾对三角形的中线、角平分线和高都进行了学习和应用,并不是所有学生都掌握的很好,由于基础教育发展的不均衡,知识的储备量有限,甚至有的同学对前面的知识有可能已经忘记了或者有些混淆,更有的同学对数学的学习已经失去兴趣或信心,但对八年级的学生却又已经具备了一定的学习能力。

四、教学过程:
1、回顾与探索:
三角形全等判定方法(一) 如果两个三角形的两条边及其夹角分别对应相等时,两个三角形一定全等.简记为S.A.S (或边角边)
如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?如下图:
2、设计意图: 激发学生探究欲望,引起有意注意。

引导学生主动思考和联想,联系生活实际。

小明踢球时不慎把一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形玻璃呢?如果可以,带哪块去合适呢?
3、探索:
如下图,已知两个角和一条线段,以这两个角为内角,以这条线段为这两个角的夹边,画一个三角形.(两人一组)
把你们画的三角形与其他同学画的三角形进行比较,所有的三角形都全等吗?
4、仔细观察:在△ABC 与△A'B'C'中,若 AB=A…B', ∠A=∠A', ∠B=∠B', 那么△ABC 与△A'B'C'全等吗?
5、实践结论: 三角形全等判定(二) 如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.(公理) 简记为 (A.S.A.) 或角边角
设计意图
:让学生规范的动手作图,通过观察、比较、探索、归纳出结论的过程,体验到学习C
B
A C'
B' A'
数学的成就感。

从而有意识地培养学生的探索精神和探索能力,把自主探索的权力还给学生。

培养观察、分析和概括能力。

结合多媒体展示三角形的在一定条件下全等的过程,让学生通过直观感知、操作确认等实践活动、加深对知识的理解和感受。

在这用多媒体展示,突破了传统的教学,使知识变得更为直观,易于学生整体感知。

6、例题讲解:
如右图,已知∠ABC= ∠DCB,
∠ACB= ∠DBC,
求证:△ABC≌△DCB。

证明:
在△ABC和△DCB中,
∠ABC=∠ DCB(已知),BC=CB(公共边),∠ACB=∠ DBC(已知)
∴△ABC≌△DCB(A.S.A)。

7、练习:如图,已知∠ABC=∠D,∠ACB=∠CBD.判断图中的两个三角形是否全等,并说明理由.
答:不全等。

因为虽然有两组内角相等,且BC=BC,但都不是两个三角形两组内角的夹边,所以不全等
五、作业布置:
以上是我对本节课的理解,不足之处,请各位评委、老师指正。

谢谢大家!。

相关文档
最新文档