第一章集合与常用逻辑用语 第四课时

合集下载

高中数学第一章_集合与常用逻辑用语

高中数学第一章_集合与常用逻辑用语

第一章⎪⎪⎪集合与常用逻辑用语第一节集__合1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性. (2)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (3)集合的三种表示方法:列举法、描述法、图示法. (4)五个特定的集合:集合 自然数集正整数集 整数集 有理数集实数集 符号NN *或N +ZQR2.集合间的基本关系表示关系文字语言符号语言 记法基本关系子集集合A 的元素都是集合B 的元素x ∈A ⇒x ∈B A ⊆B 或B ⊇A真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不属于AA ⊆B ,且存在x 0∈B ,x 0∉A A B 或B A相等 集合A ,B 的元素完全相同 A ⊆B ,B ⊆A A =B 空集不含任何元素的集合.空集是任何集合A 的子集任意的x ,x ∉∅,∅⊆A∅3.集合的基本运算表示 运算 文字语言符号语言 图形语言 记法交集属于集合A 且属于集合B 的元素组成的集合{x |x ∈A ,且x ∈B }A ∩B并集属于集合A 或属于集合B 的元素组成的集合{x |x ∈A ,或x ∈B }A ∪B补集全集U 中不属于集合A 的元{x |x ∈U ,且x ∉A }∁U A素组成的集合4.集合问题中的几个基本结论 (1)集合A 是其本身的子集,即A ⊆A ;(2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ;(3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . (4)A ∩B =A ⇒A ⊆B ,A ∪B =B ⇒A ⊆B . [小题体验]1.已知集合A ={1,2},B ={x |0<x <5,x ∈N },则满足A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4答案:D2.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________. 答案:53.(2018·江苏高考)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 解析:A ∩B ={0,1,2,8}∩{-1,1,6,8}={1,8}. 答案:{1,8}1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件. 2.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系. 3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身. 4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[小题纠偏]1.(2019·浙江名校联考)已知∁R M ={x |ln|x |>1},N =⎩⎨⎧⎭⎬⎫y ⎪⎪y =1x ,x >0,则M ∪N =( ) A .(0,e] B .[-e ,+∞) C .(-∞,-e]∪(0,+∞)D .[-e ,e]解析:选B 由ln|x |>1得|x |>e ,∴M =[-e ,e].N =(0,+∞),∴M ∪N =[-e ,+∞).故选B. 2.若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可能取值组成的集合为________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,所以2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}3.已知集合A ={0, x +1,x 2-5x },若-4∈A ,则实数x 的值为________. 解析:∵-4∈A ,∴x +1=-4或x 2-5x =-4. ∴x =-5或x =1或x =4.若x =1,则A ={0, 2,-4},满足条件; 若x =4,则A ={0, 5,-4},满足条件; 若x =-5,则A ={0,-4,50},满足条件. 所以x =1或x =4或-5. 答案:1或4或-5考点一 集合的基本概念(基础送分型考点——自主练透)[题组练透]1.下列命题正确的有( ) ①很小的实数可以构成集合;②(易错题)集合{}y |y =x 2-1与集合{(x ,y )|y =x 2-1}是同一个集合; ③1,32,64,⎪⎪⎪⎪-12,0.5这些数组成的集合有5个元素; ④集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个D .3个解析:选A 由题意得,①不满足集合的确定性,故错误;②两个集合,一个是数集,一个是点集,故错误;③中⎪⎪⎪⎪-12=0.5,出现了重复,不满足集合的互异性,故错误;④不仅仅表示的是第二、四象限的点,还可表示原点,故错误.综上,没有正确命题,故选A.2.已知a >0,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,4,b a ={a -b,0,a 2},则a 2+b 2的值为( )A .2B .4C .6D .8解析:选B 由已知得a ≠0,则ba =0,所以b =0,于是a 2=4,即a =2或a =-2,因为a >0,所以a =2,故a 2+b 2=22+02=4.3.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( ) A.92 B.98C .0D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98.4.(易错题)(2019·江西重点中学协作体联考)设集合A ={1,2,3},B ={2,3,4} ,M ={x |x =ab ,a ∈A ,b ∈B },则M 中的元素个数为________.解析:结合题意列表计算M 中所有可能的值如下:观察可得:M ={2,3,4,6,8,9,12},据此可知M 中的元素个数为7. 答案:7[谨记通法]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性. 考点二 集合间的基本关系(重点保分型考点——师生共研)[典例引领]1.已知集合M ={1,2,3,4},则集合P ={x |x ∈M 且2x ∉M }的子集有( ) A .8个 B .4个 C .3个D .2个解析:选B 由题意,得P ={3,4},所以集合P 的子集有22=4个. 2.已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若B ⊆A ,则a =( ) A .-12或1B .2或-1C .-2或1或0D .-12或1或0解析:选D 集合A ={x |x 2+x -2=0}={-2,1}.当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.[由题悟法]集合间基本关系的两种判定方法和一个关键[即时应用]1.集合{a ,b ,c ,d ,e }的真子集的个数为( ) A .32 B .31 C .30D .29解析:选B 因为集合有5个元素,所以其子集的个数为25=32个,其真子集的个数为25-1=31个. 2.已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________. 解析:当m ≤0时,B =∅,显然B ⊆A . 当m >0时, ∵A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .∴0<m ≤1.综上所述m 的取值范围为(-∞,1]. 答案:(-∞,1]考点三 集合的基本运算(题点多变型考点——多角探明) [锁定考向]集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有: (1)集合的运算;(2)利用集合运算求参数; (3)新定义集合问题.[题点全练]角度一:集合的运算1.(2018·北京高考)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2}D .{-1,0,1,2}解析:选A ∵A ={x ||x |<2}={x |-2<x <2},B={-2,0,1,2},∴A∩B={0,1}.故选A.2.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:选B∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.则∁R A={x|-1≤x≤2}.故选B.角度二:利用集合运算求参数3.(2019·浙江联盟校联考)已知集合P={x|-1<x<1},Q={x|0<x<a},若P∪Q={x|-1<x<2},则实数a的值为()A.1 B.2C.12D.32解析:选B因为P={x|-1<x<1},Q={x|0<x<a},所以当a≤1时,P∪Q={x|-1<x<1},不符合题意;当a>1时,P∪Q={x|-1<x<a},结合P∪Q={x|-1<x<2},可得a=2.角度三:新定义集合问题4.如果集合A,B,同时满足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就称有序集对(A,B)为“好集对”.这里有序集对(A,B)是指当A≠B时,(A,B)和(B,A)是不同的集对,那么“好集对”一共有()个()A.5个B.6个C.7个D.8个解析:选B因为A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},所以当A={1,2}时,B={1,3,4};当A={1,3}时,B={1,2,4};当A={1,4}时,B={1,2,3};当A={1,2,3}时,B={1,4};当A={1,2,4}时,B={1,3};当A={1,3,4}时,B={1,2}.所以满足条件的“好集对”一共有6个,故选B.[通法在握]解集合运算问题4个技巧[演练冲关]1.(2019·浙江十校联盟适考)已知集合A={x|1<x<4},B={x∈Z|x2-6x<0},则(∁R A)∩B=() A.{1,4} B.{4,5}C.{1,4,5} D.{2,3}解析:选C法一:由x2-6x<0可得0<x<6,所以B={1,2,3,4,5},又∁R A={x|x≤1或x≥4},所以(∁R A)∩B={1,4,5}.法二:因为求的是(∁R A)∩B,故排除D,又1,5∈∁R A,1,5∈B,故选C.2.(2019·长沙模拟)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为() A.1 B.2C.3 D.1或2解析:选B当a=1时,x2-3x+1=0,无整数解,则A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,A∩B=∅.因此实数a=2.3.(2019·杭州高三四校联考)设集合A={x|(x-3)(x-a)=0,a∈R},B={x|(x-1)(x-4)=0},则A∪B 的子集个数最多为()A.2 B.4C.8 D.16解析:选D由题意可知,要使A∪B的子集个数最多,则需A∪B中的元素个数最多,此时a≠1,a≠3,且a≠4,即集合A={3,a},B={1,4},A∪B={1,3,4,a},故A∪B的子集最多有24=16个.4.如图所示的Venn图中,A,B是非空集合,定义集合A B为阴影部分表示的集合.若x,y∈R,A={x|y=2x-x2},B={y|y=3x,x>0},则A B为()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2} D.{x|0≤x≤1或x>2}解析:选D因为A={x|0≤x≤2},B={y|y>1},A∪B={x|x≥0},A∩B={x|1<x≤2},所以A B =∁A∪B(A∩B)={x|0≤x≤1或x>2},故选D.一抓基础,多练小题做到眼疾手快1.(2019·浙江考前热身联考)已知集合M={x|y=2x-x2},N={x|-1<x<1},则M∪N=() A.[0,1)B.(-1,2)C.(-1,2] D.(-∞,0]∪(1,+∞)解析:选C法一:易知M={x|0≤x≤2},又N={x|-1<x<1},所以M∪N=(-1,2].故选C.法二:取x=2,则2∈M,所以2∈M∪N,排除A、B;取x=3,则3∉M,3∉N,所以3∉M∪N,排除D,故选C.2.(2019·浙江三地联考)已知集合P={x|||x<2},Q={x|-1≤x≤3},则P∩Q=()A.[-1,2) B.(-2,2)C.(-2,3] D.[-1,3]解析:选A由|x|<2,可得-2<x<2,所以P={x|-2<x<2},所以P∩Q=[-1,2).3.(2018·嘉兴期末测试)已知集合P={x|x<1},Q={x|x>0},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.∁R P⊆Q解析:选D由已知可得∁R P=[1,+∞),所以∁R P⊆Q.故选D.4.(2018·浙江吴越联盟第二次联考)已知集合M={0,1,2,3,4},N={2,4,6},P=M∩N,则P的子集有________个.解析:集合M={0,1,2,3,4},N={2,4,6},P=M∩N={2,4},则P的子集有∅,{2},{4},{2,4},共4个.答案:45.已知集合A={x|x≥3},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:因为集合A={x|x≥3},B={x|x≥m},且A∪B=A,所以B⊆A,如图所示,所以m≥3.答案:[3,+∞)二保高考,全练题型做到高考达标1.(2019·杭州七校联考)已知集合A={x|x2>1},B={x|(x2-1)(x2-4)=0},则集合A∩B中的元素个数为()A.1 B.2C.3 D.4解析:选B A={x|x<-1或x>1},B={-2,-1,1,2},A∩B={-2,2},故选B.2.(2019·浙江六校联考)已知集合U={x|y=3x},A={x|y=log9x},B={y|y=-2x}则A∩(∁U B)=()A.∅B.RC.{x|x>0} D.{0}解析:选C由题意得,U=R,A={x|x>0},因为y=-2x<0,所以B={y|y<0},所以∁U B={x|x≥0},故A∩(∁U B)={x|x>0}.故选C.3.(2019·永康模拟)设集合M={x|x2-2x-3≥0},N={x|-3<x<3},则()A.M⊆N B.N⊆MC.M∪N=R D.M∩N=∅解析:选C由x2-2x-3≥0,解得x≥3或x≤-1,所以M={x|x≤-1或x≥3},所以M∪N=R.4.(2019·宁波六校联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)解析:选B∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a<0,解得0<a <3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.5.(2018·镇海中学期中)若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg2-xx ,N ={x |x <1},则M ∪N =( ) A .(0,1) B .(0,2) C .(-∞,2)D .(0,+∞)解析:选C 集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg2-xx ={x |0<x <2},N ={x |x <1}.M ∪N ={x |x <2}=(-∞,2).故选C.6.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z },则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z }={-1,0}. 答案:{-1,0}7.(2018·嘉兴二模)已知集合A ={x |-1≤x ≤2},B ={x |x 2-4x ≤0},则A ∪B =________,A ∩(∁R B )=________.解析:因为B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∪B ={x |-1≤x ≤4};因为∁R B ={x |x <0或x >4},所以A ∩(∁R B )={x |-1≤x <0}.答案:{x |-1≤x ≤4} {x |-1≤x <0}8.设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________. 解析:由图可知,当y =-x 往右移动到阴影区域时,才满足条件,所以b ≥2;要使z =x +2y 取得最大值,则过点(0,b ),有0+2b =9⇒b =92.答案:(1)[2,+∞) (2)929.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________. 解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]10.已知集合A ={x |(x +2m )(x -m +4)<0},其中m ∈R ,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-x x +2>0. (1)若B ⊆A ,求实数m 的取值范围; (2)若A ∩B =∅,求实数m 的取值范围. 解:(1)集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-x x +2>0={x |-2<x <1}.当A =∅时,m =43,不符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为B ⊆A ,所以⎩⎪⎨⎪⎧ m >43,-2m ≤-2,m -4≥1,即⎩⎪⎨⎪⎧m >43,m ≥1,m ≥5,所以m ≥5.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为B ⊆A ,所以⎩⎪⎨⎪⎧m <43,-2m ≥1,m -4≤-2,即⎩⎪⎨⎪⎧m <43,m ≤-12,m ≤2,所以m ≤-12.综上所述,实数m 的取值范围为⎝⎛⎦⎤-∞,-12∪[5,+∞). (2)由(1)知,B ={x |-2<x <1}. 当A =∅时,m =43,符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为A ∩B =∅,所以-2m ≥1或者m -4≤-2, 即m ≤-12或者m ≤2,所以43<m ≤2.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为A ∩B =∅,所以m -4≥1或者-2m ≤-2, 即m ≥5或者m ≥1,所以1≤m <43.综上所述,实数m 的取值范围为[1,2]. 三上台阶,自主选做志在冲刺名校1.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b 时,b +c +d 等于( )A .1B .-1C .0D .i解析:选B ∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i ,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i ,d =-i 或c =-i ,d =i ,∴b +c +d =(-1)+0=-1.2.对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-94,x ∈R ,B ={x |x <0,x ∈R },则A ⊕B =( )A.⎝⎛⎭⎫-94,0B.⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) 解析:选C 依题意得A -B ={x |x ≥0,x ∈R },B -A =⎩⎨⎧x ⎪⎪⎭⎬⎫x <-94,x ∈R ,故A ⊕B =⎝⎛⎭⎫-∞,-94∪[0,+∞).故选C.3.已知函数f (x )=x -3-17-x的定义域为集合A ,且B ={x ∈Z |2<x <10},C ={x ∈R |x <a 或x >a +1}.(1)求:A 和(∁R A )∩B ;(2)若A ∪C =R ,求实数a 的取值范围. 解:(1)要使函数f (x )=x -3-17-x, 应满足x -3≥0,且7-x >0,解得3≤x <7, 则A ={x |3≤x <7}, 得到∁R A ={x |x <3或x ≥7},而B ={x ∈Z |2<x <10}={3,4,5,6,7,8,9}, 所以(∁R A )∩B ={7,8,9}.(2)C ={x ∈R |x <a 或x >a +1},要使A ∪C =R , 则有a ≥3,且a +1<7,解得3≤a <6. 故实数a 的取值范围为[3,6).第二节命题及其关系、充分条件与必要条件1.命题概念 使用语言、符号或者式子表达的,可以判断真假的陈述句特点 (1)能判断真假;(2)陈述句分类真命题、假命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为B p 是q 的充分不必要条件 p ⇒q 且q ⇒/p A 是B 的真子集 集合与充要条件p 是q 的必要不充分条件p ⇒/ q 且q ⇒pB 是A 的真子集p 是q 的充要条件 p ⇔q A =B p 是q 的既不充分也不必要条件 p ⇒/ q 且q ⇒/pA ,B 互不包含[小题体验]1.下列命题是真命题的是( )A .若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域上是减函数B .命题“若xy =0,则x =0”的否命题C .“m =3”是“直线(m +3)x +my -2=0与mx -6y +5=0垂直”的充要条件D .命题“若cos x =cos y ,则x =y ”的逆否命题 答案:B2.(2019·温州高考适应性测试)已知α,β∈R ,则“α>β”是“cos α>cos β ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选D α>β ⇒/ cos α>cos β,如α=π3,β=π6,π3>π6,而cos π3<cos π6;cos α>cos β ⇒/ α>β,如α=π6,β=π3,cos π6>cos π3,而π6<π3.故选D.3.设a ,b 是向量,则命题“若a =-b ,则|a |=| b |”的逆否命题为:________. 答案:若|a |≠|b |,则a ≠-b1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.(2019·杭州模拟)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B2.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A,∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.答案:在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角考点一四种命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2-3x-4=0”为真命题B.“若x≠4,则x2-3x-4≠0”为真命题C.“若x≠4,则x2-3x-4≠0”为假命题D.“若x=4,则x2-3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2-3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②(易错题)“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.(2019·杭州高三四校联考)“a>-1”是“x2+ax+14>0(x∈R)”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A若x2+ax+14>0(x∈R),则a2-1<0,即-1<a<1,所以“a>-1”是“x2+ax+14>0(x∈R)”的必要不充分条件.故选A.2.(2019·杭州高三质检)设数列{a n}的通项公式为a n=kn+2(n∈N*),则“k>2”是“数列{a n}为单调递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A法一:因为a n=kn+2(n∈N*),所以当k>2时,a n+1-a n=k>2,则数列{a n}为单调递增数列.若数列{a n}为单调递增数列,则a n+1-a n=k>0即可,所以“k>2”是“数列{a n}为单调递增数列”的充分不必要条件,故选A.法二:根据一次函数y=kx+b的单调性知,“数列{a n}为单调递增数列”的充要条件是“k>0”,所以“k>2”是“数列{a n}为单调递增数列”的充分不必要条件,故选A.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.设a >0,b >0,则“a 2+b 2≥1”是“a +b ≥ab +1”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 因为a >0,b >0,所以a +b >0,ab +1>0,故不等式a +b ≥ab +1成立的充要条件是(ab +1)2≤(a +b )2,即a 2+b 2≥a 2b 2+1.显然,若a 2+b 2≥a 2b 2+1,则必有a 2+b 2≥1,反之则不成立,所以a 2+b 2≥1是a 2+b 2≥a 2b 2+1成立的必要不充分条件,即a 2+b 2≥1是a +b ≥ab +1成立的必要不充分条件.2.(2019·浙江期初联考)若a ,b ∈R ,使|a |+|b |>4成立的一个充分不必要条件是( ) A .|a +b |≥4 B .|a |≥4 C .|a |≥2且|b |≥2D .b <-4解析:选D 对选项A ,若a =b =2,则|a |+|b |=2+2≥4,不能推出|a |+|b |>4;对选项B ,若a =4≥4,b =0,此时不能推出|a |+|b |>4;对选项C ,若a =2≥2,b =2≥2,此时不能推出|a |+|b |>4;对选项D ,由b <-4可得|a |+|b |>4,但由|a |+|b |>4得不到b <-4.故选D.3.(2019·宁波模拟)已知四边形ABCD 为梯形,AB ∥CD ,l 为空间一直线,则“l 垂直于两腰AD ,BC ”是“l 垂直于两底AB ,DC ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 因为四边形ABCD 是梯形,且AB ∥CD ,所以腰AD ,BC 是交线,由直线与平面垂直的判定定理可知,当l 垂直于两腰AD ,BC 时,l 垂直于ABCD 所在平面,所以l 垂直于两底AB ,CD ,所以是充分条件;当l 垂直于两底AB ,CD ,由于AB ∥CD ,所以l 不一定垂直于ABCD 所在平面,所以l 不一定垂直于两腰AD ,BC ,所以不是必要条件.所以是充分不必要条件.考点三 充分必要条件的应用(重点保分型考点——师生共研)[典例引领]若不等式x -m +1x -2m<0成立的一个充分不必要条件是13<x <12,则实数m 的取值范围是______________.解析:令A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -m +1x -2m <0,B =⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. 因为不等式x -m +1x -2m <0成立的充分不必要条件是13<x <12,所以B ⊆A .①当m -1<2m ,即m >-1时,A ={x |m -1<x <2m }.由B ⊆A 得⎩⎪⎨⎪⎧ m -1≤13,2m ≥12,m >-1,解得14≤m ≤43;②当m -1=2m ,即m =-1时,A =∅,不满足B ⊆A ; ③当m -1>2m ,即m <-1时,A ={x |2m <x <m -1}. 由B ⊆A 得⎩⎪⎨⎪⎧2m ≤13,m -1≥12,m <-1,此时m 无解.综上,m 的取值范围为⎣⎡⎦⎤14,43. 答案:⎣⎡⎦⎤14,43[由题悟法]根据充要条件求参数的值或取值范围的关键点(1)先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]1.(2019·杭州名校大联考)已知条件p :|x +1|>2,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]解析:选A 由|x +1|>2,可得x >1或x <-3,所以綈p :-3≤x ≤1;又綈q :x ≤a .因为綈p 是綈q 的充分不必要条件,所以a ≥1.2.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.解析:命题p :x >m +3或x <m , 命题q :-4<x <1.因为p 是q 成立的必要不充分条件, 所以m +3≤-4或m ≥1, 故m ≤-7或m ≥1.答案:(-∞,-7]∪[1,+∞)一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.设a ,b ∈R ,则“a 3>b 3且ab <0”是“1a >1b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由a 3>b 3,知a >b ,由ab <0,知a >0>b ,所以此时有1a >1b ,故充分性成立;当1a >1b 时,若a ,b 同号,则a <b ,若a ,b 异号,则a >b ,所以必要性不成立.故选A. 3.设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 若φ=0,则f (x )=cos x 为偶函数;若f (x )=cos(x +φ)(x ∈R )为偶函数,则φ=k π(k ∈Z ).故“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.4.命题p :“若x 2<1,则x <1”的逆命题为q ,则p 与q 的真假性为( ) A .p 真q 真 B .p 真q 假 C .p 假q 真D .p 假q 假解析:选B q :若x <1,则x 2<1. ∵p :x 2<1,则-1<x <1.∴p 真,当x <1时,x 2<1不一定成立,∴q 假,故选B.5.若x >5是x >a 的充分条件,则实数a 的取值范围为( ) A .(5,+∞) B .[5,+∞) C .(-∞,5)D .(-∞,5] 解析:选D 由x >5是x >a 的充分条件知,{x |x >5}⊆{x |x >a },∴a ≤5,故选D. 二保高考,全练题型做到高考达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析:选B 依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”.2.命题“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”为真命题的一个必要不充分条件是( )A .a ≥4B .a ≤4C .a ≥3D .a ≤3解析:选C 即由“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”可推出选项,但由选项推不出“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”.因为x ∈[1,2],所以x 2∈[1,4],x 2-a ≤0恒成立,即x 2≤a ,因此a ≥4;反之亦然.故选C.3.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0, 即m >1.∴③是真命题;④原命题为真,逆否命题也为真.4.(2019·浙江名校联考信息卷)已知直线l 的斜率为k ,倾斜角为θ,则“0<θ≤π4”是“k ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当0<θ≤π4时,0<k ≤1;反之,当k ≤1时,0≤θ≤π4或π2<θ<π.故“0<θ≤π4”是“k ≤1”的充分不必要条件,故选A.5.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,∴a >4是命题为真的充分不必要条件.6.命题“若a >b ,则ac 2>bc 2(a ,b ∈R )”,否命题的真假性为________.解析:命题的否命题为“若a ≤b ,则ac 2≤bc 2”. 若c =0,结论成立.若c ≠0,不等式ac 2≤bc 2也成立. 故否命题为真命题. 答案:真 7.下列命题:①“a >b ”是“a 2>b 2”的必要条件;②“|a |>|b |”是“a 2>b 2”的充要条件;③“a >b ”是“a +c >b +c ”的充要条件.其中是真命题的是________(填序号).解析:①a >b ⇒/ a 2>b 2,且a 2>b 2⇒/ a >b ,故①不正确; ②a 2>b 2⇔|a |>|b |,故②正确;③a >b ⇒a +c >b +c ,且a +c >b +c ⇒a >b ,故③正确. 答案:②③8.已知α,β∈(0,π),则“sin α+sin β<13”是“sin(α+β)<13”的________条件.解析:因为sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以若sin α+sin β<13,则有sin(α+β)<13,故充分性成立;当α=β=π2时,有sin(α+β)=sin π=0<13,而sin α+sin β=1+1=2,不满足sin α+sin β<13,故必要性不成立.所以“sin α+sin β<13”是“sin(α+β)<13”的充分不必要条件.答案:充分不必要 9.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是________.解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ 3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎡⎦⎤13,38. 答案:⎣⎡⎦⎤13,3810.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,∵x ∈⎣⎡⎦⎤34,2, ∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1]解析:选B 由3x +1<1得,3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,解得x <-1或x >2,由p 是q的充分不必要条件知,k >2,故选B.2.在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[k ]={4n +k |n ∈Z },k =0,1,2,3,则下列结论正确的为________(填序号).①2 018∈[2];②-1∈[3];③Z =[0]∪[1]∪[2]∪[3];④命题“整数a ,b 满足a ∈[1],b ∈[2],则a +b ∈[3]”的原命题与逆命题都正确;⑤“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”.解析:由“类”的定义[k ]={4n +k |n ∈Z },k =0,1,2,3,可知,只要整数m =4n +k ,n ∈Z ,k =0,1,2,3,则m ∈[k ],对于①中,2 018=4×504+2,所以2 018∈[2],所以符合题意;对于②中,-1=4×(-1)+3,所以符合题意;对于③中,所有的整数按被4除所得的余数分为四类,即余数分别为0,1,2,3的整数,即四“类”[0],[1],[2],[3],所以Z =[0]∪[1]∪[2]∪[3],所以符合题意;对于④中,原命题成立,但逆命题不成立,因为若a +b ∈[3],不妨设a =0,b =3,则此时a ∉[1]且b ∉[2],所以逆命题不成立,所以不符合题意;对于⑤中,因为“整数a ,b 属于同一类”,不妨设a =4m +k ,b =4n +k ,m ,n ∈Z ,且k =0,1,2,3,则a -b =4(m -n )+0,所以a -b ∈[0];反之,不妨设a =4m +k 1,b =4n +k 2,m ,n ∈Z ,k 1=0,1,2,3,k 2=0,1,2,3,则a -b =4(m -n )+(k 1-k 2),若a -b ∈[0],则k 1-k 2=0,即k 1=k 2,所以整数a ,b 属于同一类,故“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”,所以符合题意.答案:①②③⑤3.已知全集U =R ,非空集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -2x -(3a +1)<0,B ={x |(x -a )(x -a 2-2)<0,命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,若p 真q 假,求x 的取值范围; (2)若q 是p 的必要条件,求实数a 的取值范围.解:(1)当a =12时,A ={x |2<x <37},B ={x |12<x <146},因为p 真q 假. 所以(∁U B )∩A ={x |2<x ≤12}, 所以x 的取值范围为(2,12].(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B . 因为a 2+2>a ,所以B ={x |a <x <a 2+2}. 当3a +1>2,即a >13时,A ={x |2<x <3a +1},应满足条件⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,不符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2},应满足条件⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2解得-12≤a <13;综上所述,实数a 的取值范围为⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.命题点一 集合及其运算1.(2018·浙江高考)已知全集U ={1,2,3,4,5},A ={1,3},则∁U A =( ) A .∅ B .{1,3} C .{2,4,5}D .{1,2,3,4,5}解析:选C ∵U ={1,2,3,4,5},A ={1,3}, ∴∁U A ={2,4,5}.2.(2018·天津高考)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}解析:选B ∵全集为R ,B ={x |x ≥1}, ∴∁R B ={x |x <1}. ∵集合A ={x |0<x <2}, ∴A ∩(∁R B )={x |0<x <1}.3.(2017·浙江高考)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2)解析:选A 根据集合的并集的定义,得P ∪Q =(-1,2).4.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:选C ∵A ={x |x -1≥0}={x |x ≥1},B ={0,1,2},∴A ∩B ={1,2}.5.(2018·全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5D .4解析:选A 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.6.(2017·江苏高考)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________. 解析:因为a 2+3≥3,所以由A ∩B ={1}得a =1,即实数a 的值为1. 答案:1命题点二 充要条件1.(2016·浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析:选A∵f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A.2.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.3.(2015·浙江高考)设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选D 特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0⇒/ ab >0; 当a =-2,b =-1时,ab >0,但a +b <0, 所以ab >0⇒/ a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.4.(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由⎪⎪⎪⎪x -12<12,得0<x <1, 则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12, 即“x 3<1”⇒ / “⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. 5.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6, 故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”. 故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 6.(2018·北京高考)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2, 即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b . 又a ,b 均为单位向量,所以a 2=b 2=1,所以a ·b =0,能推出a ⊥b .由a ⊥b ,得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 命题点三 四种命题及其关系1.(2015·山东高考)设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.2.(2018·北京高考)能说明“若a >b ,则1a <1b ”为假命题的一组a ,b 的值依次为________. 解析:只要保证a 为正b 为负即可满足要求. 当a >0>b 时,1a >0>1b .答案:1,-1(答案不唯一)3.(2017·北京高考)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为________.解析:因为“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题, 则它的否定“设存在实数a ,b ,c .若a >b >c ,则a +b ≤c ”是真命题. 由于a >b >c ,所以a +b >2c ,又a +b ≤c ,所以c <0. 因此a ,b ,c 依次可取整数-1,-2,-3,满足a +b ≤c . 答案:-1,-2,-3(答案不唯一)。

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。

新教材 人教A版高中数学必修第一册 第一章 集合与常用逻辑用语 知识点考点汇总及解题方法规律提炼

新教材 人教A版高中数学必修第一册 第一章 集合与常用逻辑用语 知识点考点汇总及解题方法规律提炼

第一章集合与常用逻辑用语1.1.1集合的概念 (1)1.1.2集合的表示 (4)1.2集合间的基本关系 (8)1.3.1并集与交集 (13)1.3.2补集及集合运算的综合应用 (17)1.4.1充分条件与必要条件 (20)1.4.2充要条件 (24)1.5.1全称量词与存在量词 (28)1.5.2全称量词命题与存在量词命题的否定 (32)1.1.1集合的概念要点整理1.元素与集合的概念及表示(1)元素:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.2.元素的特性(1)确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.(2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.(3)无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.温馨提示:集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是数、点,也可以是一些人或一些物.3.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.温馨提示:(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.4.常用的数集及其记法题型一集合的基本概念【典例1】判断下列每组对象的全体能否构成一个集合?(1)接近于2019的数;(2)大于2019的数;(3)育才中学高一(1)班视力较好的同学;(4)方程x2-2=0在实数范围内的解;(5)函数y=x2图象上的点.[思路导引] 构成集合的关键是要有明确的研究对象,即元素不能模糊不清、模棱两可.[解] (1)(3)由于标准不明确,故不能构成集合;(2)(4)(5)能构成集合.对集合含义的理解给定一个集合,那么任何一个元素在不在这个集合中就确定了,所谓“确定”,是指所有被“研究的对象”都是这个集合的元素,没有被“研究的对象”都不是这个集合的元素.题型二元素与集合的关系【典例2】(1)下列关系中,正确的有( )①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个 B.2个 C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.[思路导引] 判断一个元素是否为某集合的元素,关键是抓住集合中元素的特征.[解析] (1)12是实数;2是无理数;|-3|=3,是自然数;|-3|=3,是无理数.故①②③正确,选C.(2)当x=0时,63-0=2;当x=1时,63-1=3;当x=2时,63-2=6;当x≥3时不符合题意,故集合A中元素有0,1,2.[答案] (1)C (2)0,1,2判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.题型三集合中元素的特性【典例3】已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.[思路导引] 由集合中元素的确定性和互异性切入.[解析] 若a=1,则a2=1,此时集合A中两元素相同,与互异性矛盾,故a≠1;若a2=1,则a=-1或a=1(舍去),此时集合A中两元素为-1,1,故a=-1.综上所述a=-1.[答案] -1[变式] (1)本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.(2)本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?[解] (1)若a=2,则a2=4,符合元素的互异性;若a2=2,则a=2或a=-2,符合元素的互异性.所以a的取值为2,2,- 2.(2)根据集合中元素的互异性可知,a≠a2,所以a≠0且a≠1.应用集合元素的特性解题的要点(1)集合问题的核心即研究集合中的元素,在解决这类问题时,要明确集合中的元素是什么.(2)构成集合的元素必须是确定的(确定性),而且是互不相同的(互异性),在书写时可以不考虑先后顺序(无序性).(3)利用集合元素的特性求参数问题时,先利用确定性解出字母所有可能值,再根据互异性对集合中元素进行检验,要注意分类讨论思想的应用.1.1.2集合的表示1.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.2.描述法(1)定义:一般地,设A表示一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.温馨提示:(1)写清楚集合中元素的符号.如数或点等.(2)说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等.(3)不能出现未被说明的字母.题型一用列举法表示集合【典例1】 用列举法表示下列集合:(1)方程x (x -1)2=0的所有实数根组成的集合;(2)不大于10的非负偶数集;(3)一次函数y =x 与y =2x -1图象的交点组成的集合.[思路导引] 用列举法表示集合的关键是弄清集合中的元素是什么,还要弄清集合中的元素个数.[解] (1)方程x (x -1)2=0的实数根为0,1,故其实数根组成的集合为{0,1}.(2)不大于10的非负偶数即为从0到10的偶数,故不大于10的非负偶数集为{0,2,4,6,8,10}.(3)由⎩⎨⎧ y =x y =2x -1,解得⎩⎨⎧ x =1,y =1.故一次函数y =x 与y =2x -1图象的交点组成的集合为{(1,1)}.题型二用描述法表示集合【典例2】 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合;(4)不等式3x -2<4的解集.[思路导引] 用描述法表示集合的关键是确定代表元素的属性和表示元素的共同特征.[解] (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.(4)不等式3x-2<4可化简为x<2,所以不等式3x-2<4的解集为{x|x<2}.用描述法表示集合应注意的3点(1)用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.题型三集合表示方法的应用【典例3】(1)若集合A={x|ax2-8x+16=0,a∈R}中只有一个元素,则a的值为( )A.1 B.4 C.0 D.0或1(2)已知A={x|kx+2>0,k∈R},若-2∈A,则k的取值范围是________.[思路导引] 借助描述法求值或范围的关键是弄清集合中元素的特征.[解析] (1)①当a=0时,原方程为16-8x=0.∴x=2,此时A={2};②当a≠0时,由集合A中只有一个元素,∴方程ax2-8x+16=0有两个相等实根,则Δ=64-64a=0,即a=1.从而x1=x2=4,∴集合A={4}.综上所述,实数a的值为0或1.故选D.(2)∵-2∈A,∴-2k+2>0,得k<1.[答案] (1)D (2)k<1[变式] (1)本例(1)中条件“有一个元素”改为有“两个元素”,其他条件不变,求a的取值范围.(2)本例(2)中条件“-2∈A ”改为“-2∉A ”,其他条件不变,求k 的取值范围.[解] (1)由题意可知方程ax 2-8x +16=0有两个不等实根.∴⎩⎨⎧ a ≠0,Δ=64-64a >0,解得a <1,且a ≠0.(2)∵-2∉A ,∴-2k +2≤0,得k ≥1.集合表示方法的应用的注意点(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键.(2)与方程ax 2-8x +16=0的根有关问题易忽视a =0的情况.集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合:(1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y=x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.子集的概念温馨提示:“A是B的子集”的含义是:对任意x∈A都能推出x∈B.2.集合相等的概念如果集合A的任何一个元素是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么,集合A与集合B相等,记作A=B.也就是说,若A⊆B 且B⊆A,则A=B.3.真子集的概念温馨提示:在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x ∈B,但x∉A.4.空集的概念题型一集合间关系的判断【典例1】判断下列两个集合之间的关系:(1)A={-1,1},B={x|x2=1};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.[思路导引] 集合间基本关系的刻画均是由元素的从属关系决定的.[解] (1)用列举法表示集合B={-1,1},故A=B.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(4)解法一(特殊值法):两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.解法二(列举法):由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.判断集合间关系的3种方法(1)列举法:用列举法将两个集合表示出来,再通过比较两集合中的元素来判断两集合之间的关系.(2)元素特征法:根据集合中元素满足的性质特征之间的关系判断.(3)图示法:利用数轴或Venn图判断两集合间的关系.题型二有限集合子集、真子集的确定【典例2】(1)填写下表,并回答问题原集合子集子集的个数∅________________{a}________________{a,b}________________{a,b,c}________________由此猜想,含n个元素的集合的所有子集的个数是多少?真子集的个数及非空真子集个数呢?(2)求满足{1,2}M⊆{1,2,3,4,5}的集合M.[解] (1)原集合子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8猜想:含n个元素的集合的子集共有2n个,真子集有2n-1个,非空真子集有2n-2个.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(1)求解有限集合子集问题的3个关键点①确定所求集合,是子集还是真子集.②合理分类,按照子集所含元素的个数依次写出.③注意两个特殊的集合,即空集和集合本身.空集是任何集合的子集,是任何非空集合的真子集.(2)与子集、真子集个数有关的3个结论 假设集合A 中含有n 个元素,则有: ①A 的子集的个数为2n 个; ②A 的真子集的个数为2n -1个; ③A 的非空真子集的个数为2n -2个.【典例3】 已知集合A ={x |-3<x <4},B ={x |1-m <x ≤2m -1},且A ⊆B ,求实数m 的取值范围.[思路导引] A ⊆B ,即集合A 中的数在集合B 中,特别注意A =∅的情况. [解] 由A ⊆B ,将集合A ,B 分别表示在数轴上,如图所示,则⎩⎨⎧1-m ≤-3,1-m <2m -1,4≤2m -1,解得m ≥4.故m 的取值范围是{m |m ≥4}.[变式] (1)本例中若将“A ⊆B ”改为“B ⊆A ”,其他条件不变,求m 的取值范围.(2)本例若将集合A ,B 分别改为A ={3,m 2},B ={1,3,2m -1},其他条件不变,求实数m 的值.[解] (1)由B ⊆A ,将集合A ,B 分别表示在数轴上,如图所示.∵B ⊆A ,∴当B =∅时,1-m ≥2m -1,解得m ≤23;当B ≠∅时,有⎩⎨⎧2m -1>1-m ,2m -1<4,1-m ≥-3,解得23<m <52.综上可知,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <52. (2)由A ⊆B ,按m 2=1和m 2=2m -1两种情况分类讨论. ①若m 2=1,则m =-1或m =1.当m =-1时,B 中元素为1,3,-3,适合题意; 当m =1时,B 中元素为1,3,1,与元素的互异性矛盾. ②若m 2=2m -1,则m =1,由①知不合题意. 综上所述,m =-1.由集合间的关系求参数的2种方法(1)当集合为连续数集时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点.(2)当集合为不连续数集时,常根据集合包含关系的意义,建立方程求解,此时应注意分类讨论思想的运用.1.3.1并集与交集1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质【典例1】(1)若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{1,2} D.{0}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于( )A.{x|-1≤x<3} B.{x|-1≤x≤4} C.{x|x≤4}D.{x|x≥-1}[思路导引] 由并集的定义,结合数轴求解.[解析] (1)A∪B={0,1,2,3,4},选A.(2)在数轴上表示两个集合,如图.∴P∪Q={x|x≤4}.选C.[答案] (1)A (2)C求集合并集的2种方法(1)定义法:若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果.(2)数形结合法:若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.题型二交集的运算【典例2】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4}D.{x|1≤x≤4}(2)设A={x∈N|1≤x≤5},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3}[思路导引] 既属于集合A,又属于集合B的所有元素组成的集合,借助图示方法求解.[解析] (1)在数轴上表示出集合A与B,如下图.则由交集的定义可得A∩B={x|0≤x≤2}.选A.(2)A={x∈N|1≤x≤5}={1,2,3,4,5},B={x∈R|x2+x-6=0}={-3,2},图中阴影部分表示的是A∩B,∴A∩B={2}.选A.[答案] (1)A (2)A求集合交集的2个注意点(1)求两集合的交集时,首先要化简集合,使集合的元素特征尽量明朗化,然后根据交集的含义写出结果.(2)在求与不等式有关的集合的交集运算中,应重点考虑数轴分析法,直观清晰.题型三由集合的并集、交集求参数【典例3】 (1)设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.(2)已知集合A ={x |-3<x ≤4},B ={x |2-k ≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.[思路导引] (1)画出数轴求解.(2)若A ∪B =A ,则B ⊆A ;若A ∩B =A ,则A ⊆B .[解] (1)如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3. (2)∵A ∪B =A ,∴B ⊆A .若B =∅,则2-k >2k -1,得k <1;若B ≠∅,则⎩⎨⎧2-k ≤2k -1,2-k >-3,2k -1≤4,解得1≤k ≤52.综上所述,k ≤52.[变式] 本例(2)若将“A ∪B =A ”改为“A ∩B =A ”,其他条件不变,求k 的取值范围.[解] ∵A ∩B =A ,∴A ⊆B . ∴⎩⎨⎧2-k ≤-3,2k -1≥4,解得k ≥5.由集合交集、并集的性质解题的策略、方法及注意点(1)策略:当题目中含有条件A ∩B =A 或A ∪B =B ,解答时常借助于交集、并集的定义及集合间的关系去分析,将A ∩B =A 转化为A ⊆B ,A ∪B =B 转化为A ⊆B .(2)方法:借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(3)注意点:当题目条件中出现B⊆A时,若集合B不确定,解答时要注意讨论B=∅的情况.1.3.2补集及集合运算的综合应用要点整理1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.题型一补集的运算【典例1】(1)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________________;(2)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________________.[思路导引] 借助补集定义,结合数轴及Venn图求解.[解析] (1)将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.(2)解法一:A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.解法二:借助Venn图,如图所示.由图可知B={2,3,5,7}.[答案] (1){x|x<-3或x=5} (2){2,3,5,7}求集合补集的基本方法及处理技巧(1)基本方法:定义法.(2)两种处理技巧①当集合用列举法表示时,可借助Venn图求解;②当集合是用描述法表示的连续数集时,可借助数轴,利用数轴分析求解.题型二交集、并集、补集的综合运算【典例2】已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.[解] 把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁(A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-U3<x≤-2或x=3}.解决集合交、并、补运算的2个技巧(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.题型三利用集合间的关系求参数【典例3】设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁A)∩B=∅,求实数m的取值范围.U[思路导引] 理清集合间的关系,分类求解.[解] 由已知A={x|x≥-m},得∁U A={x|x<-m},因为B={x|-2<x<4},(∁U A)∩B=∅,所以-m≤-2,即m≥2,所以m的取值范围是m≥2.[变式] (1)将本例中条件“(∁U A)∩B=∅”改为“(∁U A)∩B≠∅”,其他条件不变,则m的取值范围又是什么?(2)将本例中条件“(∁U A)∩B=∅”改为“(∁U B)∪A=R”,其他条件不变,则m的取值范围又是什么?[解] (1)由已知得A={x|x≥-m},所以∁U A={x|x<-m},又(∁U A)∩B≠∅,所以-m>-2,解得m<2.(2)由已知得A={x|x≥-m},∁U B={x|x≤-2或x≥4}.又(∁U B)∪A=R,所以-m≤-2,解得m≥2.利用集合关系求参数的2个注意点(1)与集合的交、并、补运算有关的求参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情况.(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.[针对训练]5.已知集合A={x|x<a},B={x|1<x<3}.(1)若A∪(∁R B)=R,求实数a的取值范围;(2)若A(∁R B),求实数a的取值范围.[解](1)∵B={x|1<x<3},B={x|x≤1或x≥3},∴∁R因而要使A∪(∁R B)=R,结合数轴分析(如图),可得a≥3.(2)∵A={x|x<a},∁R B={x|x≤1或x≥3}.要使A(∁R B),结合数轴分析(如图),可得a≤1.1.4.1充分条件与必要条件要点整理1.命题及相关概念2.充分条件与必要条件一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.温馨提示:(1)充分、必要条件的判断讨论的是“若p,则q”形式的命题.若不是,则首先将命题改写成“若p,则q”的形式.(2)不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”.题型一充分、必要条件的概念及语言表述【典例1】将下面的定理写成“若p,则q”的形式,并用充分条件、必要条件的语言表述:(1)两个全等三角形的对应高相等;(2)等底等高的两个三角形是全等三角形.[解] (1)若两个三角形是全等三角形,则它们的对应高相等,所以“两个三角形是全等三角形”是“它们的对应高相等”的充分条件;“对应高相等”是“两个三角形是全等三角形”的必要条件.(2)若两个三角形等底等高,则这两个三角形是全等三角形,所以“两个三角形等底等高”是“这两个三角形是全等三角形”的不充分条件;“两个三角形是全等三角形”是“这两个三角形等底等高”的不必要条件.(1)对充分、必要条件的理解①对充分条件的理解:i)所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.“有之必成立,无之未必不成立”.ii)充分条件不是唯一的,如x>2,x>3都是x>0的充分条件.②对必要条件的理解:i)所谓必要,就是条件是必须有的,必不可少的,缺其不可.“有之未必成立,无之必不成立”.ii)必要条件不是唯一的,如x>0,x>5等都是x>9的必要条件.(2)用充分、必要条件的语言表述定理的一般步骤第一步:分析定理的条件和结论;第二步:将定理写成“若p,则q”的形式;第三步:利用充分、必要条件的概念来表述定理.题型二充分条件、必要条件的判定【典例2】判断下列各题中p是q的充分条件吗?p是q的必要条件吗?(1)p:x>1,q:x2>1;(2)p:(a-2)(a-3)=0,q:a=3;(3)已知:y=ax2+bx+c(a≠0),p:Δ=b2-4ac>0,q:函数图象与x轴有交点.[思路导引] 判断“若p,则q”命题的真假及“若q,则p”命题的真假.[解] (1)由x>1可以推出x2>1,因此p是q的充分条件;由x2>1,得x<-1,或x>1,不一定有x>1.因此,p不是q的必要条件.(2)由(a-2)(a-3)=0可以推出a=2或a=3,不一定有a=3,因此p不是q的充分条件;由a=3可以得出(a-2)(a-3)=0.因此,p是q的必要条件.(3)二次函数y=ax2+bx+c,当Δ>0时,其图象与x轴有交点,因此p是q的充分条件;反之若函数的图象与x轴有交点,则Δ≥0,不一定是Δ>0,因此p不是q的必要条件.充分、必要条件的判断方法(1)定义法:首先分清条件和结论,然后判断p⇒q和q⇒p是否成立,最后得出结论.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p 的必要条件;②如果命题:“若p ,则q ”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件.显然,p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,即p ⇒q ,只是说法不同而已.题型三充分条件、必要条件与集合的关系【典例3】 (1)已知p :关于x 的不等式3-m 2<x <3+m 2,q :0<x <3,若p 是q 的充分条件,求实数m 的取值范围.(2)已知集合A ={y |y =x 2-3x +1,x ∈R },B ={x |x +2m ≥0};命题p :x ∈A ,命题q :x ∈B ,并且q 是p 的必要条件,求实数m 的取值范围.[思路导引] p 是q 的充分条件转化为对应集合A ⊆集合B ,q 是p 的必要条件转化为集合A ⊆集合B .[解] (1)记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3}, 若p 是q 的充分条件,则A ⊆B .注意到B ={x |0<x <3}≠∅,分两种情况讨论:①若A =∅,即3-m 2≥3+m 2,解得m ≤0,此时A ⊆B ,符合题意; ②若A ≠∅,即3-m 2<3+m 2,解得m >0, 要使A ⊆B ,应有⎩⎪⎨⎪⎧ 3-m 2≥0,3+m 2≤3,m >0,解得0<m ≤3. 综上可得,实数m 的取值范围是{m |m ≤3}.(2)由已知可得 A =⎩⎨⎧⎭⎬⎫y | y =⎝ ⎛⎭⎪⎫x -322-54,x ∈R =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y | y ≥-54, B ={x |x ≥-2m }.因为q 是p 的必要条件,所以p ⇒q ,所以A ⊆B ,所以-2m ≤-54,所以m ≥58,即m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m |m ≥58. [变式] 本例(1)中若将“若p 是q 的充分条件”改为“p 是q 的必要条件”,其他条件不变,求实数m 的取值范围.[解] 记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3},若p 是q 的必要条件,则B ⊆A .应有⎩⎪⎨⎪⎧ 3-m 2≤0,3+m 2≥3,解得m ≥3.综上可得,实数m 的取值范围是{m |m ≥3}.(1)利用充分、必要条件求参数的思路根据充分、必要条件求参数的取值范围时,先将p ,q 等价转化,再根据充分、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.(2)从集合角度看充分、必要条件:设命题p 、q 分别对应集合A 、B ,若A ⊆B ,则p 是q 的充分条件;若B ⊆A ,则p 是q 的必要条件.1.4.2充要条件要点整理充要条件如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,即既有p ⇒q ,又有q ⇒p ,记作p ⇔q .此时p 既是q 的充分条件,也是q 的必要条件.我们说p 是q 的充分必要条件,简称为充要条件.如果p 是q 的充要条件,那么q 也是p 的充要条件,即如果p ⇔q ,那么p 与q 互为充要条件.温馨提示:(1)从概念的角度去理解充分条件、必要条件、充要条件①若p⇒q,则称p是q的充分条件,q是p的必要条件.②若p⇔q,则p是q的充要条件.③若p⇒q,且q⇒/p,则称p是q的充分不必要条件.④若p⇒/q,且q⇒p,则称p是q的必要不充分条件.⑤若p⇒/q,且q⇒/p,则称p是q的既不充分也不必要条件.(2)“⇔”的传递性若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则有p⇔s,即p 是s的充要条件.题型一充要条件的判断【典例1】在下列各题中,试判断p是q的什么条件.(1)p:a+5是无理数,q:a是无理数;(2)若a,b∈R,p=a2+b2=0,q:a=b=0;(3)p:A∩B=A,q:∁U B⊆∁U A.[思路导引] 判断是否p⇒q,q⇒p.[解] (1)因为a+5是无理数⇒a是无理数,并且a是无理数⇒a+5是无理数,所以p是q的充要条件.(2)因为a2+b2=0⇒a=b=0,并且a=b=0⇒a2+b2=0,所以p是q的充要条件.(3)因为A∩B=A⇒A⊆B⇒∁U A⊇∁U B,并且∁U B⊆∁U A⇒B⊇A⇒A∩B=A,所以p 是q的充要条件.[变式] 已知p是q的充分条件,q是r的必要条件,也是s的充分条件,r是s的必要条件,问:(1)p是r的什么条件?(2)s是q的什么条件?(3)p,q,r,s中哪几对互为充要条件?[解] 作出“⇒”图,如右图所示,。

第一章集合与常用逻辑用语(课时作业详细答案)

第一章集合与常用逻辑用语(课时作业详细答案)

!&#WX.!##$!,',_(%"#&:YZ["`a ,#&!,#',$-
YZ[!#%(%"#&#$
! # +,#&!#'%$
#!
% &
&
'
# (
*)"-.
,$#&!-#'%$
! # ! # b)$#&!-#'%$
#!
% &
&
'
# (
"+
,/$
#!
% &
&
'

# (
_
(%"#&:Bcdef<"-.)$#&!-#'%_(%"#&:Bcdgf
$##!%+#+%%"-.!,+!#'"$$!%")"%%$ ,$#!@4+, "(!"-.%&!&%$!%2%&!&%$#$4%&!
&%$!%("5%&!&%'%$)"6 5%$%$4%$% (""$ $%"
!%%"78 "(!$4%&!&%$# ("5%&!&%!#$)"6 5%$ !%2#$4%$!%(""$$%"#%"78 "(!'4%$#(""$ $%"#%"78"(!$9:"%$*%2%$#"0#1$ -$@1!%#!"#!""$$##%$#++%$ +,,*!$$###$&2#*+%" -.!,*!#'"$$##%$#$&%$ !&#+, !'+-."-.%$+" -.;<%=>?@AB!!""+#$ !.$@1!%#!"#"$$###&!,#'-$)%$$&"#%$

新人教版(2019)必修一 第一章 集合与常用逻辑用语教材例题课后习题答案完整word版

新人教版(2019)必修一  第一章   集合与常用逻辑用语教材例题课后习题答案完整word版
【答案】DC
【解析】
【分析】
集合表示两条直线的交点,解得交点得到集合关系.
【详解】集合 表示直线 与直线 交点的集合,
即 .DC
【点睛】本题考查了集合表示的意义,集合的包含关系,意在考查学生对于集合的理解和掌握.
拓广探索
10.请解决下列问题:
(1)设 ,若 ,求 的值;
(2)已知集合 ,若 ,求实数a的取值范围.
习题1.1
复习巩固
4.用符号“ ”或“ ”填空:
(1)设A为所有亚洲国家组成的集合,则中国______________A,美国__________A,印度____________A,英国_____________A;
(2)若 ,则-1_____________A;
(3)若 ,则3________________B;
(3) ;
(4) .
【答案】(1){ 是立德中学的女生}
(2){ 是直角三角形}
(3)
(4)
【解析】
【分析】
根据子集的定义写出一个子集即可.
【详解】(1){ 是立德中学的女生}
(2){ 是直角三角形}
(3)
(4)
【点睛】本题考查了集合的子集,属于简单题.
9.在平面直角坐标系中,集合 表示直线 ,从这个角度看,集合 表示什么?集合C,D之间有什么关系?
, , , , , , , .
【点睛】本题主要考查了子集的定义与辨析,属于基础题型.
4.用适当的符号填空:
(1)a_____ ;(2)0____ ;(3) ____ ;
(4) ____N;(5) ____ ;(6) ____ .
【答案】①. ②. ③. = ④.⑤.⑥. =
【解析】

新教材】14充分条件与必要条件教学设计(1)-人教A版高中数学必修第一册

新教材】14充分条件与必要条件教学设计(1)-人教A版高中数学必修第一册

新教材】14充分条件与必要条件教学设计(1)-人教A版高中数学必修第一册第一章集合与常用逻辑用语1.4充分条件与必要条件本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学研究特别是数学推理的研究打下基础。

从学生研究的角度看,与旧教材相比,教学时间的前置,造成学生在研究充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.课程目标A.正确理解充分不必要条件、必要不充分条件、充要条件的概念;B.会判断命题的充分条件、必要条件、充要条件.C.通过研究,使学生明白对条件的判定应该归结为判断命题的真假.D.在观察和思考中,在解题和证实题中。

培养学生思维能力的严密性品质.学科素养1.数学抽象:充分条件、需要条件、充要条件的寄义;2.逻辑推理:判断命题的充分条件、需要条件、充要条件;3.直观想象:对条件的判定应该归结为判断命题的真假。

1.教学重点:理解充分条件、必要条件、充要条件的意义,掌握命题条件的充要性判断及其证明方法;2.教学难点:命题条件充要性的判断及其证明。

多媒体教学过程一、情景引入,温故知新情景1:如图所示电路中(整个电路及灯泡一切正常)。

记p:闭合开关A。

q:灯泡亮。

请把这个电路图改写为“若p,则q”形式的命题并判断真假。

落实中心素养目标通过初中所学及实例,让学生感知、了解,进而概括出充分条件与必要条件的寄义。

进步学生用数学抽象的思维体式格局思考并解决问题的能力。

谜底】真命题情景2:记p:x。

2.q:x。

0.判断命题“若x。

2,则x。

0”的真假。

谜底】真命题二、探索新知通过命题真假的判探究一充分条件与必要条件的含义定,归纳出充分条1.思考:下列“若P,则q”形式的命题中,哪些是真命题?哪些是假件、必要条件的含义。

第一章 集合与常用逻辑用语 1.4 充分条件与必要条件 高中数学人教版新教材必修第一册

第一章  集合与常用逻辑用语  1.4  充分条件与必要条件 高中数学人教版新教材必修第一册

第一章 集合与常用逻辑用语1.4 充分条件与必要条件1.4.1 充分条件与必要条件一、教学目标:1. 正确理解充分条件、必要条件及充要条件的概念.2. 掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.3. 能正确判断是充分条件、必要条件还是充要条件.4. 培养学生的逻辑思维能力及归纳总结能力.5. 在充要条件的教学中,培养等价转化思想.二、教学重点、难点重点:正确理解充分条件、必要条件及充要条件的概念. 难点:能正确判断是充分条件、必要条件还是充要条件三、学法与教学用具1、学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

2、教学用具:多媒体设备等四、教学过程(一)复习回顾,创设情景,揭示课题初中学过的命题:一般地,在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命.题.. 其中判断为真的语句叫做真命题...,判断为假的语句叫做假命题....命题的形式:若p ,则q ,或者:如果p ,那么q .【讨论练习】判断下列命题中的真假命题:(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形. (2)若两个三角形的周长相等,则这两个三角形全等.(3)若2430x x -+=,则1x =(4)若平面内两条直线a 和b 均垂直于直线l ,则//a b . 【答案】命题(1)、(4)为真命题,命题(2)、(3)为假命题【引入问题】对于命题,除了真假命题的说法,还有其他的数学说法吗?(二)研讨新知,典型示例一般地,命题“若p ,则q ”为真命题,就称:由条件p 可以推出结论q ,记作:p q ⇒ 并且说,p 是q 的充分条件(sufficient condition),q 是p 的必要条件(necessarycondition).如果命题“若p ,则q ”为假命题,则称:条件p 不能推出结论q ,记作:p q >≠ 就说p 不是q 的充分条件,q 不是p 的必要条件【新的说法】命题(1)、(4)为真命题,所以p 是q 的充分条件,q 是p 的必要条件命题(2)、(3)为假命题,所以p 不是q 的充分条件,q 不是p 的必要条件【例题研讨】阅读领悟课本18P 例1、例2 (用时约为6-8分钟,教师逐一作出准确的评析.)例1 下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件? (1)若四边形的两组对角分别相等,则这个四边形是平行四边形; (2)若两个三角形的三边成比例,则这两个三角形相似; (3)若四边形为菱形,则这个四边形的对角线互相垂直;(4)若21x =,则1x =; (5)若a b =,则ac bc =;(6)若,x y 为无理数,则xy 为无理数. 解:(1)这是一条平行四边形的判定定理,p q ⇒,所以p 是q 的充分条件. (2)这是一条相似三角形的判定定理,p q ⇒,所以p 是q 的充分条件. (3)这是一条菱形的性质定理,p q ⇒,所以p是q 的充分条件.(4)由于2(1)1-=,即1x =-满足21x =,p q >≠,所以p 不是q 的充分条件. (5)由等式的性质知,p q ⇒,所以p 是q 的充分条件.(6)当x y ==为无理数时,2xy ==为有理数,p q >≠,所以p 不是q 的充分条件.例2 下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件? (1)若四边形为平行四边形,则这个四边形的两组对角分别相等; (2)若两个三角形相似,则这两个三角形的三边成比例; (3)若四边形的对角线互相垂直,则这个四边形是菱形;(4)若1x =,则21x =; (5)若ac bc =,则a b =;(6)若xy 为无理数,则,x y 为无理数. 解:(1)这是平行四边形的一条性质定理,p q ⇒,所以q 是p 的必要条件. (2)这是三角形相似的一条性质定理,p q ⇒,所以q 是p 的必要条件.(3)如图1.4-1, 四边形ABCD的对角线互相垂直,但它不是菱形,p q >≠,所以q 不是p 的必要条件.(4)显然,p q >≠,所以q 不是p 的必要条件.(5)由于(1)010-⨯=⨯,但11-≠,p q >≠,所以q 不是p 的必要条件.(6)由于2=p q >≠,所以q 不是p 的必要条件.【小组互动】完成课本20P 练习,同桌交换检查,老师答疑并公布答案.(三)探索与发现、思考与感悟 已知以下“若p ,则q ”形式的命题:①若:p “||||x y =”,则:q “x y =”;② 设,a b 是实数,若:p “0a b +>” ,则“0ab >”;③若:p “{|02}x A x x ∈=<<”,则:q “{|13}x B x x ∈=-<<”; ④若:p “{|6,}x x x k k Z ∈=∈”,则:q “{|3,}x x x k k Z ∈=∈”.其中p 是q 的充分条件的命题是_______________;p 不是q 的充分条件的命题是_______________;q 是p 的必要条件的命题是_______________;q 不是p 的必要条件的命题是________________.解:①由已知||||x y =可能有x y =或x y =-,p q >≠,所以p 不是q 的充分条件,q 不是p 的必要条件② 当3,1a b ==-时, 0a b +>,但0ab <,p q >≠,所以p 不是q 的充分条件,q 不是p 的必要条件③当x A ∈时,必有x B ∈,p q ⇒,所以p 是q 的充分条件,q 是p 的必要条件 ④当x A ∈时,必有x B ∈,p q ⇒,所以p 是q 的充分条件,q 是p 的必要条件 综上,p 是q 的充分条件的命题是③④,p 不是q 的充分条件的命题是①②q 是p 的必要条件的命题是③④,q 不是p 的必要条件的命题是①②(四)归纳小结,回顾重点1.完成课本22P 习题1.4 1.22.预习1.4.2 充要条件五、教学反思:(课后补充,教学相长)1.4.2 充要条件(一)复习回顾,创设情景,揭示课题【引入问题】下列“若p ,则q ”形式的命题中,哪些命题与它的逆命题都是真命题? (1)若两个三角形的两角和其中一角所对的边分别相等,则这两个三角形全等; (2)若两个三角形全等,则这两个三角形的周长相等;(3)若一元二次方程20ax bx c ++=有两个不相等的实数根,则0ac < (4)若A B 是空集,则A 与B 均是空集.【答案】易知命题(1)和(4)与它的逆命题都是真命题;命题(2)是真命题,它的逆命题是假命题;命题(3)是假命题,它的逆命题是真命题.(二)研讨新知,典型示例如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,即既有p q ⇒又有q p ⇒就记作 p q ⇔此时p 既是q 的充分条件,也是q 的必要条件,则可称p 是q 的充分必要条件,简称为充要条件(sufficient and necessary condition). 显然,如果p 是q 的充要条件,那么q 也是p 的充要条件.【答案】上述思考中的命题(1)和(4),p 是q 的充要条件.【例题研讨】阅读领悟课本21P 例3,(用时约为2-3分钟,教师逐一作出准确的评析.)例3下列各题中, 哪些p 是q 的充要条件?(1) p :四边形是正方形,q :四边形的对角线互相垂直且平分; (2) p :两个三角形相似,q :两个三角形三边成比例; (3):0p xy >,:0,0q x y >>(4):1p x =是一元二次方程20ax bx c ++=的一个根,:0(0)q a b c a ++=≠ . 解:(1)因为对角线互相垂直且平分的四边形不一定是正方形(为什么?可以是菱形或者特殊的等腰梯形),所以q p >≠,所以p 不是q 的充要条件.(2)因为此题中“若p ,则q ”是相似三角形的性质定理,“若q ,则p ”是相似三角形的判定定理,所以它们均为真命题,即p q ⇔,所以p 是q 的充要条件.(3)因为0xy >时,0,0x y >>不一定成立(为什么?因为可以有0,0x y <<),所以p q >≠,所以p 不是q 的充要条件.(4)因为此题中“若p ,则q ”和“若q ,则p ”均是真命题,即p q ⇔,所以p 是q 的充要条件.【例题研讨】阅读课本22P 例4,(用时约为2-3分钟,同桌交流感受)(三)探索与发现、思考与感悟1. 已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 解:由0a >且0b >可得0a b +>且0ab >,由0a b +>有,a b 至少一个为正,0ab >可得,a b 同号,两者同时成立,则必有0a >且0b >,故选C.2. 已知:10,:p x q x a -<>,若p 是q 的充分不必要条件,则a 的取值范围是________. 解:由已知:1,:p x q x a >>,若p 是q 的充分不必要条件,则p q ⇒,但q p >≠, 也就是说,p 对应集合是q 对应集合的真子集,所以1a <答案:{|1}a a <3. 设集合2{|0},{|03}x A x B x x x-=≤=<<,那么“m A ∈”是“m B ∈”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:由已知2{|0}{|02}x A x x x x-=≤=<≤.{|03}B x x =<< 所以m A m B ∈⇒∈,但是m B m A >∈≠∈,所以“m A ∈”是“m B ∈”的充分不必要条件.故选A4. 设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解:由题意得:,所以D 是A 的必要不充分条件,故选B(四)归纳小结,回顾重点1、充分条件、必要条件、充要条件命题真假“若p ,则q”为真命题“若p,则q”为假命题“若p,则q”与逆命题“若q,则p”均为真命题推出关系p q⇒p q>≠p q⇔条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件p是q的充要条件q是p的充要条件2、充分不必要条件、必要不充分条件、充要条件集合{|()},{|()} A x p x B x q x ==关系A B⊆B A⊆A B=A B⊄且B A⊄图示结论p是q的充分不必要条件p是q的必要不充分条件p是q的充要条件p是q的既不充分也不必要条件(五)作业布置,精炼双基1.完成课本22P练习 1、2、32. 完成课本习题1.4 1、2、3、4、5、6五、教学反思:(课后补充,教学相长)。

高考数学一轮总复习第一章集合与常用逻辑用语不等式1-4一元二次不等式与几类重要不等式的解法课件

高考数学一轮总复习第一章集合与常用逻辑用语不等式1-4一元二次不等式与几类重要不等式的解法课件
(5)x(x+2)2>0 的解集是(-∞,-2)∪(0,+∞).
() ()
解:(1)×; (2)√; (3)×; (4)×; (5)×.
不等式 2x2-x-3>0 的解集为
()
A. x|-1<x<32 C. x|x<-1或x>32
B. {x|x<-3 或 x>1} D. {x|x<-1 或 x>1}
判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)-x2+x>0 的解集为(-∞,0)∪(1,+∞).
()
(2)若二次不等式 ax2+bx+c>0 的解集为(x1,x2),则必有 a<0. (3)不等式 ax2+bx+c>0 恒成立,则 a>0 且 Δ<0.
() ()
(4)ax<b 的解集是ab,+∞.
(2020 年江苏淮阴中学高二期末)不等式
x2-x-4 x-1 >1
的解集为
()
A. {x|x<-1 或 x>3}
B. {x|x<-1 或 1<x<3}
C. {x|-1<x<1 或 x>3}
D. {x|-1<x<1 或 1<x<3}
解:原不等式可化为x2-x-x-1 4-1>0,即x2-x-2x1-3>0,等价于(x+1)(x-1)(x-3)>0.
(3)解关于 x 的不等式 ax2-2≥2x-ax(a∈R).
解:原不等式可化为 ax2+(a-2)x-2≥0(a∈R), 即(ax-2)(x+1)≥0(a∈R). 当 a=0 时,原不等式可化简为 x+1≤0, 原不等式的解集为{x|x≤-1}; 当 a≠0 时,原不等式的解集由2a和-1 的大小决定,当 a>0 时,2a>-1;当-2<a<0 时, 2a<-1;当 a=-2 时,2a=-1;当 a<-2 时,2a>-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若綈p⇒綈q,且綈q⇒綈p,即:綈p⇔綈q,则p是q的充 要条件.
若綈q⇒綈p,且綈p 件. 若綈p⇒綈q,且綈q 件. 若綈p 必要条件. 綈q且綈q
綈q,则p是q的充分不必要条 綈p,则p是q的必要不充分条 綈p,则p是q的既不充分又不
(3)集合法:用集合的观点进行判断,即 设集合A={x|x满足条件p},B={x|x满足条件q},则有:
变式探究
教师用书备选题 (2009年黄冈质检) 已知函数f(x)=
解析:
1.判断充分条件、必要条件、充要条件的方法 (1)定义法:即直接利用定义判断; (2)逆否法:即利用其逆否命题进行判断 若綈p⇒綈q,则p是q的必要条件,q是p的充分条件. 若綈q⇒綈p,则p是q的充分条件,q是p的必要条件.
若p2+q2=2,求证:p+q≤2. 思路分析:用反证法.即证明逆否命题“若p+q>2,则 p2+q2≠2”成立.
点评: 使用反证法的基本步骤是 (1)假设命题的结论不成立,即假设结论的反面成立. (2)从这个假设出发,经过正确的逻辑推理,得出矛 盾.
(3)由矛盾判定假设不成立,从而肯定命题的结论成 立.实际上是通过证明命题“若p,则q”的逆否命题“若 綈q,则綈p”成立从而得到“若p,则q”成立的结论.在 证明过程中,一定要注意对假设的利用.
解析:判别式大于0,关于x 的方程ax2+bx+c=0(a≠0) 有实根;但关于x 的方程ax2+bx+c=0(a≠0)有实根,判别 式既可大于0,也可以等于0,故选A. 答案:A 点评:注意区分充分条件、必要条件、充要条件的概念, 能准确利用它们的定义进行判断.
变式探究 1.“a=1”是“对任意的正数x,2x+≥1”的( A )
③与假设矛盾;
④自相矛盾.
答案:1.(1)充分不必要条件 (2)必要不充分条件 (3)充要条件 (4)既不充分也不必要条件 2.(1)假设命题的结论不成立,即假设结论的反面成 立 (2)从这个假设出发,经过正确的逻辑推理,得出矛 盾 (3)由矛盾判定假设不成立,从而肯定命题的结论成 立
基础自测
a 1.(2010年陕西卷)“a>0”是“ >0”的(
1 1.(2010年广东卷)“m< +m=0有实数解”的( )4
Hale Waihona Puke A.充分非必要条件C.必要非充分条件
”是“一元二次方程x2+x
B.充分必要条件
D.非充分必要条件

解析:由x2+x+m=0知,x+22= 4 ≥0⇔m≤4. 故选A.
1
1-4m
1
答案:A
2.(2011· 湖南卷)“x>1”是“|x|>1”的(
)
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件 解析:因“x>1”“⇒”“|x|>1”,反之,“|x| >1”⇒“x>1或x<-1”,不一定有“x>1”. 答案:A


第一章 集合与常用逻辑用语
第四课时
充分、必要、充要条件
考纲要求 1.理解必要条件、充分条件与充要条件的含义. 2.会用反证法证明命题.
知识梳理 1.用推出符号“⇒”概括充分、必要、充要条件
(1)若p⇒q,q
(2)若p
p,则p是q的________;
q,q⇒p,则p是q的________;
(3)若p⇒q,q⇒p,则p是q的________;
A.充分不必要条件
C.充要条件
B.必要不充分条件
D.既不充分也不必要条件
证明:关于x的方程ax2+bx+c=0有根为1的充要 条件是a+b+c=0.
思路分析:证明充要条件就是要证充分性和必要性,即 证原命题和其逆命题同时成立.
证明:必要性:即证若“关于 x的方程ax2+bx+c=0有根为 1”,则“a+b+c=0”.
答案:两组相对侧面分别平行;一组相对侧面平行且 全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.还可写出其他正确答 案.
(2010年南宁模拟) 设p:b2-4ac>0,q:关于x 的方程ax2+bx+c=0 有实根,则p是q的( ) A.充分不必要条件 C.充分必要条件 B.必要不充分条件 D.既不充分也不必要条件
答案:充要
4.(2010年柳州模拟)平面内的一个四边形为平行四边形 的充要条件有多个,如两组对边分别平行,类似地,写出空 间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ____________________________________________________ ____________________; 充要条件② ____________________________________________________ ____________________. (写出你认为正确的两个充要条件)
(4)若p q,q p,则p是q的________.
2.用反证法证明命题的一般步骤
(1)_____________________________________________ ___________________________;
(2)_________________________________________ _______________________________; (3)__________________________________________ ______________________________. 出现矛盾的几种常见形式有: ①与定义、定理、公理矛盾; ②与已知条件矛盾;
)
A.充分不必要条件
C.充要条件
B.必要不充分条件
D.既不充分也不必要条件
解析:∵a>0⇒︱a︱>0,但︱a︱>0 ⇒ a>0,∴“a>0” 是“︱a︱> 0”的充分不必要条件,故选A. 答案:A
2.(2011年福州模拟)已知集合M={x|x2-2x≤0},N= x≤0,则“x∈M”是“x∈N”的( ) A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件
因为x=1是方程的根,将1代入方程,得a+b+c=0,即得 证. 充分性:即证若“a+b+c=0”,则“关于 x的方程ax2+bx +c=0有根为1”. 将1代入方程,左边=a+b+c,因为a+b+c=0,左边=右 边,所以x=1是方程的根.
综上所述得证.
点评:判定充要条件要从充分性和必要性两方面来论述,确 定充分条件或必要条件时可以根据充要条件作调整.
解析:∵M= [0,2] ,N= [0,2) ,由x∈M x∈N, 而由x∈N⇒x∈M,∴“x∈M”是“x∈N”的必要不充分条 件,故选B. 答案:B
3.(2012年佛山南海一中月考)在锐角三角形ABC中, A>B是sin A>sin B的________条件.
解析:∵0<A,B< ,∴A>B⇔a>b⇔sin A>sin B,所以填: 充要.
变式探究 2.已知关于x的一元二次方程mx2-4x+4=0,①
x2-4mx+4m2-4m-5=0.②
求使方程①②都有实根的充要条件.
解析:方程①有实数根的充要条件是Δ1=(-4)2-16m≥0, 即m≤1,且m≠0;方程②有实数根的充要条件是Δ2=(-4m)2 -4(4m2-4m-5)≥0,即m≥-5/4.∴方程①②都有实数根 的充要条件是-5/4 ≤m≤1,且m≠0.
①若A⊆B,则p是q的充分条件,若AB,则p是q的充 分不必要条件; ②若B⊆A,则p是q的必要条件,若BA,则p是q的必 要不充分条件; ③若A=B,则p是q的充要条件; ④若A 件. B,且B A,则p是q的既不充分也不必要条
2.反证法理论依据是:原命题为真,则它的逆否命题 也为真.在直接证明原命题有困难时.就可转化为证明他 的逆否命题成立.即所谓“正难则反”.
相关文档
最新文档