FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis
南京师范大学普通生物化学2007-2018年考研真题及答案解析

考生须知:答案必须使用墨(蓝)色墨水(圆珠)笔;不得在试卷(草稿)纸上作答; 凡未按规定作答均不予评阅、判分
一、名词解释(40 分)
1 生物活性肽 2.氨化作用 3.螺旋酶 4.端粒酶 5.启动子 6.亲和层析 7.辅酶与辅基 8.乳酸循环 9.融源途径 10 双关酶
二、填空题(每空 2 分,共 30 分)
Ⅱ 历年真题试卷答案解析......................................................................................................38
南京师范大学 2007 年招收攻读硕士学位研究生入学考试试卷答案解析........................38 南京师范大学 2008 年招收攻读硕士学位研究生入学考试试卷答案解析........................44 南京师范大学 2009 年招收攻读硕士学位研究生入学考试试卷答案解析........................51 南京师范大学 2010 年招收攻读硕士学位研究生入学考试试卷答案解析........................58 南京师范大学 2011 年招收攻读硕士学位研究生入学考试试卷答案解析........................ 68 南京师范大学 2012 年招收攻读硕士学位研究生入学考试试卷答案解析........................75 南京师范大学 2013 年招收攻读硕士学位研究生入学考试试卷答案解析........................85 南京师范大学 2014 年招收攻读硕士学位研究生入学考试试卷答案解析........................96 南京师范大学 2015 年招收攻读硕士学位研究生入学考试试卷答案解析...................... 111 南京师范大学 2016 年招收攻读硕士学位研究生入学考试试卷答案解析......................123 南京师范大学 2017 年招收攻读硕士学位研究生入学考试试卷答案解析......................133
乳腺癌英文版

▪ Sometimes new fibroadenomas will grow after one is removed.
Fibrocystic breast diesease
▪ A common noncancerous breast condition in women in 30~40’s
▪ About 5% of women with breast cancer carry a mutation in one of the 2 knoБайду номын сангаасn breast cancer genes, BRCA1 or BRCA2.
▪ If relatives of such a woman also carry the gene, they have a 50 to 85% lifetime risk of developing breast cancer.
▪ In most cases, treatment is not needed for fibrocystic breast changes.
▪ Removing fluid through fine-needle aspiration may help relieve symptoms of pain or pressure.
▪ No radiation exposure occurs
▪ The only way to tell if a fluid-filled cyst is present
Magnetic resonance imaging (MRI)
Using magnetic fields, not radiation
发育生物学文献【教育】

a
b
• 在古典的拟南芥开花研究中,突变体是通过影响光感受途径而使开花延迟,不管是在 长日照还是短日照情况下都被归类为影响了基本促进途径(自主途径)。
Identification of florigen
【抑制】
【促进】
[ FT ]
【运输】
【花分生
组织】
Autonomous pathway: Repressive chromatinremodeling complexes and small RNAs
SOC1
FRI
SOC1
FD
FD FT
FLY
LFY
Circadian Clock & Photoperiod
CRY1、2
CO
PHYA
Floral Meristems
CO
FT
Phloem Transport
FT
AP1
AP1
CDFs
GI FKF1 COP1 SPAs PHYB
AP2-like genes
miR172
a
b
(c) Wild-type Columbia accession in LDs. The primary SAM forms approximately 15 rosette and cauline leaves before converting to flower formation. (d) Columbia plant, into which an active allele ( 等 位 基 因 ) of FRIGIDA has been introgressed(插入), grown in LDs without vernalization. The SAM has formed over 60 leaves before flowering.
Development and Applications of CRISPR-Cas9 for Genome Engineering

Leading EdgeReviewDevelopment and Applications ofCRISPR-Cas9for Genome EngineeringPatrick D.Hsu,1,2,3Eric nder,1and Feng Zhang1,2,*1Broad Institute of MIT and Harvard,7Cambridge Center,Cambridge,MA02141,USA2McGovern Institute for Brain Research,Department of Brain and Cognitive Sciences,Department of Biological Engineering, Massachusetts Institute of Technology,Cambridge,MA02139,USA3Department of Molecular and Cellular Biology,Harvard University,Cambridge,MA02138,USA*Correspondence:zhang@/10.1016/j.cell.2014.05.010Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9are enabling the systematic interrogation of mammalian genome function.Analogous to the search function in modern word processors,Cas9can be guided to specific locations within complex genomes by a short RNA search ing this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice.Cas9-mediated genetic perturbation is simple and scalable,empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review,we describe the development and applications of Cas9for a variety of research or translational applications while highlighting challenges as well as future directions.Derived from a remarkable microbial defense system,Cas9is driving innovative applications from basic biology to biotechnology and medicine.IntroductionThe development of recombinant DNA technology in the1970s marked the beginning of a new era for biology.For thefirst time,molecular biologists gained the ability to manipulate DNA molecules,making it possible to study genes and harness them to develop novel medicine and biotechnology.Recent advances in genome engineering technologies are sparking a new revolution in biological research.Rather than studying DNA taken out of the context of the genome,researchers can now directly edit or modulate the function of DNA sequences in their endogenous context in virtually any organism of choice, enabling them to elucidate the functional organization of the genome at the systems level,as well as identify causal genetic variations.Broadly speaking,genome engineering refers to the process of making targeted modifications to the genome,its contexts (e.g.,epigenetic marks),or its outputs(e.g.,transcripts).The ability to do so easily and efficiently in eukaryotic and especially mammalian cells holds immense promise to transform basic sci-ence,biotechnology,and medicine(Figure1).For life sciences research,technologies that can delete,insert, and modify the DNA sequences of cells or organisms enable dis-secting the function of specific genes and regulatory elements. Multiplexed editing could further allow the interrogation of gene or protein networks at a larger scale.Similarly,manipu-lating transcriptional regulation or chromatin states at particular loci can reveal how genetic material is organized and utilized within a cell,illuminating relationships between the architecture of the genome and its functions.In biotechnology,precise manipulation of genetic building blocks and regulatory machin-ery also facilitates the reverse engineering or reconstruction of useful biological systems,for example,by enhancing biofuel production pathways in industrially relevant organisms or by creating infection-resistant crops.Additionally,genome engi-neering is stimulating a new generation of drug development processes and medical therapeutics.Perturbation of multiple genes simultaneously could model the additive effects that un-derlie complex polygenic disorders,leading to new drug targets, while genome editing could directly correct harmful mutations in the context of human gene therapy(Tebas et al.,2014). Eukaryotic genomes contain billions of DNA bases and are difficult to manipulate.One of the breakthroughs in genome manipulation has been the development of gene targeting by homologous recombination(HR),which integrates exogenous repair templates that contain sequence homology to the donor site(Figure2A)(Capecchi,1989).HR-mediated targeting has facilitated the generation of knockin and knockout animal models via manipulation of germline competent stem cells, dramatically advancing many areas of biological research.How-ever,although HR-mediated gene targeting produces highly pre-cise alterations,the desired recombination events occur extremely infrequently(1in106–109cells)(Capecchi,1989),pre-senting enormous challenges for large-scale applications of gene-targeting experiments.To overcome these challenges,a series of programmable nuclease-based genome editing technologies havebeen1262Cell157,June5,2014ª2014Elsevier Inc.developed in recent years,enabling targeted and efficient modi-fication of a variety of eukaryotic and particularly mammalian species.Of the current generation of genome editing technolo-gies,the most rapidly developing is the class of RNA-guided endonucleases known as Cas9from the microbial adaptive im-mune system CRISPR (clustered regularly interspaced short palindromic repeats),which can be easily targeted to virtually any genomic location of choice by a short RNA guide.Here,we review the development and applications of the CRISPR-associated endonuclease Cas9as a platform technology for achieving targeted perturbation of endogenous genomic ele-ments and also discuss challenges and future avenues for inno-vation.Programmable Nucleases as Tools for Efficient and Precise Genome EditingA series of studies by Haber and Jasin (Rudin et al.,1989;Plessis et al.,1992;Rouet et al.,1994;Choulika et al.,1995;Bibikova et al.,2001;Bibikova et al.,2003)led to the realization that tar-geted DNA double-strand breaks (DSBs)could greatly stimulate genome editing through HR-mediated recombination events.Subsequently,Carroll and Chandrasegaran demonstrated the potential of designer nucleases based on zinc finger proteins for efficient,locus-specific HR (Bibikova et al.,2001,2003).Moreover,it was shown in the absence of an exogenous homol-ogy repair template that localized DSBs can induce insertions or deletion mutations (indels)via the error-prone nonhomologous end-joining (NHEJ)repair pathway (Figure 2A)(Bibikova et al.,2002).These early genome editing studies established DSB-induced HR and NHEJ as powerful pathways for the versatileand precise modification of eukaryotic genomes.To achieve effective genome editing via introduction of site-specific DNA DSBs,four major classes of customizable DNA-binding proteins have been engineered so far:meganucleases derived from microbial mobile genetic elements (Smith et al.,2006),zinc finger (ZF)nucleases based on eukaryotic transcrip-tion factors (Urnov et al.,2005;Miller et al.,2007),transcription activator-like effectors (TALEs)from Xanthomonas bacteria (Christian et al.,2010;Miller et al.,2011;Boch et al.,2009;Mos-cou and Bogdanove,2009),and most recently the RNA-guided DNA endonuclease Cas9from the type II bacterial adaptive im-mune system CRISPR (Cong et al.,2013;Mali et al.,2013a ).Meganuclease,ZF,and TALE proteins all recognize specific DNA sequences through protein-DNA interactions.Although meganucleases integrate its nuclease and DNA-binding domains,ZF and TALE proteins consist of individual modules targeting 3or 1nucleotides (nt)of DNA,respectively (Figure 2B).ZFs and TALEs can be assembled in desired combi-nations and attached to the nuclease domain of FokI to direct nucleolytic activity toward specific genomic loci.Each of these platforms,however,has unique limitations.Meganucleases have not been widely adopted as a genome engineering platform due to lack of clear correspondence between meganuclease protein residues and their target DNA sequence specificity.ZF domains,on the other hand,exhibit context-dependent binding preference due to crosstalk between adjacent modules when assembled into a larger array (Maeder et al.,2008).Although multiple strategies have been developed to account for these limitations (Gonzaelz et al.,2010;Sander et al.,2011),assembly of functional ZFPs with the desired DNA binding specificity remains a major challenge that requires an extensive screening process.Similarly,although TALE DNA-binding monomers are for the most part modular,they can still suffer from context-dependent specificity (Juillerat et al.,2014),and their repetitive sequences render construction of novel TALE arrays labor intensive and costly.Given the challenges associated with engineering of modular DNA-binding proteins,new modes of recognition would signifi-cantly simplify the development of custom nucleases.The CRISPR nuclease Cas9is targeted by a short guide RNA that recognizes the target DNA via Watson-Crick base pairing (Figure 2C).The guide sequence within these CRISPR RNAs typically corresponds to phage sequences,constituting the nat-ural mechanism for CRISPR antiviral defense,but can be easily replaced by a sequence of interest to retarget the Cas9nuclease.Multiplexed targeting by Cas9can now be achieved at unprecedented scale by introducing a battery of short guideFigure 1.Applications of Genome EngineeringGenetic and epigenetic control of cells with genome engineering technologies is enabling a broad range of applications from basic biology to biotechnology and medicine.(Clockwise from top)Causal genetic mutations or epigenetic variants associated with altered biological function or disease phenotypes can now be rapidly and efficiently recapitulated in animal or cellular models (Animal models,Genetic variation).Manipulating biological circuits could also facilitate the generation of useful synthetic materials,such as algae-derived,silica-based diatoms for oral drug delivery (Materials).Additionally,precise genetic engineering of important agricultural crops could confer resistance to envi-ronmental deprivation or pathogenic infection,improving food security while avoiding the introduction of foreign DNA (Food).Sustainable and cost-effec-tive biofuels are attractive sources for renewable energy,which could be achieved by creating efficient metabolic pathways for ethanol production in algae or corn (Fuel).Direct in vivo correction of genetic or epigenetic defects in somatic tissue would be permanent genetic solutions that address the root cause of genetically encoded disorders (Gene surgery).Finally,engineering cells to optimize high yield generation of drug precursors in bacterial factories could significantly reduce the cost and accessibility of useful therapeutics (Drug development).Cell 157,June 5,2014ª2014Elsevier Inc.1263RNAs rather than a library of large,bulky proteins.The ease of Cas9targeting,its high efficiency as a site-specific nuclease,and the possibility for highly multiplexed modifications have opened up a broad range of biological applications across basic research to biotechnology and medicine.The utility of customizable DNA-binding domains extends far beyond genome editing with site-specific endonucleases.Fusing them to modular,sequence-agnostic functional effector domains allows flexible recruitment of desired perturbations,such as transcriptional activation,to a locus of interest (Xu and Bestor,1997;Beerli et al.,2000a;Konermann et al.,2013;Maeder et al.,2013a;Mendenhall et al.,2013).In fact,any modular enzymatic component can,in principle,be substituted,allowing facile additions to the genome engineering toolbox.Integration of genome-and epigenome-modifying enzymes with inducible protein regulation further allows precise temporal control of dynamic processes (Beerli et al.,2000b;Konermann et al.,2013).CRISPR-Cas9:From Yogurt to Genome EditingThe recent development of the Cas9endonuclease for genome editing draws upon more than a decade of basic research into understanding the biological function of the mysterious repetitive elements now known as CRISPR (Figure 3),which are found throughout the bacterial and archaeal diversity.CRISPR loci typically consist of a clustered set of CRISPR-associated (Cas)genes and the signature CRISPR array—a series of repeat sequences (direct repeats)interspaced by variable sequences (spacers)corresponding to sequences within foreign genetic elements (protospacers)(Figure 4).Whereas Cas genes are translated into proteins,most CRISPR arrays are first tran-scribed as a single RNA before subsequent processing into shorter CRISPR RNAs (crRNAs),which direct the nucleolytic activity of certain Cas enzymes to degrade target nucleic acids.The CRISPR story began in 1987.While studying the iap enzyme involved in isozyme conversion of alkaline phosphatase in E.coli ,Nakata and colleagues reported a curious set of 29nt repeats downstream of the iap gene (Ishino et al.,1987).Unlike most repetitive elements,which typically take the form of tandem repeats like TALE repeat monomers,these 29nt repeats were interspaced by five intervening 32nt nonrepetitive sequences.Over the next 10years,as more microbial genomes were sequenced,additional repeat elements were reported from genomes of different bacterial and archaeal strains.Mojica and colleagues eventually classified interspaced repeat sequences as a unique family of clustered repeat elements present in >40%of sequenced bacteria and 90%of archaea (Mojica et al.,2000).These early findings began to stimulate interest in such micro-bial repeat elements.By 2002,Jansen and Mojica coined the acronym CRISPR to unify the description of microbial genomic loci consisting of an interspaced repeat array (Jansen et al.,2002;Barrangou and van der Oost,2013).At the same time,several clusters of signature CRISPR-associated (cas )genes were identified to be well conserved and typically adjacent to the repeat elements (Jansen et al.,2002),serving as a basis for the eventual classification of three different types of CRISPR systems (types I–III)(Haft et al.,2005;Makarova et al.,2011b ).Types I and III CRISPR loci contain multiple Cas proteins,now known to form complexes with crRNA (CASCADE complex for type I;Cmr or Csm RAMP complexes for type III)to facilitate the recognition and destruction of target nucleic acids (BrounsFigure 2.Genome Editing Technologies Exploit Endogenous DNA Repair Machinery(A)DNA double-strand breaks (DSBs)are typically repaired by nonhomologous end-joining (NHEJ)or homology-directed repair (HDR).In the error-prone NHEJ pathway,Ku heterodimers bind to DSB ends and serve as a molecular scaffold for associated repair proteins.Indels are introduced when the complementary strands undergo end resection and misaligned repair due to micro-homology,eventually leading to frameshift muta-tions and gene knockout.Alternatively,Rad51proteins may bind DSB ends during the initial phase of HDR,recruiting accessory factors that direct genomic recombination with homology arms on an exogenous repair template.Bypassing the matching sister chromatid facilitates the introduction of precise gene modifications.(B)Zinc finger (ZF)proteins and transcription activator-like effectors (TALEs)are naturally occurring DNA-binding domains that can be modularly assembled to target specific se-quences.ZF and TALE domains each recognize 3and 1bp of DNA,respectively.Such DNA-binding proteins can be fused to the FokI endonuclease to generate programmable site-specific nucleases.(C)The Cas9nuclease from the microbial CRISPR adaptive immune system is localized to specific DNA sequences via the guide sequence on its guide RNA (red),directly base-pairing with the DNA target.Binding of a protospacer-adjacent motif (PAM,blue)downstream of the target locus helps to direct Cas9-mediated DSBs.1264Cell 157,June 5,2014ª2014Elsevier Inc.et al.,2008;Hale et al.,2009)(Figure 4).In contrast,the type II system has a significantly reduced number of Cas proteins.However,despite increasingly detailed mapping and annotation of CRISPR loci across many microbial species,their biological significance remained elusive.A key turning point came in 2005,when systematic analysis of the spacer sequences separating the individual direct repeats suggested their extrachromosomal and phage-associated ori-gins (Mojica et al.,2005;Pourcel et al.,2005;Bolotin et al.,2005).This insight was tremendously exciting,especially given previous studies showing that CRISPR loci are transcribed (Tang et al.,2002)and that viruses are unable to infect archaeal cells carrying spacers corresponding to their own genomes (Mojica et al.,2005).Together,these findings led to the specula-tion that CRISPR arrays serve as an immune memory and defense mechanism,and individual spacers facilitate defense against bacteriophage infection by exploiting Watson-Crick base-pairing between nucleic acids (Mojica et al.,2005;Pourcel et al.,2005).Despite these compelling realizations that CRISPR loci might be involved in microbial immunity,the specific mech-anism of how the spacers act to mediate viral defense remained a challenging puzzle.Several hypotheses were raised,including thoughts that CRISPR spacers act as small RNA guides to degrade viral transcripts in a RNAi-like mechanism (Makarova et al.,2006)or that CRISPR spacers direct Cas enzymes to cleave viral DNA at spacer-matching regions (Bolotin et al.,2005).Working with the dairy production bacterial strain Strepto-coccus thermophilus at the food ingredient company Danisco,Horvath and colleagues uncovered the first experimental evidence for the natural role of a type II CRISPR system as an adaptive immunity system,demonstrating a nucleic-acid-based immune system in which CRISPR spacers dictate target speci-ficity while Cas enzymes control spacer acquisition and phage defense (Barrangou et al.,2007).A rapid series of studies illumi-nating the mechanisms of CRISPR defense followed shortly and helped to establish the mechanism as well as function of all three types of CRISPR loci in adaptive immunity.By studying the type I CRISPR locus of Escherichia coli ,van der Oost and colleagues showed that CRISPR arrays are transcribed and converted into small crRNAs containing individual spacers to guide Cas nuclease activity (Brouns et al.,2008).In the same year,CRISPR-mediated defense by a type III-A CRISPR system from Staphylococcus epidermidis was demonstrated to block plasmid conjugation,establishing the target of Cas enzyme activity as DNA rather than RNA (Marraffini andSontheimer,Figure 3.Key Studies Characterizing and Engineering CRISPR SystemsCas9has also been referred to as Cas5,Csx12,and Csn1in literature prior to 2012.For clarity,we exclusively adopt the Cas9nomenclature throughout this Review.CRISPR,clustered regularly interspaced short palindromic repeats;Cas,CRISPR-associated;crRNA,CRISPR RNA;DSB,double-strand break;tracrRNA,trans -activating CRISPR RNA.Cell 157,June 5,2014ª2014Elsevier Inc.12652008),although later investigation of a different type III-B system from Pyrococcus furiosus also revealed crRNA-directed RNA cleavage activity(Hale et al.,2009,2012).As the pace of CRISPR research accelerated,researchers quickly unraveled many details of each type of CRISPR system (Figure4).Building on an earlier speculation that protospacer-adjacent motifs(PAMs)may direct the type II Cas9nuclease to cleave DNA(Bolotin et al.,2005),Moineau and colleagues high-lighted the importance of PAM sequences by demonstrating that PAM mutations in phage genomes circumvented CRISPR inter-ference(Deveau et al.,2008).Additionally,for types I and II,the lack of PAM within the direct repeat sequence within the CRISPR array prevents self-targeting by the CRISPR system.In type III systems,however,mismatches between the50end of the crRNA and the DNA target are required for plasmid interference(Marraf-fini and Sontheimer,2010).By2010,just3years after thefirst experimental evidence for CRISPR in bacterial immunity,the basic function and mecha-nisms of CRISPR systems were becoming clear.A variety of groups had begun to harness the natural CRISPR system for various biotechnological applications,including the generation of phage-resistant dairy cultures(Quiberoni et al.,2010)and phylogenetic classification of bacterial strains(Horvath et al., 2008,2009).However,genome editing applications had not yet been explored.Around this time,two studies characterizing the functional mechanisms of the native type II CRISPR system elucidated the basic components that proved vital for engineering a simple RNA-programmable DNA endonuclease for genome editing. First,Moineau and colleagues used genetic studies in Strepto-coccus thermophilus to reveal that Cas9(formerly called Cas5,Csn1,or Csx12)is the only enzyme within the cas gene cluster that mediates target DNA cleavage(Garneau et al.,2010).Next,Charpentier and colleagues revealed a key component in the biogenesis and processing of crRNA in type II CRISPR systems—a noncoding trans-activating crRNA(tracrRNA)that hybridizes with crRNA to facilitate RNA-guided targeting of Cas9(Deltcheva et al.,2011).This dual RNA hybrid,together with Cas9and endogenous RNase III,is required for processing the CRISPR array transcript into mature crRNAs(Deltcheva et al.,2011).These two studies suggested that there are at least three components(Cas9, the mature crRNA,and tracrRNA)that are essential for recon-stituting the type II CRISPR nuclease system.Given the increasing importance of programmable site-specific nucleases based on ZFs and TALEs for enhancing eukaryotic genome editing,it was tantalizing to think that perhaps Cas9could be developed into an RNA-guided genome editing system. From this point,the race to harness Cas9for genome editing wason.Figure4.Natural Mechanisms of Microbial CRISPR Systems in Adaptive Immunity Following invasion of the cell by foreign genetic elements from bacteriophages or plasmids(step 1:phage infection),certain CRISPR-associated (Cas)enzymes acquire spacers from the exoge-nous protospacer sequences and install them into the CRISPR locus within the prokaryotic genome (step2:spacer acquisition).These spacers are segregated between direct repeats that allow the CRISPR system to mediate self and nonself recognition.The CRISPR array is a noncoding RNA transcript that is enzymatically maturated through distinct pathways that are unique to each type of CRISPR system(step3:crRNA biogenesis and processing).In types I and III CRISPR,the pre-crRNA transcript is cleaved within the repeats by CRISPR-asso-ciated ribonucleases,releasing multiple small crRNAs.Type III crRNA intermediates are further processed at the30end by yet-to-be-identified RNases to produce the fully mature transcript.In type II CRISPR,an associated trans-activating CRISPR RNA(tracrRNA)hybridizes with the direct repeats,forming an RNA duplex that is cleaved and processed by endogenous RNase III and other unknown nucleases.Maturated crRNAs from type I and III CRISPR systems are then loaded onto effector protein complexes for target recognition and degradation.In type II systems, crRNA-tracrRNA hybrids complex with Cas9to mediate interference.Both type I and III CRISPR systems use multi-protein interference modules to facilitate target recognition.In type I CRISPR,the Cascade com-plex is loaded with a crRNA molecule,constituting a catalytically inert surveillance complex that rec-ognizes target DNA.The Cas3nuclease is then recruited to the Cascade-bound R loop,mediatingtarget degradation.In type III CRISPR,crRNAs associate either with Csm or Cmr complexes that bind and cleave DNA and RNA substrates,respectively.In contrast,the type II system requires only the Cas9nuclease to degrade DNA matching its dual guide RNA consisting of a crRNA-tracrRNA hybrid.1266Cell157,June5,2014ª2014Elsevier Inc.In2011,Siksnys and colleaguesfirst demonstrated that the type II CRISPR system is transferrable,in that transplantation of the type II CRISPR locus from Streptococcus thermophilus into Escherichia coli is able to reconstitute CRISPR interference in a different bacterial strain(Sapranauskas et al.,2011).By 2012,biochemical characterizations by the groups of Charpent-ier,Doudna,and Siksnys showed that purified Cas9from Strep-tococcus thermophilus or Streptococcus pyogenes can be guided by crRNAs to cleave target DNA in vitro(Jinek et al., 2012;Gasiunas et al.,2012),in agreement with previous bacte-rial studies(Garneau et al.,2010;Deltcheva et al.,2011;Sapra-nauskas et al.,2011).Furthermore,a single guide RNA(sgRNA) can be constructed by fusing a crRNA containing the targeting guide sequence to a tracrRNA that facilitates DNA cleavage by Cas9in vitro(Jinek et al.,2012).In2013,a pair of studies simultaneously showed how to suc-cessfully engineer type II CRISPR systems from Streptococcus thermophilus(Cong et al.,2013)and Streptococcus pyogenes (Cong et al.,2013;Mali et al.,2013a)to accomplish genome editing in mammalian cells.Heterologous expression of mature crRNA-tracrRNA hybrids(Cong et al.,2013)as well as sgRNAs (Cong et al.,2013;Mali et al.,2013a)directs Cas9cleavage within the mammalian cellular genome to stimulate NHEJ or HDR-mediated genome editing.Multiple guide RNAs can also be used to target several genes at once.Since these initial studies,Cas9has been used by thousands of laboratories for genome editing applications in a variety of experimental model systems(Sander and Joung,2014).The rapid adoption of the Cas9technology was also greatly accelerated through a com-bination of open-source distributors such as Addgene,as well as a number of online user forums such as http://www. and . Structural Organization and Domain Architecture ofCas9The family of Cas9proteins is characterized by two signature nuclease domains,RuvC and HNH,each named based on homology to known nuclease domain structures(Figure2C). Though HNH is a single nuclease domain,the full RuvC domain is divided into three subdomains across the linear protein sequence,with RuvC I near the N-terminal region of Cas9and RuvC II/IIIflanking the HNH domain near the middle of the pro-tein.Recently,a pair of structural studies shed light on the struc-tural mechanism of RNA-guided DNA cleavage by Cas9. First,single-particle EM reconstructions of the Streptococcus pyogenes Cas9(SpCas9)revealed a large structural rearrange-ment between apo-Cas9unbound to nucleic acid and Cas9in complex with crRNA and tracrRNA,forming a central channel to accommodate the RNA-DNA heteroduplex(Jinek et al., 2014).Second,a high-resolution structure of SpCas9in complex with sgRNA and the complementary strand of target DNA further revealed the domain organization to comprise of an a-helical recognition(REC)lobe and a nuclease(NUC)lobe consisting of the HNH domain,assembled RuvC subdomains,and a PAM-interacting(PI)C-terminal region(Nishimasu et al.,2014) (Figure5A and Movie S1).Together,these two studies support the model that SpCas9 unbound to target DNA or guide RNA exhibits an autoinhibited conformation in which the HNH domain active site is blocked by the RuvC domain and is positioned away from the REC lobe (Jinek et al.,2014).Binding of the RNA-DNA heteroduplex would additionally be sterically inhibited by the orientation of the C-ter-minal domain.As a result,apo-Cas9likely cannot bind nor cleave target DNA.Like many ribonucleoprotein complexes,the guide RNA serves as a scaffold around which Cas9can fold and orga-nize its various domains(Nishimasu et al.,2014).The crystal structure of SpCas9in complex with an sgRNA and target DNA also revealed how the REC lobe facilitates target binding.An arginine-rich bridge helix(BH)within the REC lobe is responsible for contacting the308–12nt of the RNA-DNA het-eroduplex(Nishimasu et al.,2014),which correspond with the seed sequence identified through guide sequence mutation ex-periments(Jinek et al.,2012;Cong et al.,2013;Fu et al.,2013; Hsu et al.,2013;Pattanayak et al.,2013;Mali et al.,2013b). The SpCas9structure also provides a useful scaffold for engi-neering or refactoring of Cas9and sgRNA.Because the REC2 domain of SpCas9is poorly conserved in shorter orthologs, domain recombination or truncation is a promising approach for minimizing Cas9size.SpCas9mutants lacking REC2retain roughly50%of wild-type cleavage activity,which could be partly attributed to their weaker expression levels(Nishimasu et al., 2014).Introducing combinations of orthologous domain re-combination,truncation,and peptide linkers could facilitate the generation of a suite of Cas9mutant variants optimized for different parameters such as DNA binding,DNA cleavage,or overall protein size.Metagenomic,Structural,and Functional Diversity of Cas9Cas9is exclusively associated with the type II CRISPR locus and serves as the signature type II gene.Based on the diversity of associated Cas genes,type II CRISPR loci are further subdivided into three subtypes(IIA–IIC)(Figure5B)(Makarova et al.,2011a; Chylinski et al.,2013).Type II CRISPR loci mostly consist of the cas9,cas1,and cas2genes,as well as a CRISPR array and tracrRNA.Type IIC CRISPR systems contain only this minimal set of cas genes,whereas types IIA and IIB have an additional signature csn2or cas4gene,respectively(Chylinski et al.,2013). Subtype classification of type II CRISPR loci is based on the architecture and organization of each CRISPR locus.For example,type IIA and IIB loci usually consist of four cas genes, whereas type IIC loci only contain three cas genes.However, this classification does not reflect the structural diversity of Cas9proteins,which exhibit sequence homology and length variability irrespective of the subtype classification of their parental CRISPR locus.Of>1,000Cas9nucleases identified from sequence databases(UniProt)based on homology,protein length is rather heterogeneous,roughly ranging from900to1600 amino acids(Figure5C).The length distribution of most Cas9 proteins can be divided into two populations centered around 1,100and1,350amino acids in length.It is worth noting that a third population of large Cas9proteins belonging to subtype IIA,formerly called Csx12,typically contain around1500amino acids.Despite the apparent diversity of protein length,all Cas9pro-teins share similar domain architecture(Makarova et al.,2011a;Cell157,June5,2014ª2014Elsevier Inc.1267。
巨噬细胞与肺纤维化的相关研究进展

巨 噬 细 胞 在 原 有 的 吞 噬 细 菌 能 力 的 基 础 外 ,还参 与 伤 口修复的过程,其 中 ,M l型巨噬细胞主要以促使 炎症 反 应 为 主 ,M2 型巨噬细胞具有较强的抗炎活性,
M2 型 巨 噬 细 胞 在 伤 口 愈 合 和 纤 维 化 中 起 到 重 要 作 用' 同 时 M2 型 巨 噬 细 胞 还 可 以 拮 抗 M l巨噬细胞的 活 性 ,这对于激活伤口愈合反应和恢复组织稳态有着 至 关 重 要 。同 时 也 有 研 究 表 明 ,M l型巨噬细胞在组 织 修 复 中 可 以 转 化 成 具 有 抗 炎 活 性 的 M2 型巨噬 细胞丨10丨。
关键词 :巨 噬 细 胞 巨 噬 细 胞 极 化 肺 纤 维 化 doi: 10.11842/wst.20201111012 中 图 分 类 号 :R563 文 献 标 识 码 :A
肺 纤 维 化 ( pulmonary fibrosis,PF)是 一■种广泛的 异致性终末期的慢性间充质性肺疾病,其特征是细胞 外 基 质 过 度 沉 积 和 肺 实 质 破 坏 。 由于遗传易感性和 各 种 环 境 风 险 因 素 包 括 病 毒 ,细 菌 ,香 烟 烟 雾 ,木 屑 , 石 屑 等 引 起 的 刺 激 而 引 起 肺 泡 上 皮 细 胞 损 伤 、成纤维 细 胞 增 殖 、成纤维细胞向肌成纤维细胞转化和胶原的 形成并引起病理性的细胞外基质沉积,降低肺的顺应 性 ,导致气体交换受阻、肺 功 能 急 剧 下 降 、呼吸困难等 器 官 功 能 障 碍 ,最 终 发 展 成 为 呼 吸 衰 竭 而 危 及 生 命 的 纤维化间充质疾病m。近 些 年 对 PF治疗的研究有了深 人 的 发 展 ,但 是 对 于 PF 发 病 机 制 的 认 识 仍 不 十 分 清楚。
小学上册第9次英语第5单元综合卷(有答案)

小学上册英语第5单元综合卷(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.What do we call the process of a caterpillar turning into a butterfly?A. MetamorphosisB. EvolutionC. TransformationD. Development 答案: A. Metamorphosis2.Helium was first discovered in the ______ spectrum.3.The capital of Indonesia is _______.4. A ____ has large, flapping ears and can hear very well.5.What do we call the stars and planets in the sky?A. UniverseB. Solar SystemC. GalaxyD. Atmosphere答案: A6.The _______ (The fall of the Berlin Wall) marked the end of Communist control in Eastern Europe.7.My friend is very ________.8.When it snows, I enjoy making __________ with my friends. (雪人)9.What is the main purpose of a refrigerator?A. To heat foodB. To cool foodC. To cook foodD. To freeze food答案: B10. A _____ (植物研究合作) can lead to groundbreaking discoveries.11.The __________ is a natural wonder located in the United States. (黄石公园)12.Turtles can live for a ______ (很长的时间).13.My brother is __________ (富有想象力).14. A ____(mixed-use development) combines residential and commercial spaces.15.What is the name of the famous ancient ruins in Mexico?A. TeotihuacanB. Machu PicchuC. Angkor WatD. Petra答案: A16.We visit the ______ (自然史博物馆) to learn about fossils.17.The discovery of ________ changed the course of history.18. A dolphin leaps gracefully out of the _______ and splashes down again.19.I enjoy playing ________ with my family.20.I like to ___ (play/watch) games.21.What do we call a young female goat?A. KidB. CalfC. LambD. Foal答案:A.Kid22.My friend is __________ (聪明绝顶).23.The _______ can change its shape with the seasons.24.The _____ (养分) in the soil is vital for plant health.25.What is the term for a young goat?A. CalfB. KidC. LambD. Foal答案: B26.An electric motor converts electrical energy into _______ energy.27.Animals that have scales are typically __________.28.The capital of Bonaire is __________.29.My favorite animal is a ______ (dolphin).30. A __________ is a reaction that involves a change in temperature.31.The first successful cloning of a mammal was of _____.32.I like to go ________ (爬山) with my friends.33.The ______ (小鸟) builds a nest for its eggs.34.My _____ (仓鼠) runs on its wheel.35.The ______ helps us learn about communication.36.The painting is very ___ (colorful).37.I often visit my ____.38.I can see a ______ in the sky. (bird)39. A strong acid has a pH less than ______.40.The atomic number of an element tells you the number of _____ (protons) it has.41.What do we call the part of the brain that controls balance?A. CerebellumB. CerebrumC. BrainstemD. Cortex答案:A42.The __________ is a famous natural landmark in the United States. (黄石公园)43.The capital of Ecuador is __________.44.The iguana is often seen basking in the ______ (阳光).45.The __________ (农业) is important for our economy.46.The ______ (小龙) is a mythical creature often found in ______ (故事).47.What is the term for a baby capybara?A. PupB. KitC. CalfD. Hatchling答案:c48.The fish swims in the ___. (water)49.The chemical formula for calcium chloride is ______.50.The ancient Romans practiced ________ (宗教多元).51.I want to _____ (go/stay) at home.52.The speed of light is very ______.53.What do we call a baby dog?A. KittenB. PuppyC. CalfD. Chick答案:B54.The chemical formula for yttrium oxide is _____.55.The Earth's surface is shaped by both climatic and ______ factors.56.Understanding plant _____ (结构) helps in gardening.57.The _____ (spoon) is shiny.58.The _____ (温带雨林) hosts a variety of plant species.59.The balloon is ______ (floating) in the air.60.The river is ______ (calm) and clear.61. A solution with a pH of contains more ______ than a solution with a pH of .62. A ____ is a large animal that can be trained to work.ets are made of ice, dust, and ______.64.__________ are used in the beauty industry for skincare.65.The _____ is a phenomenon where the moon blocks the sun.66.My cat enjoys the warmth of the _______ (阳光).67.The __________ is important for keeping bones strong.68.The __________ is the area of land between two rivers.69.The __________ (历史的深度剖析) reveals nuances.70.Certain plants can ______ (提供) habitat for endangered species.71. A _______ can measure the amount of energy consumed by a device.72.The ________ was a significant treaty that fostered diplomatic relations.73.The chemical symbol for silver is ________.74.I like to draw pictures of my ________ (玩具名) and imagine their adventures.75.I share my toys with my ______. (我和我的______分享玩具。
牛Fas相关死亡功能域蛋白(FADD)研究进展

牛Fas相关死亡功能域蛋白(FADD)研究进展张文刚;杨润军【摘要】Fas相关死亡功能域蛋白(Fas-associated death domainprotein,FADD)是Fas/FasL系统信号转导通路中介导细胞凋亡的胞浆死亡信号蛋白.近年来对牛FADD研究逐渐深入,已成功克隆出牛FADD基因,并构建pAcGF-N1-bFADD融合蛋白表达载体等.通过对小鼠等模式生物的研究发现,FADD在细胞质内能以磷酸化形式存在并参与细胞增殖和有丝分裂等过程.除此之外,FADD蛋白在细胞周期进程、胚胎发育、炎症反应、肿瘤发生等生物学活动中具有一定作用.本文将从FADD基因分析、蛋白修饰及生物学功能入手,揭示FADD作为多功能蛋白对细胞增殖与凋亡平衡起到重要作用,是机体维持正常发育和活动的关键蛋白.为肉牛在育种和实践应用中,提高肉质和胴体性状提供候选基因.【期刊名称】《中国牛业科学》【年(卷),期】2013(039)004【总页数】7页(P40-46)【关键词】FADD;凋亡;Fas/FasL途径;死亡诱导信号复合体【作者】张文刚;杨润军【作者单位】吉林大学动物科学学院,吉林长春130062;吉林大学动物科学学院,吉林长春130062【正文语种】中文【中图分类】S823.2Fas相关死亡功能域蛋白最早是在酵母双杂交系统中发现的一种具有与Fas死亡域和TNFR-1死亡域高度同源域的蛋白,并很快被证明是Fas受体和TNFR-1受体诱导的细胞凋亡信号衔接蛋白[1]。
近年来随着对FADD进一步研究发现,FADD在细胞内能与很多信号转导途径相关蛋白作用,参与细胞增殖、细胞周期进程、胚胎发育、炎症反应、肿瘤发生等生物学活动。
本文从FADD基因结构、蛋白修饰、参与信号途径及其不同的生物学作用进行系统阐明和论述。
1 牛FADD基因及蛋白的结构牛的FADD基因位于29号染色体,基因全长2406kb,编码区包含两个外显子,即长度为288bp编码死亡效应结构域(Death Effector Domain,DED)的外显子Ⅰ和长度为342bp编码死亡结构域(Death Domain,DD)的外显子Ⅱ。
铁、锰、铜和水杨醛缩金刚烷胺席夫碱配体原位催化5-羟甲基糠醛氧化制备5-甲酰基呋喃-2-羧酸

DOI: 10.1016/S1872-5813(21)60176-7铁、锰、铜和水杨醛缩金刚烷胺席夫碱配体原位催化5-羟甲基糠醛氧化制备5-甲酰基呋喃-2-羧酸白继峰1,程曼芳1,卢虹竹1,侯明波2,杨 雨1,王景芸1,* ,周明东1(1. 辽宁石油化工大学 石油化工学院, 辽宁 抚顺 113001;2. 中国石油抚顺石化公司石油二厂, 辽宁 抚顺 113004)摘 要:本研究将铁、锰、铜和金刚烷胺缩水杨醛衍生的席夫碱配体组成的原位催化剂用于催化5-羟甲基糠醛(5-Hydroxymethylfurfural ,简称HMF)选择性氧化制备5-甲酰基呋喃-2-羧酸(5-formyl-2-furancarboxylic acid ,简称FFCA)。
通过核磁共振(NMR )、红外(FT-IR )和单晶衍射对配体和配合物进行了表征,并对氧化反应时间、反应温度、MnCl 2·4H 2O 与配体物质的量比、氧化剂和催化剂用量等反应条件进行优化,在最优化条件下,HMF 转化率为100%,并且可以获得收率为52.1%的FFCA 。
根据反应结果对Mn 金属配合物催化的HMF 氧化反应过程进行了分析。
关键词:5-羟甲基糠醛;氧化;席夫碱;原位催化;5-甲酰基呋喃-2-羧酸中图分类号: O643.36 文献标识码: AIn-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligandsBAI Ji-feng 1,CHENG Man-fang 1,LU Hong-zhu 1,HOU Ming-bo 2,YANG Yu 1 ,WANG Jing-yun 1,* ,ZHOU Ming-dong1(1. School of Petrochemical Technology , Liaoning Shihua University , Fushun 113001, China ;2. PetroChina Fushun Petrochemical Company No 2 Petroleum Plant , Fushun 113004, China )Abstract: To synthesize simple and efficient catalysts and their application in catalytic conversion of biomass platform compounds to prepare high value-added chemicals has always been the focus of researchers. In this paper,a catalyst composed of iron, manganese, copper and Schiff base ligand derived from amantadine salicylaldehyde was in-situ constructed to catalyze the selective oxidation of 5-hydroxymethylfurfural (HMF) to prepare 5-formyl-2-furancarboxylic acid (FFCA). The ligands and complexes were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and single crystal diffraction, and the reaction conditions such as oxidation reaction time, reaction temperature, molar ratio of MnCl 2·4H 2O to ligand, oxidant and catalyst dosage, etc, were optimized. Under the optimized conditions, 100% conversion of HMF and the FFCA with a yield of 52.1% can be obtained. Finally, on the basis of the reaction results, the HMF oxidation reaction process catalyzed by Mn metal complexes was analyzed.Key words: 5-hydroxymethylfurfural ;oxidation ;Schiff base ;in-situ catalysis ;5-formylfuran-2-carboxylic acid当前,我们正进入一个可利用化石能源日益减少的时代,有限的石油资源使当前的石油基燃料和化学品生产难以为继。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Downloaded from on March 2, 2011
FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis
Mariko Sawa, Dmitri A. Nusinow, Steve A. Kay, Takato Imaizumi*
20. A. Ghatak, L. Mahadevan, M. K. Chaudhury, Langmuir 21, 1277 (2005).
21. K. L. Johnson, K. Kendall, A. D. Roberts, Proc. R. Soc. London Ser. A 324, 301 (1971).
Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2007 by the American Association for the Advancement of Science; all rights reserved. The title Science is a registered trademark of AAAS.
REPORTS
nism suggests strategies for the design of more efficient, cleaner, and stumli-responsive pressuresensitive adhesives.
References and Notes 1. M. Scherge, S. N. Gorb, Biological Micro- and
22. A.G. acknowledges the research initiation grant of the Indian Institute of Technology, Kanpur (IITK/CHE/2004307) and the research grant of the Department of Science and Technology, India (DST/CHE/20050259) for this work.
Nanotribology: Nature’s Solutions (Springer, Heidelberg, Germany, 2001). 2. R. Spolenak, S. N. Gorb, H. Gao, E. Arzt, Proc. R. Soc. London Ser. A 461, 305 (2005). 3. S. N. Gorb, Y. Jiao, M. J. Scherge, Comp. Physiol. A 186, 821 (2000). 4. S. N. Gorb et al., Nature 443, 407 (2006). 5. C. Creton, S. N. Gorb, MRS Bull. 32, 466 (2007). 6. J. M. Smith, W. J. P. Barnes, J. R. Downie, G. D. Ruxton, J. Comp. Physiol. A 192, 1193 (2006). 7. K. Autumn et al., Nature 405, 681 (2000). 8. W. R. Hansen, K. Autumn, Proc. Natl. Acad. Sci. U.S.A. 102, 385 (2005).
Many plants monitor seasonal changes in day length to regulate flowering time for successful reproduction (1). In Arabidopsis, regulation of daytime CO expression is the primary process of time measurement in the photoperiodic flowering pathway (2, 3). FKF1 and GI proteins positively regulate CO transcription (4, 5). FKF1 and GI gene expression has similar diurnal patterns (5, 6), which implies that these proteins may interact to regulate CO. We tested their direct interaction in yeast and found that FKF1 interacts with GI (Fig. 1A). Our results, obtained using truncated FKF1 proteins, suggest that this interaction occurs through the FKF1 LOV (Light, Oxygen, or Voltage) domain (Fig. 1A). In addition, the GI N terminus was sufficient to interact with FKF1 (fig. S1).
Supporting Online Material /cgi/content/full/318/5848/258/DC1 Materials and Methods SOM Text Figs. S1 to S5 Table S1 References
30 May 2007; accepted 28 August 2007 10.1126/science.1145839
Downloaded from on March 2, 2011
FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis Mariko Sawa, et al. Science 318, 261 (2007); DOI: 10.1126/science.1146994
9. A. K. Geim et al., Nat. Mater. 2, 461 (2003). 10. A. Ghatak, L. Mahadevan, J. Chun, M. K. Chaudhury,
V. Shenoy, Proc. R. Soc. London Ser. A 460, 2725 (2004). 11. J. Y. Chung, M. K. Chaudhury, J. R. Soc. Interface 2, 55 (2005). 12. T. Thomas, A. J. Crosby, J. Adhes. 82, 311 (2006). 13. A. J. Crosby, M. Hageman, A. Duncan, Langmuir 21, 11738 (2005). 14. H. Lee, B. P. Lee, P. B. Messersmith, Nature 448, 338 (2007). 15. M. K. S. Verma, A. Majumder, A. Ghata). 16. Materials and methods are available as supporting material on Science Online. 17. A. Jagota, S. J. Bennison, Int. Comp. Biol. 42, 1140 (2002). 18. N. J. Glassmaker, A. Jagota, C. Y. Hui, J. Kim, J. R. Soc. Interface 1, 23 (2004). 19. N. J. Glassmaker, A. Jagota, C. Y. Hui, Acta Biomater. 1, 367 (2005).
Precise timing of CONSTANS (CO) gene expression is necessary for day-length discrimination for photoperiodic flowering. The FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and GIGANTEA (GI) proteins regulate CO transcription in Arabidopsis. We demonstrate that FKF1 and GI proteins form a complex in a blue-light–dependent manner. The timing of this interaction regulates the timing of daytime CO expression. FKF1 function is dependent on GI, which interacts with a CO repressor, CYCLING DOF FACTOR 1 (CDF1), and controls CDF1 stability. GI, FKF1, and CDF1 proteins associate with CO chromatin. Thus, the FKF1-GI complex forms on the CO promoter in late afternoon to regulate CO expression, providing a mechanistic view of how the coincidence of light with circadian timing regulates photoperiodic flowering.