2018年中考数学试题分类汇编知识点39投影、三视图与展开图
中考数学试题分类汇编:投影与视图

(2013•衡阳)下列几何体中,同一个几何体的主视图与俯视图不同的是( ) A .B .C .D .考点: 简单几何体的三视图. 分析: 主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形. 解答:解:A 、圆柱的主视图与俯视图都是矩形,错误; B 、正方体的主视图与俯视图都是正方形,错误;C 、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D 、球体主视图与俯视图都是圆,错误; 故选C . 点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A . 2个B . 3个C . 5个D . 10个考点: 由三视图判断几何体. 分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数. 解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体, 从俯视图可以验证这一点,从而确定小正方体总个数为5个. 故选;C . 点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.(( )株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A BC DA .正方体 B .圆柱C .圆锥 D .球 考点: 简单几何体的三视图 分析: 俯视图是分别从物体上面看所得到的图形.分别写出四个几何体的俯视图即可得到答案. 解答:解:正方体的俯视图是正方形;圆柱体的俯视图是圆;圆锥体的俯视图是圆;球的俯视图是圆. 故选:A . 点评:本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. (2013,成都)如图所示的几何体的俯视图可能是( )(2013•达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。
2018年中考数学真题分类汇编第一期专题18图形的展开与叠折试题含解

图形的展开与叠折一、选择题1.(2018•四川凉州•3分)一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2018·天津·3分)如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3 (2018·新疆生产建设兵团·5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.4 (2018·台湾·分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C. D.【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5. (2018•河南•3分)某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我6.(2018·浙江衢州·3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110° C.108° D.106°【考点】平行线的性质【分析】由折叠可得:∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.7. (2018·浙江舟山·3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B.C. D.【考点】剪纸问题【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。
中考数学专题复习:投影与视图

投影与试图典题探究例2 如图是由八个相同小正方体组合而成的几何体,则其左视图是( )A. B . C . D .例3 下面四个几何体中,俯视图不是圆的几何体的个数是( )A .1B .2C .3D .4例4 如图是由几个相同的小立方块组成的三视图,小立方块的个数是( )A .3个B .4个C .5个D .6个练习一 立体图形、视图和展开图A 组1.下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是( )2.一个几何体的三视图如右图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱锥D.三棱柱3.已知一个几何体的三视图如图所示,则该几何体是()A棱柱 B圆柱 C圆锥 D球4.如图是一个几何体的三视图,则这个几何体的形状是()(A)圆柱(B)圆锥(C)圆台(D)长方体5.下列图形中,不是三棱柱的表面展开图的是()6.圆锥侧面展开图可能是下列图中的()7.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()8.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活10.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示。
如果记6的对面的数字为a,2的对面的数字为b,那么ba 的值为()A.3 B.7 C.8 D.1111.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是()12.左下图为主视图方向的几何体,它的俯视图是()13.如图1是一个几何体的实物图,则其主视图是DCBA14.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()B组15.右图是一个由4个相同的正方体组成的立体图形,它的三视图为()16.如图是由五个小正方体搭成的几何体,它的左视图是()17.如图所示的几何体的俯视图是().A B DC18.如图摆放的正六棱柱的俯视图是()19.沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( )20.下图所示几何体的主视图是()21.一个几何体的三视图如图所示,那么这个几何体是()22.下面四个图形中,是三棱柱的平面展开图的是()23.某物体的展开图如图所示,它的左视图为()练习二中心投影与平行投影A组1.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是 ( )2.视点指的是()A.眼睛的大小 B.眼睛看到的位置C.眼睛的位置 D.眼睛没有看到的位置3.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长 B.变短C.先变短后变长 D.先变长后变短4.于视线的范围,下列叙述不正确的是()A.走上坡路比走平路的视线范围小B.走上坡路比走平路的视线范围大C.在船头比在船尾向前看到的范围大D.在轿车外比在轿车里看到的范围大5.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)6.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()答案例2 考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.例4 考点:由三视图判断几何体.分析:根据三视图的知识,可判断该几何体有两列两行,底面有3个正方形,第二层有1个.解答:解:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选B.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.练习一立体图形、视图和展开图A组1.【答案】D ;2.【答案】D;3.【答案】B ;4.【答案】B ;5.【答案】D;6.【答案】D7.【答案】B;8.【答案】C;9.【答案】A ;10.【答案】B;11.【答案】A;12.【答案】D13.【答案】C ;14.【答案】AB组15.【答案】B;16.【答案】A;17.【答案】B ;18.【答案】D ;19.【答案】D20.【答案】A ;21.【答案】A;22.【答案】A ;23.【答案】B练习二中心投影与平行投影A组1.【答案】A ;2.【答案】C;3.【答案】C;4.【答案】B ;5.【答案】先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P作过木桩顶端的直线与地面的交点即为F.6.【答案】A。
中考数学真题分类汇编及解析(四十二)投影与视图

(2022•玉林中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.这个几何体的主视图如下:(2022·安徽中考)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【解析】选A.从上面看,是一个矩形.(2022•江西中考)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【解析】选A.如图,它的俯视图为:(2022•云南中考)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥(2022•丽水中考)如图是运动会领奖台,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形:(2022•绍兴中考)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解析】选B.由图可得,题目中图形的主视图是(2022•舟山中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【解析】选B.从正面看底层是三个正方形,上层左边是一个正方形.(2022•温州中考)某物体如图所示,它的主视图是()A.B.C.D.【解析】选D.某物体如图所示,它的主视图是:(2022•扬州中考)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【解析】选B.由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥(2022•凉山州中考)如图所示的几何体的主视图是()A.B.C.D.【解析】选C.从正面看,底层是三个小正方形,上层的中间是一个小正方形(2022•泸州中考)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【解析】选C.从物体上面看,底层有一个正方形,上层有四个正方形(2022•湖州中考)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.观察该几何体发现:从正面看到的应该是三个正方形,上面1个左齐,下面2个(2022•宁波中考)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【解析】选C.根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,,故C选项符合题意(2022•黄冈中考)某几何体的三视图如图所示,则该几何体是()A.圆锥 B.三棱锥 C.三棱柱 D.四棱柱【解析】选C.由三视图可知,这个几何体是直三棱柱.(2022•宜宾中考)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【解析】选D.从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.(2022•十堰中考)下列几何体中,主视图与俯视图的形状不一样的几何体是()A. B. C. D.【解析】选C.A.正方体的主视图与俯视图都是正方形,故A不符合题意;B.圆柱的主视图与俯视图都是长方形,故B不符合题意;C.圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D.球体的主视图与俯视图都是圆形,故D不符合题意.(2022•武汉中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.【解析】选A.从正面看共有两层,底层三个正方形,上层左边是一个正方形.A.主视图和左视图 B.主视图和俯视图C.左视图和俯视图 D.三个视图均相同【解析】选A.该几何体的三视图中完全相同的是主视图和左视图,均为半圆;俯视图是一个实心圆. (2022•邵阳中考)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【解析】选D.从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆(2022•天津中考)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】选A.从正面看底层是两个正方形,左边是三个正方形,则立体图形的主视图是A中的图形(2022•嘉兴中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【解析】选C.由图可知主视图为:(2022•衡阳中考)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形,(2022•湘潭中考)下列几何体中,主视图是三角形的是()A.B.C.D.【解析】选A.A、圆锥的主视图是三角形,故此选项符合题意;B、圆柱的主视图是长方形,故此选项不符合题意;C、球的主视图是圆,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条实线,故此选项不符合题意(2022•眉山中考)下列立体图形中,俯视图是三角形的是()A.B.C.D.【解析】选B.A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意(2022•台州中考)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【解析】选A.根据题意知,几何体的主视图为:(2022•福建中考)如图所示的圆柱,其俯视图是()A.B.C.D.【解析】选A.根据题意可得,圆柱的俯视图如图,.大致形状是()A.B.C.D.【解析】选B.根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形.(2022•雅安中考)下列几何体的三种视图都是圆形的是()A.B.C.D.【解析】选B.A选项的主视图和左视图为长方形,A选项不符合题意;∵B选项的三种视图都是圆形,∴B选项符合题意;∵C选项的主视图和左视图为等腰三角形,∴C选项不符合题意;∵D选项主视图和左视图为等腰梯形,∴D选项不符合题意;综上,B选项的三种视图都是圆形.(2022•贺州中考)下面四个几何体中,主视图为矩形的是()A.B.C.D.【解析】选A.A.长方体的主视图是矩形,故本选项符合题意;B.三棱锥的主视图是三角形,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.圆台的主视图是等腰梯形,故本选项不符合题意.(2022•黔东南州中考)一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥【解析】选B.根据主视图和左视图都是长方形,判定该几何体是个柱体,∵俯视图是个圆,∴判定该几何体是个圆柱.(2022•哈尔滨中考)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】选D.由题意知,题中几何体的左视图为:(2022•齐齐哈尔中考)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【解析】选C.由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.(2022•鄂州中考)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【解析】选A.该几何体的主视图为:一共有两列,左侧有三个正方形,右侧有一个正方形,所以A选项正确.(2022•仙桃中考)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【解析】选A.根据三视图可知,该立体图形是长方体.(2022•威海中考)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是()A.B.C.D.【解析】选B.从上面看,底层左边是一个小正方形,上层是三个小正方形.(2022•梧州中考)在下列立体图形中,主视图为矩形的是()A.B.C.D.【解析】选A.A.圆柱的主视图是矩形,故本选项符合题意;B.球的主视图是圆,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.三棱锥形的主视图是三角形,故本选项不符合题意.(2022•龙东中考)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【解析】选B.从俯视图课看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.(2022•长沙中考)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.【解析】选B.根据主视图的概念,可知选B.(2022•包头中考)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【解析】选B.由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4.(2022•赤峰中考)下面几何体的俯视图是()A.B.C.D.【解析】选B.几何体的俯视图是:(2022·遵义中考)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【解析】选A.这个“堑堵”的左视图如图:(2022•海南中考)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.【解析】选C.这个组合体的主视图如图:(2022·牡丹江中考)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解析】选A.由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面.(2022•吉林中考)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.【解析】选C.俯视图是从物体的上面向下面投射所得的视图,由松花砚的示意图可得其俯视图为C.(2022•抚顺中考)如图是由6个完全相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解析】选B.从上面看,底层右边是一个小正方形,上层是三个小正方形.(2022•杭州中考)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【解析】∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.(2022•北部湾中考)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【解析】据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为4268=2x,解得:x=134.答案:134.。
2017年全国中考数学真题分类 三视图与展开图2017(选择题)

2017年全国中考数学真题分类三视图与展开图选择题一、选择题1..(2017四川广安,6,3分)如图所示的几何体,上下部分均为圆柱体,其左视图是( )答案:C,解析:从左边看,下方是一个大矩形,上方是一个小矩形.故选C.2.(2017浙江丽水·3·3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同答案:B.解析:根据三视图的概念,这个几何体的主视图和左视图是相同的长方形,俯视图是正方形,故选B.3.(2017四川泸州,4,3分)左下图是一个由4个相同的正方体组成的立体图形,它的左视图是( )答案:D,解析:该几何体从左面看,是一列两层的两个小正方形.故选D.4.(2017安徽中考·3.4分)如图,一个放置在水平试验台上的锥形瓶,它的俯视图为()A. B. C. D.答案:B.解析:根据俯视图的概念,该几何体的俯视图是两个同心圆,故选B.5.(2017浙江衢州,2,3分)下图是由四个相同的小立方块搭成的几何体,它的主视图是()主视方向A B C D答案:D,解析:主视图即是从正面看到的视图,易得左侧有2个正方形,右侧有一个正方形.故选D.6.(2017山东济宁,5,3分)下列几何体中,主视图、俯视图、左视图都相同的是A. B. C. D.答案:B,解析:根据几何体“三视图的定义”,如图,B选项球的主视图、俯视图、左视图都是圆,其他三个选项几何体的主视图、俯视图、左视图不一样.7.(2017山东德州,4,3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()答案:B,解析:俯视图是从上往下看得到的图形,图中竖直圆柱的俯视图是圆形,横放的圆柱的俯视图是长方形,又它们等直径,故该T型管道的俯视图是选项B中图形.8.(2017山东威海,8,3分)一个几何体有n个大小相同的小正方形搭成,其左视图、俯视图、如图所示,则n的值最小是()A.5B.7C.9D.10答案:B,解析:由俯视图知该几何体1、2、3、4个位置上都有小正方体,结合左视图知1、2位置中,其中一个位置最多有三个另一个位置最少有一个小正方体,3、4位置中,其中一个位置最多有两个最少有一个小正方体,故该几何体至少有七个小正方体.1 23 49.(2017山东菏泽,3,3分)下列几何题是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()答案:C,解析:选项A的左视图和俯视图如图1所示,选项B的左视图和俯视图如图2所示,选项C的左视图和俯视图如图3所示,选项D的左视图和俯视图如图4所示.10.(2017年四川绵阳,4,3分)如图所示的几何体的主视图正确的是A. B. C. D.答案:D 解析:考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.11. (2017四川自贡,8,3分)下面是几何体中,主视图是矩形的是( )A .B .C .D .答案:A ,解析:选项A 中圆柱的主视图是矩形;选项B 中球的主视图是圆;选项C 中圆锥的主视图是等腰三角形;选项D 中圆台的主视图是等腰图形.12. (2017年四川南充,2,3分)图1是由7个小正方体组合而成的几何体,它的主视图是( )答案:A 解析:主视图是从前向后看立体图形所得到的平面图形.这里主视图共可看到四个正方形,其中左边从上到下共有3个正方形,右边只有1个正方形.故选A .13. (2017浙江舟山,4,3分)一个立方体的表面图如图所示,将其折叠成立方体后,“你”字对面的字是( ) A . 中B . 考C .顺D .利答案:C ,解析:解析:正方体的表面展开图共有如下11种:正面图1A .B .C .D .其中处在同一行上的间隔一个正方形的为对面,如图21中的1与2即为对面;不在同一行上的”之”字两端的正方形为对面,如图21与21中的1与2为对面,所以“你”字对面的字是“顺”,故选C.14. 2.(2017江苏盐城,2,3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是A.圆柱B.球C.圆锥D.棱锥答案:C,解析:观察发现,主视图、左视图都是三角形,可猜想几何体可能是棱锥或圆锥,又因为俯视图是带圆心的圆,所以这个几何体是圆锥.15. (2017年四川内江,5,3分)由一些大小相同的小正方体搭成的几何体的俯视图如下图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是A B C D答案:A,解析:由已知条件可知,主视图有3列,每列小正方数形数目分别为1,2,3,由此可画出图形,如下所示:第2题图16.(2017山东临沂,5,3分)如图所示的几何体是由五个小正方体组成的,它的左视图是()答案:D解析:几何体的左视图有2列,左边一列小正方形数目是2,右边一列小正方形的数目是1,故选 D.17.(2017山东泰安,6,3分)下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.4答案:B,解析:根据几何体的形状以及摆放的方式可知,第一个正方体的俯视图为正方形,第二个圆柱体的俯视图为圆,第三个三棱柱的俯视图为矩形,第四个球体的俯视图为圆,所以俯视图是四边形的几何体的个数为2个.18. 5.(2017江苏连云港,5,3分)由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小 D.俯视图的面积最小答案:C ,解析:分别画出这个几何体的正视图,左视图和俯视图,假设每个正方体的一个侧面的面积为1,则正视图的面积为5,左视图的面积为3,俯视图的面积为4,得到左视图的面积最小,故选择C选项.19.(2017四川达州2,3分)如图,几何体是由3个完全一样的正方体组成,它的左视图是()A. B. C. D.答案:B,解析:这个几何体从左边看,上下有两个正方体,故本题选B.20.(2017四川眉山,4,3分)右图所示几何体的主视图是答案:B,解析:主视图是指从立体图形的正面看到的平面图,从正面看,其主视图为2行2列,第一列有两个正方形,第二列也有两个正方形,故选择B.21. 2.(2017山东潍坊,2,3分)如图所示的几何体,其俯视图是()答案:D,解析:该杯子上口大下底小,且皆为圆形,又带着不透明的盖,故俯视图中下底圆形为虚线.22. 3.(2017浙江温州,3,4分)某运动会颁奖台如图所示,它的主视图是DCBA主视方向(第3题)A.B. C. D.答案:C,解析:主视图:从物体正面看到的平面图形,主视图能反映物体的正立面形状以及物体的高度和长度,及其上下、左右的位置关系.23. 3.(2017四川宜宾,3,3分)下面的几何体中,主视图为圆的是()A.B.C.D.答案:C,解析:圆柱的主视图是矩形,正方体的主视图是正方形,球体的主视图圆,圆锥的主视图是等腰三角形.24.(2017山东滨州,6,3分)图2是一个几何体的三视图,则这个几何体是()主视图左视图A. B. C. D.图2俯视图答案:B,解析:由主视图易知,只有B选项符合.25.(2017湖南岳阳,4,3分)下列四个立体图形中,主视图、左视图、俯视图都相同的是A.B.C.D.答案:B,解析:考察三视图,球体的主视图、俯视图、左视图是面积相等的圆,三视图相同.26. 5.(2017江苏扬州,,3分)经过圆锥顶点的截面的形状可能是【答案】B27. 4.(2017甘肃酒泉,4,3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )答案:D,解析:几何体的俯视图是指从上面看所得到的图形. 此题由上向下看是空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选D.28. 2.(2017甘肃兰州,2,4分)如图所示,该几何体的左视图是从正面看DCBA【答案】DA B C D第4题图A B C D【解析】在三视图中实际存在而被遮挡的线用虚线来表示,故选D29. 4.(2017湖北黄冈,4,3分)已知:如图,是一几何体的三视图,则该几何体的名称为A .长方体B .正三棱柱C .圆锥D .圆柱答案:D ,解析:A .长方体的三个视图都是矩形; B .正三棱柱的视图应该有三角形;C .圆锥的视图也应该有三角形;D .圆柱的主视图和左视图都是矩形,俯视图是圆.30. 10.(2017湖北荆门,10,3分)已知:如图2,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )B A .6个 B .7个 C .8个 D .9个答案:B ,解析:如答图1,以俯视图为基础,将另两个视图中小正方形的个数填写在俯视图的相应位置,即可得小正方体的个数是7.故选B .31. (2017山东烟台,4,3分)如图所示的工件,其俯视图是( )答案:B ,解析:从上面看到的图形是B 项中的图形.主视图 俯视图左视图图21 23 1 答图132. 5.(2017天津,3分)右图是一个由4个相同的正文体组成的立体图形,它的主视图是A B第5题C D答案:D,解析:从正面看立体图形,有两行三列,从下往上数,个数分别是3,1,且第二层的正方形在第一层的正中间,故选D.33. 3.(2017浙江义乌,3,4分)如图的几何体由五个相同的小正方体搭成,它的主视图是A.B. C. D.答案:A,解析:根据主视图是从物体的正面看得到的视图,从正面看可知第一层有3个正方形,第二层最左边有一个正方形.34. 4.(2017湖北咸宁,4,3分) 如图是某个几何体的三视图,该几何体是( )A.三棱柱 B.三棱锥 C.圆柱 D.圆锥答案:A解析:∵三棱柱的三视图符合所给的三视图的形状,∴A正确;∵三棱锥的三视图是三角形,与所给三视图不一致,∴B错误;∵圆柱的俯视图是圆,与所给三视图不一致,∴C错误;∵圆锥主视图、左视图都是三角形、俯视图是圆形,与所给三视图不一致,∴D错误.故选A.35.3.(2017湖北宜昌,3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”字一面的相对面上的字是()A.美B.丽C.宜D.昌答案:C,解析:根据正方体展开图的相对面求解,如果以“爱”为底,则“我”和“美”分别为前侧面和后侧面,“丽”为右面,“宜”在上面,“昌在左面,故选择C .36.(2017湖南邵阳,4,3分)下列立体图形中,主视图是圆的是()A B C D答案:A,解析:因为球的主视图是圆,圆柱的主视图是长方形,圆锥的主视图是等腰三角形,正方体的主视图是正方形,故选A.37.4.(2017湖北鄂州,3分)如图是由几个大小相同的小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()答案:D,解析:从左向右看,一共有3列,左侧一列有2层,中间一列有2层,右侧一列有1层,故选D.A.B.C.D.1122第4题图38. (2017湖北十堰,2,5分)如图的几何体,其左视图是( )A .B .C .D .答案:B ,解析:左视图为从左向右看,此图从左向看看到的图形为B ,故选B .39.(2017湖北随州,3,3分)如图是某几何体的三视图,这个几何体是( )俯视图主视图A .圆锥B .长方体C .圆柱D .三棱柱答案:C ,解析:解析:A .圆锥的视图应该有三角形; B .长方体的三个视图都是矩形;C .圆柱的主视图和左视图都是矩形,俯视图是圆;D .三棱柱的视图应该有三角形.40. (湖南益阳,8,5分)如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是2·1·c ·n ·j ·y A .214πcm 2 B .2116πcm 2C .30cm 2D .7.5cm 2答案:D ,解析:圆柱的主视图是矩形,它的一边长是10cm ,另一边长是12cm.在比例尺为1:4的主视图中,它的对应边长分别为2.5cm ,3cm ,因而矩形的面积为7.5cm 2.因此选D .第8题图41.(2017江苏镇江,14,3分)如图是由6个大小相同的小正方体组成的几何体,它的主视图是A.答案:C,解析:这个几何体共两层三排三列,主视图看到的是这个几何体的长和高,故选C.44. (2017甘肃天水.2.4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()2题图A B C D答案:C,解析:俯视图即是从上面看到的视图,由实物图知从上面看到的是四个小正方形组成的大正方形,故选C.43.(2017湖南郴州,7,3分)如图(1)所示的圆锥的主视图是答案:A,解析:主视图就是从几何体的正面得到的投影,本题中主视图反映的是圆锥的高和底面·圆的直径,∴A符合.44. 3.(2017安徽中考·4分)如图,一个放置在水平试验台上的锥形瓶,它的俯视图为()A. B. C. D.答案:B.解析:根据俯视图的概念,该几何体的俯视图是两个同心圆,故选B.45.(2017新疆生产建设兵团,2,5分)某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥答案:D 解析:由于主视图与左视图是三角形,俯视图是圆,该几何体是圆锥,故选D.46. 8. (2017浙江湖州,3分)如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是A.2002cm D.200π2cmcm C.100π2cm B.6002答案:D,解析:能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)称为三视图. 从物体的前面向后面投射所得的视图称主视图(正视图)--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图(侧视图)--能反映物体的左面形状.由此可知,此几何体是圆柱体,由比例可知底面半径为5cm,高为20cm,所以该几何体的侧面积是一个长方形,即2=22520200r h cmSπππ⨯=⨯⨯=侧面积.47.4.(2017湖北天门,4,3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是A.传B.统C.文D.化化文统传扬弘答案:C,解析:所给图形是正方体展开图中“132”型,∴把所给图形折成正方体后“弘”与“文”、“扬”与“统”、“传”与“化”相对,故选择C.48.6. (2017湖南张家界,3分)如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是( )A.丽B.张C.家D.界答案:C,解析:同一行或列中,间一个小正方形就是一对相对面,所以“丽”与“张”是相对面;相对面不共顶点,所以“的”与“美”、“家”不是相对面,从而“的”与“界”是相对面;因此剩下的两个面“美”与“家”是相对面.49. 5.(2017浙江宁波,5,4分)如图所示的几何体的俯视图为( )【答案】D【解析】根据三视图的概念,俯视图是从物体的上面向下面看所得的视图,从上往下看,只有D 正确.故选D.50. 10.(2017四川凉山,10,4分)如图是一个几何体的三视图,则该几何体的侧面积是( ) A.213πB.10πC.20πD.413π【答案】A【解析】由三视图可知此几何体为圆锥,根据三视图的尺寸可得圆锥的底面半径为2,高为3,∴圆锥的母线长为:132322=+,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×2=4π,∴圆锥的侧面积=21×4π×13=213π.故选A.51. 3.(2017浙江绍兴,4分)如图的几何体由五个相同的小正方体搭成,它的主观图是A.B.C.D.【答案】A.【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选A.55.(2017北京,3,3分)右图是某个几何题的展开图,该几何体是()4 4334A.三棱柱B.圆锥C.四棱柱D.圆柱答案:A,解析:此图是三棱柱的展开图.53.(2017河南,3,3分)某几何体的左视图如下图所示,则该几何体不可能是( )A. B. C. D.答案:D,解析:从左视图可以看到几何体有几列,每列的最高层数是多少,选A、B、C从左面去看都只能看到2列,并且第一列的最高层数为2,第二列只有一层,和题中给出的左视图吻合,只有选项D的左视图应该可以看到有3列,第一列有2层,第2、3列均有1层,不符合题意,故应选D.55. (2017黑龙江齐齐哈尔,8,3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于( )A. 10B. 11C. 12D.13答案:C解析:根据主视图可知俯视图中第一列最高为3块,第二列最高有1块,∴a=3×2+1=7,b=3+1+1=5,∴a+b=7+5=12.55.(2017湖北襄阳,6,3分)如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A. B. C. D.答案:A,解析:从几何体上面看几何体得到的平面图形是该几何体的俯视图.56.(2017山东聊城,6,3分)如图是由若跟个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()答案:C,解析:主视图是从前往后看,由俯视图可知从左到右最高层数依次为2,3,1,∴这个几何体的主视图是C.57.(2017新疆乌鲁木齐,8,4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A. πB.2πC. 4πD. 5π答案:B,解析:观察三视图发现几何体为圆锥,其母线长为()2231+4,侧面积为12lR=12×2π×1×2=2π,故选B.58..(2017广西百色,7,3分)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是( )A.①②③ B.②①③ C.③①② D.①③②答案:D,解析:主视图是三角形,俯视图是两个矩形,左视图是矩形.59. 4.(2017贵州安顺,4,3分)如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为()A.B.C.D.答案:C,解析:根据简单组合体的三视图,从上边看矩形内部是个圆.60. 4.(2017年贵州省黔东南州,4,4分)如图所示,所给的三视图表示的几何体是A.圆锥 B.正三棱锥 C.正四棱锥 D.正三棱柱答案:D,解析:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个正三角形,∴此几何体为正三棱柱.61. 3.(2017江苏常州,3,3分)右图是某个几何体的三视图,则该几何体是( )A.圆锥B.三棱柱C.圆柱D.三棱锥【答案】B【解析】由俯视图知是三棱柱或三棱锥,再由主视图排除三棱锥.66. 2.(2017·辽宁大连,2,3分)一个几何体的三视图如图所示,则这个几何体是第2题A.圆锥B.长方体C.圆柱D.球答案:B 解析:观察发现,主视图、左视图、俯视图都是矩形,可以确定几何体是直棱柱,所以这个几何体是长方体,故选B.63. 3.(2017山东淄博,3,4分)下列几何体中,其主视图为三角形的是()A B C D答案:D,解析:圆锥体的主视图是三角形.64.(2017陕西,2,3分)如图所示的几何体是由一个长方体和一个圆柱组成的,则它的主视图为A .B .C .D .答案:B ,解析:主视图是从前面看,看到的应该是上下两个长方形.故选B .65. (2017年湖南长沙,7,3分)某几何体的三视图如图所示,因此几何体是A.长方体B.圆柱C.球D 正三棱柱答案:B ,解析:长方体的俯视图不是圆,错;C 球的三视图都是圆,对;D 正三棱柱的主视图是三角形,错。
中考数学真题专项汇编解析—投影与视图、命题、尺规作图

中考数学真题专项汇编解析—投影与视图、命题、尺规作图一.选择题1.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∵展开图由一个扇形和一个圆构成,∵该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.2.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.3.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.4.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.5.(2022·四川自贡·中考真题)如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.【答案】A【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.【详解】解:矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.6.(2022·湖南衡阳·中考真题)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【答案】A【分析】根据主视图的定义和画法进行判断即可.【详解】解:从正面看过去,看到上下共三个矩形,所以主视图是:故选A【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.7.(2022·云南·中考真题)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱【答案】D【分析】根据三视图逆向即可得.【详解】解:此几何体为一个圆柱.故选:D.【点睛】此题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8.(2022·天津·中考真题)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9.(2022·江西·中考真题)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【答案】A【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A.【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.10.(2022·浙江温州·中考真题)某物体如图所示,它的主视图是()A.B.C.D.【答案】D【分析】根据主视图的定义和画法进行判断即可.【详解】解:某物体如图所示,它的主视图是:故选:D.【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.11.(2022·浙江宁波·中考真题)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的意义和画法可以得出答案.【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C符合题意,故答案选:C.【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键.12.(2022·江苏扬州·中考真题)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【答案】B【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∵该几何体是四棱锥,故选B.【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.13.(2022·浙江绍兴·中考真题)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【答案】B【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B.【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.14.(2022·浙江嘉兴·中考真题)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.15.(2022·浙江丽水·中考真题)如图是运动会领奖台,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:领奖台的主视图是:故选:A.【点睛】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.16.(2022·安徽·中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.17.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∵OAB OCB ≅,∵AOB COB ∠=∠,∵OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∵OBC OAD ≅,∵OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∵AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∵AEC BED ≅△△,∵AE BE =,∵,EAO EBO OA OB ∠=∠=,∵AOE BOE ∠=∠,∵OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∵CD OB ∥,COD CDO =∠∠,∵DOB CDO ∠=∠,∵COD DOB ∠=∠,∵OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∵AOB CBO ≅,∵,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.18.(2022·山东泰安·中考真题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )A .B .C .D .【答案】C【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C19.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边【答案】B【分析】由直线公理可直接得出答案.【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.20.(2022·四川达州·中考真题)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a b<,则22ac bc<D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1 3【答案】D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若a b<,则22ac bc≤,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D选项正确,符合题意;故选:D.【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.21.(2022·湖北随州·中考真题)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.22.(2022·湖北黄冈·中考真题)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱【答案】C【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.23.(2022·广西梧州·中考真题)下列命题中,假命题...是()A.2-的绝对值是2-B.对顶角相等C.平行四边形是中心对称图形D.如果直线,∥∥,那么直线a ba cb c∥【答案】A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A.2-的绝对值是2,故原命题是假命题,符合题意;B.对顶角相等,故原命题是真命题,不符合题意;C.平行四边形是中心对称图形,故原命题是真命题,不符合题意;D.如果直线,a cb c∥∥,那么直线a b∥,故原命题是真命题,不符合题意;故选:A.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.24.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题饿到关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.25.(2022·湖北武汉·中考真题)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【答案】A【分析】根据题意可得这个几何体的三视图为长方形和正方形,即可求解.【详解】解:根据题意得:该几何体的三视图为长方形和正方形,∵该几何体是长方体.故选:A【点睛】本题考查由三视图确定几何体的名称,熟记常见几何体的三视图的特征是解题的关键.26.(2022·黑龙江齐齐哈尔·中考真题)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【答案】C【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层的个数,从而算出总的个数.【详解】解:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=6.故选:C.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.27.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.28.(2022·广西贺州·中考真题)下面四个几何体中,主视图为矩形的是()A.B.C.D.【答案】A【分析】依次分析每个选项中的主视图,找出符合题意的选项即可.【详解】解:A选项图形的主视图为矩形,符合题意;B选项图形的主视图为三角形,中间由一条实线,不符合题意;C选项图形的主视图为三角形,不符合题意;D选项图形的主视图为梯形,不符合题意;故选:A.【点睛】本题考查了几何体的主视图,解题关键是理解主视图的定义.29.(2022·湖南永州·中考真题)我市江华县有“神州摇都”的美涨,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.【答案】B【分析】根据题目描述,判断几何体的俯视图即可;【详解】解:根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形,鼓腰也是圆形,且是不能直接看见,所以中间是虚圆;故选:B.【点睛】本题主要考查几何体的三视图中的俯视图,解本题的关键在于需学生具备一定的空间想象能力.30.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.31.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.32.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:∵作线段2AB ,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;∵连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法不正确的是()A.ABC是等边三角形B.AB CD⊥C.AH BH=D.45∠=︒ACD【答案】D【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB=BC=AC,∵∵ABC是等边三角形,故A选项正确∵等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,∵AB CD⊥,故B选项正确,∵AH BH=,30∠=︒,故C选项正确,D选项错误.故选:D.ACD【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.33.(2022·四川广元·中考真题)如图,在∵ABC中,BC=6,AC=8,∵C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于大于12点E 、F ,则AE 的长度为( )A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∵1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∵C =90°,∵10AB ,∵AD =4,AF =2,4cos 5AC A AB ∠==,∵5cos 2AF AE A ==∠;故选A . 【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.34.(2022·河北·中考真题)∵~∵是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A.∵∵B.∵∵C.∵∵D.∵∵【答案】D【解析】【分析】观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意【详解】解:观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.二、填空题35.(2022·江苏无锡·中考真题)请写出命题“如果a b>,那么0-<”的逆命题:b a________.【答案】如果0-<,那么a b>b a【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b>,那么0b a-<,那么a b>”,-<”的逆命题是“如果0b a故答案为:如果0-<,那么a b>.b a【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.36.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.37.(2022·浙江湖州·中考真题)“如果a b =,那么a b =”的逆命题是___________.【答案】如果a b =,那么a b =【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义. 38.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13mMC CD==,垂直于地面的木棒EF与影子FG的比为2∵3,则点O,M之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.【答案】1010【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD 于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据23EF OMFG MH==,求出OM的长度,证明BIO JIB∽,得出23BI IJ=,49OI IJ=,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ 交BD于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,由题意可知,点O是AB的中点,∵OH AC BD,∵点H是CD的中点,∵13m CD=,∵16.5m2CH HD CD===,∵8.5 6.515m MH MC CH=+=+=,又∵由题意可知:23EF OMFG MH==,∵2153OM=,解得10m=OM,∵点O、M之间的距离等于10m,∵BI∵OJ,∵90BIO BIJ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∵BOI JBI ∠=∠,∵BIO JIB ∽,∵23BI OI IJ BI ==,∵23BI IJ =,49OI IJ =, ∵,OJ CD OH DJ ,∵四边形IHDJ 是平行四边形,∵ 6.5m OJ HD ==, ∵46.5m 9OJ OI IJ IJ IJ =+=+=,∵ 4.5m IJ =,3m BI =,2m OI =,∵在Rt OBI △中,由勾股定理得:222OB OI BI =+,∵OB ,∵OB OK ==,∵(10m MK MO OK =+=,∵叶片外端离地面的最大高度等于(10m,故答案为:10,10+【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.39.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ∵BC ,DE ∵EF ,DE =2.47m ,则AB =_________m .【答案】9.88【分析】根据平行投影得AC ∵DE ,可得∵ACB =∵DFE ,证明Rt ∵ABC ∵∵Rt ∵DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .∵AC ∵DE ,∵∵ACB =∵DFE ,∵AB ∵BC ,DE ∵EF ,∵∵ABC =∵DEF =90°,∵Rt ∵ABC ∵∵Rt ∵DEF , ∵AB BC DE EF =,即8.722.47 2.18AB =,解得AB =9.88, ∵旗杆的高度为9.88m .故答案为:9.88.【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt ∵ABC ∵∵Rt ∵DEF 是解题的关键.40.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴=8AC =,15BC =,81523,ACD CAC CD AD AC CD BD AC BC 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.三.解答题41.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ∵OD ,EF ∵FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明∵AOD ∵∵EFG ,利用相似比计算出AO 的长,再证明∵BOC ∵∵AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:∵AD ∵EG ,∵∵ADO =∵EGF . 又∵∵AOD =∵EFG =90°,∵∵AOD ∵∵EFG . ∵AO ODEF FG =.∵ 1.820152.4EF OD AO FG ⋅⨯===. 同理,∵BOC ∵∵AOD .∵BO OCAO OD =.∵15161220AO OC BO OD ⋅⨯===. ∵AB =OA −OB =3(米).∵旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.42.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)。
2019年全国中考试题汇编知识点36 投影、三视图与展开图(通用版全解全析)

2019年全国中考试题汇编知识点36 投影、三视图与展开图(通用版全解全析)一、选择题2.(2019·德州)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】D【解析】本题考查了轴对称和中心对称图形的识别,A.轴对称图形;B.中心对称图形;C.既不是轴对称图形,也不是中心对称图形;D.既是轴对称图形,又是中心对称图形,故选D.4.(2019·滨州)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】观察该几何体,主视图有四个小正方形,面积为4;左视图有3个小正方形,面积为3;俯视图有四个小正方形,面积为4,故A正确.5.(2019·广元)我国古代数学家刘徽用"牟合方盖"找到了球体体积的计算方法."牟合方盖"是由两个圆柱分别从纵横两个方向嵌人一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成"牟合方盖"的一种模型,它的俯视图是( )第5题图【答案】A【解析】由两个圆柱分别从纵横两个方向嵌入一个正方体,而横嵌入圆柱的俯视图是长方形,纵嵌入圆柱的俯视图是圆,正方体俯视图是正方形,故选A.2.(2019·遂宁)如图为正方体的一种平面展开图,各面都标有数字,则数字-2的面与其对面上的数字之积是( )A.-12B. 0C.-8D. -10【答案】A【解析】正方体折叠还原后-2的对面是6,所以-2 6=-12.4.(2019·淮安)下图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()【答案】C【解析】从正面看几何体共有3列,第一列2块,第二列和第三列都是一块,所以主视图为C. 6.(2019·长沙)某个几何体的三视图如图所示,该几何体是【】【答案】D【解析】由三视图可知:该几何体为圆锥.故本题选:D.3.(2019·益阳)下列几何体中,其侧面展开图为扇形的是()A. B. C.D.【答案】C【解析】∵圆柱的侧面展开图是长方形、三棱柱的侧面展开图是长方形、圆锥的侧面展开图是扇形、三棱锥的侧面展开图是三块三角形,∴选C.5.(2019·常德)图是由4个大小相同的小正方体摆成的几何体,它的左视图是()【答案】C【解析】根据左视图是从左向右看得到的视图,可知选项C正确.5.(2019·武汉)如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()A .B .C .D .【答案】A【解析】从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选A .6.(2019·黄冈)如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是【答案】B【解析】直接利用三视图的画法,从左边观察,可画.1.(2019·陇南)下列四个几何体中,是三棱柱的为( )A .B .C .D .【答案】C . 【解析】A 中的立体图形是长方体,B 中的立体图形是圆锥,C 中的立体图形是三棱柱,D 中的立体图形是圆柱,故选:C . 3.(2019·安徽)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是DC B A【答案】C【解析】本题考查了简单组合体的三视图,解题的关键是就在于要先确定几何体的主视图的位置,然后按照题目要求从不同方向观察几何体,看得见的部分的轮廓用实线画出.从上方观察该几何体,圆柱的俯视图是圆,长方体的俯视图是正方形,且圆内切于该正方形.注意:能看见的棱边用实线表示,看不见的棱边用虚线表示,故选C.1.(2019·岳阳)下列立体图形中,俯视图不是圆的是()A B C D【答案】C【解析】正方体的俯视图与正方形,其它三个的俯视图都是圆,故选C.2.(2019·无锡)一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥【答案】A【解析】本题考查了由视图判断几何体,主视图、左视图、俯视图都是长方形的几何体是长方体,故选A.3.(2019·滨州)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【答案】A【解析】观察该几何体,主视图有四个小正方形,面积为4;左视图有3个小正方形,面积为3;俯视图有四个小正方形,面积为4,故A正确.4.(2019·济宁)如图,一个几何体上半部为正四校锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A B C D【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.5. (2019·聊城)如图所示的几何体的左视图是第2题图【答案】B【解析】A中间是虚线,∴是从右边看得到的图形,故A错误;B是左视图,正确;C是主视图,故C错误;D是俯视图,故D错误.故选B.6.(2019·潍坊)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】通过小正方体①的位置可知,只有从正面看会少一个正方形,故主视图会改变,而俯视图和左视图不变,故选择A.7.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完全相同的是()A.B.C.D.【答案】D.【解析】:A.圆柱的主视图和左视图是长方形、俯视图是圆形,故本选项不符合题意;B.三棱柱的主视图和左视图是相同的长方形,但是俯视图是一个三角形,故本选项不符合题意;C.长方体的主视图和左视图是不一样的长方形,俯视图也是一个长方形,故本选项不符合题意;D.球体的主视图、左视图和俯视图是相同的圆,故本选项符合题意.故选.D.【知识点】简单几何体的三视图8. (2019·巴中)如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是( )【答案】C【解析】从正面看这个组合体,可以看到四个正方体和一个圆锥的侧面,下面一层是三个正方形,上面一层左边是正方形,右边是三角形,故选C.9.(2019·达州)下图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()【答案】C【解析】这个几何体的第一行有三层,第二行有一层,故应选C.10.(2019·眉山)如图是由6个完全相同的小正方体组成的立体图形,它的左视图是【答案】D【解析】解:从左侧看,共有3列,第一列有两个正方形,第二列有一个正方形,第三列有一个正方形,故选D.11.(2019·自贡)下图是一个水平放置的全封闭物体,则它的俯视图是()【答案】C.【解析】俯视图就是从上面看,从上面看可以看到两个矩形,并且都是实线.故选C.12.(2019·天津)右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】从正面看由两层组成,上面一层1个正方形,下面一层三个正方形,所以选B.13. (2019·宁波) 如图,下列关于物体的主视图画法正确的是第5题图 【答案】C【解析】如图所示是一个空心圆柱,其左视图轮廓应该是长方形,内部的两条线段看不到,应该用虚线表示,故选C.14.(2019·衢州)如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图...是(A )【答案】A【解析】本题考查主视图的识别,该几何体从正面看看到的图形是A 图,故选A.15. (2019·台州)如图是某几何体的三视图,则该几何体是( ) A.长方体 B.正方体 C.圆柱 D.球第2题图【答案】C 【解析】圆柱从正面看是长方形,从左面看底面是圆形,从上面看是长方形,符合图示的三视图.16.(2019·重庆B 卷)如图是一个由5个相同正方体组成的立体图形,它的主视图是( )【答案】D.A.B.C.D【解析】三视图分为主视图,俯视图和左视图.三视图是观测者从上面、左面、正面三个不同角度观察同一个空间几何体而画出的图形.从正面看,有5个正方体表面组成,故选D.17.(2019·重庆A卷)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()【答案】A.【解析】因为从正面看该几何体,共有2列,第1列有两个小正方形,第2列有一个小正方形,所以选A.3.(2019·温州)某露天舞台如图所示,它的俯视图...是()【答案】B【解析】本题考查的是画出立体图形的三视图的知识,解题的关键是准确掌握三视图的概念来求解,要画出图中几何体的俯视图,首先由俯视图的概念:几何体的俯视图是从上面看到的图形,观察得出这个几何体的俯视图是长方形中间有一个长方形,且这两个长方形具有共同的边,故选B.3.(2019·绍兴)如图的几何体由6个相同的小正方体搭成,它的主视图是( )【答案】A【解析】从正面看易得第一层有2个正方形,第二层有3个正方形.故选A.3.(2019·嘉兴)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【答案】B【解析】俯视图是上面往下观察所得的图形,观察可知第一层一个靠左边,第二层两根,故选B. 3.(2019·烟台)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是().A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .主视图、左视图、俯视图 【答案】A【解析】将小正方体①移走后,该几何体的主视图和左视图没有发生变化,俯视图中小正方体①的投影会没有. 4. (2019·威海)如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是( )【答案】C【解析】俯视图是从一个几何体的上面由上向下看所得到的视图,从这个几何体的上面看,可以得到两排小正方形,其中上一排4个,下一排1个,故选C .5.(2019·盐城)如图是由6个小正方体搭成的物体,该所示物体的主视图是( )【答案】C【解析】三视图分为主视图、左视图和俯视图.主视图是在物体正面从前向后观察物体得到的图形;该图从正面看第一层是三个小正方形,第二次中间一个小正方形,故选C. 3.(2019·江西)如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )【答案】A【解析】俯视图反映几何体的长和宽,通过观察几何体可以画出对应的视图. 3.(2019·山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与"点"字所在面相对的面上的汉字是( ) A.青 B.春 C.梦 D.想D.C.B.A. A.B. C.D.第3题图【答案】B【解析】根据正方体的展开与折叠中面的关系,可知与"点"字所在面相对的面上的汉字是春,故选B.二、填空题1.(2019·攀枝花)如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)【答案】C或E【解析】动手折一折或发挥空间想象能力都可得出判断.11。
九年级数学专题复习之《投影与视图》中考试题精选

九年级数学专题复习之《投影与视图》中考试题精选一.选择题(共10小题)1.如图,是某几何体的三视图,则该几何体是()A.长方体B.正方体C.三棱柱D.圆柱2.如图是由5个同样大小的小正方体摆成的几何体,现将第6个小正方体摆放在①、②、③哪个正方体前面,新几何体的主视图不发生变化()A.放在①前面主视图不改变B.放在②前面主视图不改变C.放在③前面主视图不改变D.放在①、②、③前面主视图都不改变3.由4个相同的正方体搭成的几何体如图所示,它的主视图是()A.B.C.D.4.下面的几何体中,主视图为三角形的是()A.B.C.D.5.如图是由6个小正方体搭成的几何体,该几何体的俯视图是()A.B.C.D.6.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其左视图是()A.B.C.D.7.如图所示的立体图形的主视图是()A.B.C.D.8.如图几何体的左视图是()A.B.C.D.9.如图所示的几何体的主视图是()A.B.C.D.10.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.二.填空题(共10小题)11.在如图所示的几何体中,主视图是三角形的是.(填序号)12.如图是由五个棱长均为1的正方体搭成的几何体,则它的左视图的面积为.13.将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为.14.如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为.15.如图是某几何体的三视图,该几何体是.16.在学校开展的手工制作比赛中,小明用纸板制作了一个圆锥模型,它的三视图如图所示,根据图中数据求出这个模型的侧面积为.17.如图是一个无底帐篷的三视图,该帐篷的表面积是(结果保留π).18.小明用彩纸给爸爸做一顶生日帽,其左视图和俯视图如图所示,其中AB=24cm,AC =36cm,则至少需用彩纸cm2(接口处重叠面积不计).19.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为.20.一个几何体的三视图如图所示,则该几何体的表面积为.三.解答题(共10小题)21.如图(1)是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)图(2)是根据a,h的取值画出的几何体的主视图和俯视图,请在网格中画出该几何体的左视图.(2)已知h=4.求a的值和该几何体的表面积.22.用5个相同的正方体搭成如图所示的几何体.(1)分别画出从正面、左面、上面看到的几何体的形状图.(2)在这个几何体中,再添加一个相同的正方体组成一个新几何体,使从正面,左面看这个新几何体时,看到的形状图与原来相同,且从上面看到的形状图与原来不同.请画出从上面看到的这个新几何体的形状图.23.小明周末到公园里散步,当他沿着一段平坦的直线跑道行走时,前方出现一棵树AC和一座景观塔BD(如图),假设小明行走到M处时正好透过树顶C看到景观塔的第5层顶端E处,此时他的视角为30°,已知树高AC=10米,景观塔BD共6层(塔顶高度和小明的身高忽略不计),每层5米.请问,小明再向前走多少米刚好看不到景观塔BD?(结果保留根号)24.某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视图,如图1.(1)由三视图可知,密封纸盒的形状是;(2)根据该几何体的三视图,在图2中补全它的表面展开图;(3)请你根据图1中数据,计算这个密封纸盒的表面积.(结果保留根号)25.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.8m,窗高CD=1.2m,并测得OE=0.8m,OF=3m,求围墙AB的高度.26.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积.27.一个等腰Rt△ABC如图所示,将它绕直线AC旋转一周,形成一个几何体.(1)写出这个几何体的名称,并画出这个几何体的三视图;(2)依据图中的测量数据,计算这个几何体的表面积.(结果保留π)28.如图是一个几何体的三视图[图中尺寸单位:cm).(1)由三视图可知,该几何体的形状是;(2)请你根据图中所示数据,计算出该几何体的表面积.29.双十一购物狂欢节,天猫“某玩具旗舰店”对乐高积木系列玩具将推出买一送一活动.根据积木数量的不同,厂家会订制不同型号的外包装盒.所有外包装盒均为双层上盖的长方体纸箱(上盖纸板面积刚好等于底面面积的2倍,如图1).长方体纸箱的长为a厘米,宽为b厘米,高为c厘米.(1)请用含有a,b,c的代数式表示制作长方体纸箱需要平方厘米纸板;(2)如图2为若干包装好的同一型号玩具堆成几何体的三视图,则组成这个几何体的玩具个数最少为个;(3)由于旗舰店在双十一期间推出买一送一的活动,现要将两个同一型号的乐高积木包装在同一个大长方体的外包装盒内(如图1),已知单个乐高积木的长方体纸盒长和高相等,且宽小于长.如图3所示,现有甲,乙两种摆放方式,请分别计算甲,乙两种摆放方式所需外包装盒的纸板面积(包装盒上盖朝上),并比较哪一种方式所需纸板面积更少,说明理由.30.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点39 投影、三视图与展开图
一、选择题
1. (2018四川泸州,4题,3分)左下图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()
第4题图 A. B. C. D.
【答案】B
【解析】考察由正方体组成的简单几何体的三视图,从上往下看,上面一行有三个正方形,第二行在左边有一个正方形,故选B
【知识点】常见几何体(组合体)的三视图
2.(2018四川内江,3,3)如图是正方体的表面展开图,则与“前”字相对的字是()
A.认 B.真 C.复 D.习
【答案】B
【解析】解:正方体的展开图中,相隔一个面的平面在正方体的相对面的位置,所以:“前”字对面的字为“真”.故选择B.
【知识点】正方体的展开图
3. (2018浙江金华丽水,5,3分)一个几何体的三视图如图所示,该几何体是().
A.直三棱柱 B.长方体 C.圆锥 D.立方体
【答案】A.
【解析】由三视图可得该几何体是直三棱柱.故选A.
【知识点】,三视图
4.(2018浙江衢州,第4题,3分)由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是(▲)
A.B.C.D.
第4题图
【答案】C
【解析】本题考查了简单组合体的三视图,解题的关键是熟悉三视图的观察角度.主视图从正面观察,得到最下面是三个正方形,左侧上方一个,故选C
【知识点】简单组合体的三视图
5.(2018安徽省,4,4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()
【答案】A
【解析】根据从正面看得到的图形是主视图,可得答案, 从正面看上边是一个三角形,下边是一个矩形,
故选:A.
【知识点】简单组合体的三视图。