投影与三视图知识点总结汇编

合集下载

投影与三视图知识点总结

投影与三视图知识点总结

投影与三视图一、视角与盲区如图,小明眼睛的位置称为视点 由视点出发的线称为视线,两条视线的夹角称为视角.小明看不到的地方称为盲区。

哪个区域是盲区?小丽坐在哪里,小明就可以看到明她?二、投影: 1、定义:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

(1)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影。

(2)中心投影:由同一点(点光源发出的光线)形成的投影。

区别联系 光线物体与投影面平行时的投影 平行投影平行的投射线 全等 都是物体在光线的照射下,在某个平面内形成的影子。

(即都是投影)中心投影 从一点出发的投射线 放大(位似变换) 例1.有两根木棒AB 、CD 在同一平面上竖着,其中AB 这根木棒在太阳光下的影子BE 如下图所示,则CD 这根木棒的影子DF 应如何画?分析:利用平行投影的相关性质。

解析:画法:(1)连接AE(2)过点C 作CF//AE(3)过点D 作DF//BE ,交CF 于F ,则DF 即为所求。

点评:要解决此题首先要知道这两个物体都是竖直在地面上,而且是由太阳光即平行光所照射,则可知连接AE ,过C 点作CF 平行AE ,作DF//BE ,交点为F ,则DF 为所求CD 的影子。

通过本题理解平行投影的性质。

小明 小丽三、简单物体的三视图:1、正投影:在平行投影中,如果投射线垂直于投影面产生的投影。

物体正投影的形状、大小与它相对于投影面的位置和角度有关。

如图所示,三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。

可见只用一个方向的投影来表达形体形状是不行的。

2、三视图就是主视图、俯视图、左视图的总称。

(1)从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状。

(2)从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状。

中考复习 投影与视图知识点

中考复习 投影与视图知识点

投影与视图
投影
一般的,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影。

投影面
投影面是物体投影所在的假想面。

通常是平面,但在地球投影等方面也应用圆柱面、圆锥面和球面等曲面作为投影面。

分类
平行投影
投影中心投影
正投影
平行投影:由平行光线形成的投影。

中心投影:由同一点(点光源发出的光线)形成的投影。

正投影:投影线垂直于投影面产生的投影。

(注:物体正投影的形状、大小与它相对于投影面的位置有关。


视图
当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。

三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

分类
主视图
三视图俯视图
左视图
主视图:在正面内得到的由前向后观察物体的视图。

俯视图:在水平面内得到的由上向下观察物体的视图。

左视图:在侧面内得到的由左向右观察物体的视图。

特点
(1)主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽;
(2)三视图之间的大小关系是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则;
(3)一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

中职《机械制图》第二章必背知识点

中职《机械制图》第二章必背知识点

第二章正投影法与三视图第一节投影法的概念投影法:从物体和投影的对应关系中,总结出了用投影原理在平面上表达物体形状的方法。

投影法可分为两大类:中心投影法、平行投影法。

一、中心投影法1、定义:投影线互不平行的投影方法。

2、特点:投影比实物大,立体感强。

3、适用:外观图,美术图,照相等。

二、平行投影法1、定义:投影线互相平行的投影方法。

a、斜投影:平行投影中,投影线与投影面倾斜。

b、正投影:平行投影中,投影线与投影面垂直。

第二节三视图的形成及投影规律物体是有长、宽、高三个尺度的立体。

我们要认识它,就应该从上、下、左、右、前、后各个方面去观察它,才能对其有一个完整的了解。

为了准确地表达物体的形状和大小,我们选取互相垂直的三个投影面。

一、、三投影面体系三面:正立投影面:简称正面用V表示水平投影面:简称水平面用H表示侧立投影面:简称侧面用W表示OX轴:V面与H面的交线。

OY轴:H面与W面的交线。

OZ轴:V面与W面的交线。

OX轴、OY轴、OZ轴的交点为原点(O)。

二、三视图的形成1.三视图主视图:正面投影(由物体的前方向后方投射所得到的视图)俯视图:水平面投影(由物体的上方向下投射所得到的视图)左视图:侧面投影(由物体的左方向右方投射所得到的视图)2.三视图的展开规定正面保持不动,水平面绕OX轴向下旋转900,侧面绕OZ轴向右旋转900。

三、三视图之间的对应关系1、位置关系:主视图在上方,俯视图在主视图的正下方,左视图在左视图的正右方。

2、投影关系:主视图反映物体的长度和高度。

俯视图反映物体的长度和宽度。

左视图反映物体的高度和宽度。

主、俯视图反映了物体的同样长度(等长)。

主、左视图反映了物体的同样高度(等高)。

俯、左视图反映了物体的同样宽度(等宽)。

归纳:主视、俯视长对正...(等长)。

主视、左视高平齐...(等高)。

俯视、左视宽相等...(等宽)。

四、方位关系主视图反映了物体的上下左右方位。

俯视图反映了物体的前后左右方位。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结在我们的日常生活和学习中,投影与视图是一个重要的数学概念,它不仅在数学领域有着广泛的应用,在工程、建筑、设计等实际领域也发挥着关键作用。

接下来,让我们一起深入了解投影与视图的相关知识点。

一、投影投影是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。

1、中心投影由同一点(点光源)发出的光线形成的投影叫做中心投影。

比如,夜晚路灯下的人影就是中心投影的例子。

其特点是:等长的物体平行于地面放置时,在灯光下,离点光源越近的物体的影子越短,离点光源越远的物体的影子越长。

2、平行投影由平行光线(太阳光线)形成的投影称为平行投影。

平行投影又分为正投影和斜投影。

正投影是指投射线垂直于投影面的平行投影。

在平行投影中,同一时刻,不同物体的物高和影长成比例。

二、视图视图是将物体按正投影向投影面投射所得到的图形。

1、三视图三视图包括主视图、俯视图和左视图。

主视图:从物体的前面向后面投射所得的视图。

俯视图:从物体的上面向下面投射所得的视图。

左视图:从物体的左面向右面投射所得的视图。

三视图的位置关系:主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右方。

三视图的大小关系:长对正、高平齐、宽相等。

即主视图与俯视图的长相等,主视图与左视图的高相等,俯视图与左视图的宽相等。

2、常见几何体的三视图(1)正方体:三视图都是正方形。

(2)长方体:主视图、左视图是长方形,俯视图是长方形。

(3)圆柱:主视图、左视图是长方形,俯视图是圆。

(4)圆锥:主视图、左视图是三角形,俯视图是圆及圆心。

(5)球:三视图都是圆。

三、根据视图还原几何体根据三视图还原几何体时,要先分别根据主视图、俯视图和左视图想象几何体的前面、上面和左面的形状,然后综合起来考虑整体形状。

四、投影与视图的应用1、在建筑设计中,设计师需要通过绘制三视图来准确表达建筑物的形状和尺寸,以便施工人员能够按照设计进行施工。

2、在机械制造中,工程师需要根据零件的三视图来制造零件,确保零件的精度和质量。

《三视图》投影与视图

《三视图》投影与视图
应用
平行投影法在工程图纸和建筑设计 等领域中广泛使用,因为它可以准 确地表示物体的形状和大小。
中心投影法
定义
应用
中心投影法是一种投影方法,其中投 影线汇聚在一个点(即投影中心)上 。
中心投影法在电影、电视和计算机图 形学等领域中广泛使用,因为它可以 产生具有立体感的图像。
特点
在中心投影法中,投影线汇聚在一个 点上,因此物体的形状和大小会受到 投影中心位置的影响。
02 包括机械设计、建筑设计、产品设计等领域。
三维建模在工程设计中的优势
03
可以更加直观地表达物体的形状,提高设计的精度和
效率。ቤተ መጻሕፍቲ ባይዱ
THANKS
谢谢您的观看
和方向。
投影中心
投影线的交点,用于确 定物体的形状和大小。
投影线
连接物体和投影面的线 ,用于将物体的形状投
射到投影面上。
投影面
接收投影线的面,用于 接收物体的形状信息。
02
三视图分类与特点
平行投影法
定义
平行投影法是一种投影方法,其 中投影线与投影面平行。
特点
在平行投影法中,投影线与投影面 平行,因此投影线与物体之间的角 度是恒定的。
三视图的基本概念
正视图、俯视图和左视图,用于描述物体的三维形状。
CAD软件中的三视图
通过计算机辅助设计软件,可以方便地创建和编辑三视图。
三视图在CAD软件中的应用
在工程设计、制造和建筑等领域,三视图是表达物体形状的基本手段。
三维建模的基本概念与技术
三维建模的基本概念
通过点、线、面等几何元素,构建物体的三维模型。
斜投影法
定义
斜投影法是一种投影方法,其中 投影线与投影面不平行。

人教版初中数学第二十九章投影与视图知识点

人教版初中数学第二十九章投影与视图知识点

第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。

二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。

难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。

四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。

在简答题中会在几何题中穿插应用,本章约占3-5分。

第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。

4.正投影:投影线垂直于投影面产生的投影叫做正投影。

例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。

七年级上册三视图知识点归纳

七年级上册三视图知识点归纳

七年级上册三视图知识点归纳在学习物理学、建筑设计、机械设计等领域的时候,三视图是我们经常使用的绘图方法。

在三视图中,一个物体或者建筑物被分别从正、上和右三个方向进行投影。

对于七年级学生来说,三视图是很重要的基础知识。

本文将会详细介绍三视图的定义、基本要素和绘制方法,以帮助学生更好地掌握这项技能。

一、三视图的定义三视图是一种投影图形,它由正视图、俯视图和右视图三个图形组成。

正视图显示物体或者建筑物的前面、俯视图显示物体或者建筑物的顶部,右视图显示物体或者建筑物的右侧。

通过三视图,我们可以看到物体或者建筑物的三个主要方向。

二、三视图的基本要素1. 正视图:正视图显示物体或者建筑物的前面,包含了物体的所有主要细节和特征。

在正视图中,物体或者建筑物的前面应该向上。

2. 俯视图:俯视图显示物体或者建筑物的顶部,包含了物体的主要外廓线和尺寸。

在俯视图中,物体或者建筑物的顶部应该向右。

3. 右视图:右视图显示物体或者建筑物的右侧,包含了物体侧面的所有主要细节和特征。

在右视图中,物体或者建筑物的侧面应该向上。

三、三视图的绘制方法为了画好三视图,必须先确定物体或者建筑物的大小和比例尺,然后按照以下步骤进行绘制:1. 首先绘制正视图,按照比例尺将物体或者建筑物正视图上的长度、宽度和高度绘制出来。

2. 接着,在正视图下方绘制俯视图。

在俯视图上标记出物体或者建筑物的长度和宽度。

3. 最后,在正视图右侧绘制右视图。

在右视图上标记出物体或者建筑物的长度和高度。

需要注意的是,三视图的比例尺必须保持一致,以确保三个图形之间的比例关系正确。

四、三视图的应用三视图可以帮助我们更清楚直观地了解物体或者建筑物的形状、结构和尺寸。

它们是设计、制造和施工过程中不可缺少的工具。

在物理学中,三视图可以帮助我们更好地理解运动、力学和能量转换等概念。

在建筑设计和机械设计中,三视图可以帮助我们进行设计、制造和材料选取等方面的决策。

总之,三视图是一项非常重要的基础技能,它在很多领域都有着广泛的应用。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结
投影的定义:用光线照射物体,在某个平面(如地面、墙壁等)上得到的影子称为物体的投影。

照射光线称为投影线,而投影所在的平面称为投影面。

投影的类型:
平行投影:当光线是一组互相平行的射线时,例如太阳光或探照灯光,由此形成的投影称为平行投影。

中心投影:由同一点(点光源)发出的光线形成的投影称为中心投影。

正投影:当投影线垂直于投影面时产生的投影称为正投影。

物体的正投影的形状、大小与其相对于投影面的位置有关。

视图的概念:视图是一个虚拟的表,它基于一个或多个表的查询结果提供逻辑展现。

用户可以通过视图按照需要从数据库中获取部分数据,而不是直接访问底层的物理表。

视图不存储任何实际数据,可以看作是数据库表的一个抽象或逻辑上的表。

三视图:在投影与视图中,三视图是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

这三个视图分别是:
俯视图:能反映物体的前面形状,是从物体的上面向下面投射所得的视图。

左视图:能反映物体的上面形状,是从物体的左面向右面投射所得的视图。

这些知识点在工程图、几何学模型、摄影技术、建筑设计、机械制图和地图制作等领域都有广泛的应用。

通过学习和理解这些概念,可以更好地应用它们于实际场景中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投影与三视图
一、视角与盲区
如图,小明眼睛的位置称为视点
由视点出发的线称为视线,
两条视线的夹角称为视角. 小明看不到的地方称为盲区。

哪个区域是盲区? 小丽坐在哪里,小明就可以看到明她?
二、投影:
1、定义:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

(1)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影。

(2)中心投影:由同一点(点光源发出的光线)形成的投影。

(3)两者区别与联系:
区 别
联系 光线
物体与投影面平行时的投影
平行投影 平行的投射线 全等
都是物体在光线的照射下,在某个平面内形成的影子。

(即都是投影)
中心投影
从一点出发的投射线
放大(位似变换)
例1. 有两根木棒AB 、CD 在同一平面上竖着,其中AB 这根木棒在太阳光下的影子BE 如下图所示,则CD 这根木棒的影子DF 应如何画? 分析:利用平行投影的相关性质。

解析:画法: (1)连接AE 小明 小丽
(2)过点C作CF//AE
(3)过点D作DF//BE,交CF于F,则DF即为所求。

点评:要解决此题首先要知道这两个物体都是竖直在地面上,而且是由太阳光即平行光所照射,则可知连接AE,过C点作CF平行AE,作DF//BE,交点为F,则DF为所求CD的影子。

通过本题理解平行投影的性质。

三、简单物体的三视图:
1、正投影:在平行投影中,如果投射线垂直于投影面产生的投影。

物体正投影的形状、大小与它相对于投影面的位置和角度有关。

如图所示,三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。

可见只用一个方向的投影来表达形体形状是不行的。

2、三视图就是主视图、俯视图、左视图的总称。

(1)从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状。

(2)从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状。

(3)从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

3.投影规则:主俯长对正、主左高平齐、俯左宽相等。

(图2)
4. 三视图-画法:
根据各形体的投影规律,逐个画出形体的三视图。

画形体的顺序:一般先实(实形体)后空(挖去的形体);先大(大形体)后小(小形体);先画轮廓,后画细节。

画每个形体时,要三个视图联系起来画,并从反映形体特征的视图画起,再按投影规
律画出其他两个视图。

对称图形、半圆和大于半圆的圆弧要画出对称中心线,回转体一定要画出轴线。

对称中心线和轴线用细点划线画出。

例2:如下图所示的组合体是由圆柱体和长方体两个基本几何体组成,可分别作出三视图再依情况组合。

三视图
例3. 如图所示四棱台ABCD-A1B1C1D1中,上底是边长为2cm的正方形,下底是边长为3cm 的正方形,上、下底面间的距离为2cm,作出它的三视图。

解析:依题意,可以画出它的三视图如下:
主视图左视图
俯视图
2 cm
3cm
2cm 3cm
2 cm
2 cm
2 cm
2 cm
3cm
3cm。

相关文档
最新文档