2018年山东中考数学试题研究题库--几何动态探究问题 动点+动面

合集下载

【真题】18年山东省中考数学试卷含答案(word版)

【真题】18年山东省中考数学试卷含答案(word版)

【真题】2018年山东省中考数学试卷含答案(Word版)秘密★启用前试卷类型:A 二〇一八年东营市初中学业水平考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学试题答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用碳素笔答在答题卡的相应位置上. 第Ⅰ卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.?1的倒数是511 D.55224A.?5B.5C.?2.下列运算正确的是22A.??x?y???x?2xy?y B. a?a?a ?a3?a6 D.?x2y4 3.下列图形中,根据AB∥CD,能得到∠1=∠2的是A1 2 B1 ABABAB1 2 1 DCCDC2 2 DDCA B C D 4.在平面直角坐标系中,若点P在第二象限,则m的取值范围是A.m<?1 B.m>2C.?1<m<2 D.m>?1 5.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是捐款数额人数10 2 20 4 30 5 50 3 100 1 A.众数是100B.中位数是30 C.极差是20D.平均数是30 1 6.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.于会场布置需要,购买时以一束为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为A.19B.18C.16 D.15C16元20元?元FBAED 7.如图,在四边形ABCD 中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是A. AD=BC B. CD=BF C. ∠A=∠C D. ∠F=∠CDF 8.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是34??22A.31??B.32 C.D.31?? 29.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB 于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为() 10.如图,点E在△DBC的边DB上,点A在△DBC 内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD?CE;②∠ABD+∠ECB=45°;③BD ⊥CE;④BE2?2(AD2?AB2)?CD2.其中正确的是 2 A. ①②③④B. ②④ C. ①②③ABDD. ①③④BCEAEFADCBC 第Ⅱ卷二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12. 分解因式:x3?4xy2=.13. 有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是. 14.如图,B,C,以OC ,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为. 15.如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于1EF的长为半径画弧,两弧交于点P,2作射线CP 交AB于点D,若BD=3,AC=10,则△ACD的面积是.A AOyD3 CxBPEFCB8 (第14题图) (第15题图) (第16题图) 16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.在平面直角坐标系内有两点A、B,其坐标为A,B,点M为x轴上的 3 一个动点,若要使MB?MA的值最大,则点M的坐标为.18.如图,在平面直角坐标系中,点A…和B1,…分别在直线y?A2,A3,B2,B3,1,1x?b5 和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果点A1,那么点A2018的纵坐标是.OA1B1A2yA3… B2B3x(第18题图) 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分7分,第⑴题4分,第⑵题3分) 计算:2?3?(2?1)?3tan30?(?1) 解不等式组:0o20181?()?1;2?x?3>0,并判断-1,2这两个数是否为该不等式组的解. ??3?3x.? 20. 2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类名人传记科普图书小说其他频数175 b 110 65 频率 a c d4 科普图书名人传记126°小说其他(第求该校九年级共捐书多少本;20题图) 统计表中的a=,b=,c=,d=;若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率. 21.(本题满分8分) 小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(本题满分8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.求证:∠CAD=∠BDC;若BD=2AD,AC=3,求CD的长.3 23.(本题满分9分) 关于错误!未找到引用源。

2018年山东中考数学试题及答案

2018年山东中考数学试题及答案

【导语】⽆忧考将在本次⼭东中考过后,考后发布2018年⼭东中考数学试卷及答案解析,⽅便考⽣对照估分,⼤家可收藏并随时关注、栏⽬,中考信息持续更新!中考科⽬:语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读:中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

避免违规:中考是中国重要的考试之⼀,直接决定着考⽣升⼊⾼中后的学习质量,对⾼考成绩有着⾮常重⼤的影响。

因此,中国教育部门对于中考违规、作弊的处罚⼒度是相当⼤的。

视违规情节的不同,轻则对试卷进⾏扣分处理,重则取消违规科⽬或全科的成绩并将其记⼊考⽣档案伴随终⽣,对于涉嫌犯罪的⼈员要追究刑事责任。

中考对于复读⽣也有⼀定的惩罚措施,例如禁⽌报考热点⾼中、对试卷进⾏扣分处理、取消额外加分等等。

因此,在中考的过程中要绝对避免出现违规、作弊的情况,不能铤⽽⾛险,酿成终⾝的遗憾。

参加2018中考的考⽣可直接查阅2018年⼭东中考试题及答案信息!—→以下是⼭东2018年各科中考试题答案发布⼊⼝:相关推荐:为⽅便⼤家及时获取⼭东2018年中考成绩、2018年中考录取分数线信息,⽆忧考为⼴⼤考⽣整理了《全国2018年中考成绩查询、2018年中考录取分数线专题》考⽣可直接点击进⼊以下专题进⾏中考成绩及分数线信息查询。

2018年山东中考数学试题研究题库--几何动态探究问题 双动点

2018年山东中考数学试题研究题库--几何动态探究问题 双动点

几何动态探究问题—双动点1.如图,BD是正方形ABCD的对角线,BC=2,动点P从点B出发,以每秒1个单位长度的速度沿射线BC 运动,同时动点Q从点C出发,以相同的速度沿射线BC运动,当点P出发后,过点Q作QE⊥BD,交直线BD于点E,连接AP、AE、PE、QE,设运动时间为t(秒).(1)请直接写出动点P运动过程中,四边形APQD是什么四边形?(2)请判断AE,PE之间的数量关系和位置关系,并加以证明;(3)设△EPB的面积为y,求y与t之间的函数关系式;(4)直接写出△EPQ的面积是△EDQ面积的2倍时t的值.第1题图解:(1)四边形APQD 是平行四边形;【解法提示】∵四边形ABCD 是正方形,P 、Q 速度相同,∴∠ABE =∠EBQ =45°,AD ∥BQ ,AD =BC =2,BP =CQ ,∴BC =AD =PQ ,∴四边形APQD 是平行四边形. (2)AE =PE ,AE ⊥PE ;理由如下: ∵EQ ⊥BD ,∴∠PQE =90°−45°=45°, ∴∠ABE =∠EBQ =∠PQE =45°, ∴BE =QE ,在△AEB 和△EPQ 中,AB PQ ABE PQE BE QE =⎧⎪∠=∠⎨⎪=⎩, ∴△AEB ≌△EPQ (SAS ), ∴AE =PE ,∠AEB =∠PEQ , ∴∠AEP =∠BEQ =90°,∴AE ⊥PE ;(3)过点E 作EF ⊥BC 于点F , 如解图①所示:BQ =t +2,EF =22+t , ∴y =21×22+t ×t ,即y =t t 41212+;第1题解图①(4)△EPQ 面积是△EDQ 面积的2倍时t 的值为1或3. 【解法提示】分两种情况:①当P 在BC 延长线上时,作PM ⊥QE 于M ,如解图②所示:第1题解图②∵PQ =2,∠BQE =45°,∴PM =22PQ =2,BE =QE =22BQ =22(t +2), ∴DE =BE −BD =22(t +2)−22=22t -2, ∵△EPQ 的面积是△EDQ 面积的2倍, ∴21×22(t +2)×2=2×21(22t −2)×22(t +2),解得t =3或t =−2(舍去), ∴t =3;②当P 在BC 边上时,解法同①,此时DE =2-22t , ∵△EPQ 的面积是△EDQ 面积的2倍, ∴21×22(t +2)×2=2×21(2-22t )×22(t +2),解得:t =1或t =−2(舍去), ∴t =1;综上所述,△EPQ 的面积是△EDQ 面积的2倍时t 的值为:1或3.2.如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB−BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每4个单位长度的速度运动,P、Q两点同时出发,当点P 秒3停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连接PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连接DF.设矩形PEQF 与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.第2题图解:(1)在Rt △ABC 中,∵∠C =90°,AB =10,BC =6,由勾股定理得:AC =2222610-=-BC AB =8, ∵点Q 在CA 上,以每秒34个单位移动, ∴CQ =34t ,∴AQ =AC -CQ =8−34t . (2)∵P 点从AB -BC 总时间36510+=4s , ∵点P 在AB 或BC 上运动,点Q 在AC 上, ∴PQ 不可能与AC 平行, ①当点P 在AB 上,则PQ//BC ,此时AC AQ AB AP =,即834810t5t-=,解得t =s 23; ②当点P 在BC 上,此时PQ//AB ,∴CA CQ BC CP =,即46-3t 2368t -=(),解得t =3s , 综上所述,t =32s 或3s 时,PQ 与△ABC 的一边平行;(3)①∵点D 是AC 的中点,∴CD=4,当点Q 运动到点D 时,t 34=4,解得t =3, 点Q 与点E 重合时,t 316=AC =8,得t =23,分三种情况讨论如下:(i )点Q 与点E 重合时,316t =AC =8,得t =23,当0≤t ≤23,此时矩形PEQF 在△ABC 内,如解图①所示, ∵AP =5t ,易得AE =4t ,PE =3t ,∴EQ =AQ -AE =8-34t -4t =8-316t , ∴S =PE ×EQ =3t (8-316t )=-16t 2+24t ;第2题解图(ii )点P 与点B 重合时,5t =10,得t =2,当23≤t ≤2时,如解图②所示,设QF 交AB 与T ,则重叠部分是矩形PEQF 的面积减去△PFT 的面积.∵AQ =8-34t ,∴QT =43AQ =43(8-34t )=6-t , ∴FT =PE -QT =3t -(6-t )=4t -6, EQ =AE -AQ =4t -(8-34t )=316t -8, ∴S =PE ·EQ -21EQ ·Ft =3t ·(316t -8)-21·(316t -8)(4t -6) =316t 2+8t -24; (iii )当2<t ≤3,点P 在BC 上,且点F 在△ABC 外,如解图③所示,此时点E 与点C 重合,PC =6-3(t -2)=12-3t ,QC =34t ,QT =43(8-34t )=6-t ,BP =3(t -2),PR =34·3(t -2)=4t -8,FR =FP -PR =34t -(4t -8)=8-38t ,FT =43FR =6-2t .∴S =PT ×QC -21FR ·FT=(12-3t )·34t -21·(8-38t )·(6-2t )=-320t 2+32t -24;第2题解图 ②53,56.3.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4.动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,到达A 点后立刻以原来的速度沿AB 返回.点P ,Q 运动速度均为每秒1个单位长度,当点P 到达C 时停止运动,点Q 也同时停止.连接PQ ,设运动时间为t (0<t ≤5)秒.(1)当点Q 从B 点向A 点运动时(未到达点A )求S △APQ 与t 的函数关系式;写出t 的取值范围;(2)在(1)的条件下,四边形BQPC 的面积能否为△ABC 面积的1513?若能,求出相应的t 值;若不能,说明理由;(3)伴随点P 、Q 的运动,设线段PQ 的垂直平分线为l ,当l 经过点B 时,求t 的值.第3题图解:(1)在Rt △ABC 中,由勾股定理得:AC =222243+=+BC AB =5;如解图①,过点P 作PH ⊥AB 于点H ,AP =t ,AQ =3−t ,第3题解图①则∠AHP =∠ABC =90°,∵∠PAH =∠CAB ,∴△AHP ∽△ABC , ∴BCPHAC AP =, ∵AP =t ,AC =5,BC =4,∴PH =54t ,∴S △APQ =21(3−t )·54t ,即S =−2t 52+t 56,t 的取值范围是:0<t <3.(2)在(1)的条件下,四边形BQPC 的面积能为△ABC 面积的1513.理由如下: 依题意得:−2t 52+t 56=21152 ×3×4,即−2t 52+t 56=54.整理,得(t −1)(t −2)=0, 解得t 1=1,t 2=2, 又0<t <3,∴当t =1或t =2时,四边形BQPC 的面积能为△ABC 面积的1513; (3)①如解图②,当点Q 从B 向A 运动时l 经过点B ,第3题解图②BQ =BP =AP =t ,∠QBP =∠QAP ,∵∠QBP +∠PBC =90°,∠QAP +∠PCB =90° ∴∠PBC =∠PCB ,∴CP =BP =AP =t ∴CP =AP =21AC =21×5=2.5, ∴t =2.5;②如解图③,当点Q 从A 向B 运动时l 经过点B ,第3题解图③BP =BQ =3−(t −3)=6−t ,AP =t ,PC =5−t , 过点P 作PG ⊥CB 于点G , 则PG//AB , ∴△PGC ∽△ABC ,∴BCGCAB PG AC PC ==, ∴PG =AC PC ·AB =53(5−t ),CG =AC PC ·BC =54(5−t ), ∴BG =4−54(5−t )=54t ,由勾股定理得BP 2=BG 2+PG 2, 即(6−t )2=(54t )2+[53(5−t )]2, 解得t =1445. 综上所述,伴随点P 、Q 的运动,线段PQ 的垂直平分线为l ,经过点B 时,t 的值是2.5或1445.4. 如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,D 、E 分别是AC 、AB 的中点,连接DE ,点P 从点D 出发,沿DE 方向匀速运动,速度为1cm /s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm /s ,当点P 运动到点E 停止运动,点Q 也停止运动.连接PQ ,设运动时间为t (s )(0<t <4).解答下列问题: (1)当t 为何值时,PQ ⊥AB ?(2)当点Q 在BE 之间运动时,设五边形PQBCD 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)在(2)的情况下,是否存在某一时刻t,使PQ分四边形BCDE两部分的面积之比为S△PQE:S五边形PQBCD=1:29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.解:(1)如解图①,在Rt△ABC中,第4题解图AC=6,BC=8,∴AB=2286 =10.∵D、E分别是AC、AB的中点.,1BC=4,AD=DC=3,AE=EB=5,DE//BC且DE=2∵PQ ⊥AB ,∴∠PQB =∠C =90°, 又∵DE//BC ,∴∠AED =∠B , ∴△PQE ∽△ACB ,∴BCQEAB PE =. 由题意得:PE =4−t ,QE =2t −5, 即852104-=-t t ,解得t =1441; (2)如解图②,过点P 作PM ⊥AB 于M , 由△PME ∽△ACB ,得ABPEAC PM =, ∴10t -46=PM ,得PM =53(4−t ). S △PQE =21EQ ·PM =21(5−2t )·53(4−t )=53t 2−1039t +6,S 梯形DCBE =21×(4+8)×3=18,∴y =S 梯形DCBE -S △PQE =18−(53t 2−1039t +6)=−53t 2+1039t +12.(3)假设存在时刻t ,使S △PQE :S 五边形PQBCD =1:29,则此时S △PQE =301S 梯形DCBE , ∴53t 2−1039t +6=301×18,即2t 2−13t +18=0, 解得t 1=2,t 2=29(舍去).当t =2时,PM =53×(4−2)=56,ME =54×(4−2)=58,EQ =5−2×2=1,MQ =ME +EQ =58+1=513,∴PQ =22MQ PM +=52055135622=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛. ∵21PQ ·h =S △PQE =53, ∴h =56·)2056(20520562055或=.5.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒. (1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S △CPQ :S △ABC =9:100?若存在,求出t 的值;若不存在,则说明理由;(3)是否存在某一时刻t ,使得△CPQ 为等腰三角形?若存在,求出所有满足条件的t 的值;若不存在,则说明理由.解:(1)如解图①,∵∠ACB =90°,AC =8,BC =6, ∴AB =10.∵CD ⊥AB ,∴S △ABC =21BC •AC =21AB •CD . ∴CD =1086⨯=⨯AB AC BC =4.8, ∴线段CD 的长为4.8;(2)①过点P 作PH ⊥AC ,垂足为H ,如解图②所示. 由题可知DP =t ,CQ =t ,则CP =4.8−t .∵∠ACB =∠CDB =90°,∴∠HCP =90°−∠DCB =∠B . ∵PH ⊥AC ,∴∠CHP =90°,∴∠CHP =∠ACB , ∴△CHP ∽△BCA , ∴AB PC AC PH =,∴10t8.48-=PH ,∴PH =t 54-2596,∴S △CPQ =21CQ ·PH =21t (t 54-2596)=−52t 2+2548t ;②存在某一时刻t ,使得S △CPQ :S △ABC =9:100. ∵S △ABC =21×6×8=24,且S △CPQ :S △ABC =9:100, ∴(−52t 2+2548t ):24=9:100. 整理得:5t 2−24t +27=0. 即(5t −9)(t −3)=0. 解得:t =59或t =3. ∵0≤t ≤4.8,∴当t =59秒或t =3秒时,S △CPQ :S △ABC =9:100; (3)①若CQ =CP ,如解图①,则t =4.8−t ; 解得:t =2.4;②若PQ =PC ,如解图②所示,∵PQ =PC ,PH ⊥QC ,∴QH =CH =21QC =21t . ∵△CHP ∽△BCA .∴ABCPBC CH =, ∴108.4621t t -=,解得:t =55144;③若QC =QP ,过点Q 作QE ⊥CP ,垂足为E ,如解图③所示. 同理可得:t =1124. 综上所述:当t 为2.4秒或55144秒或1124秒时,△CPQ 为等腰三角形.第5题解图。

2018山东省中考数学真题试卷7套(含答案及名师解析)

2018山东省中考数学真题试卷7套(含答案及名师解析)

2018山东省中考数学真题试卷7套(含答案及名师解析)2018年山东省滨州市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.82.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣23.(3分)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°4.(3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.45.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A 的对应点C的坐标为()A.(5,1) B.(4,3) C.(3,4) D.(1,5)7.(3分)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A.B.C.D.9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.110.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.411.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.312.(3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.二、填空题(本大题共8小题,每小题5分,满分40分)13.(5分)在△ABC中,若∠A=30°,∠B=50°,则∠C=.14.(5分)若分式的值为0,则x的值为.15.(5分)在△ABC中,∠C=90°,若tan A=,则sin B=.16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M 在第二象限的概率是.17.(5分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.18.(5分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为.19.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.20.(5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为.三、解答题(本大题共6小题,满分74分)21.(10分)先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.22.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.23.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.(13分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.26.(14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)1.A【解析】∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.2.B故选:B.3.D【解析】如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.4.B【解析】①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.5.B【解析】解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.6.C【解析】∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.7.D【解析】A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.8.C【解析】如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.9.A【解析】根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.10.B【解析】①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.11.D【解析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.12.A【解析】当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.二、填空题(本大题共8小题,每小题5分,满分40分)13.100°【解析】∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°14.﹣3【解析】因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.15.【解析】如图所示:∵∠C=90°,tan A=,∴设BC=x,则AC=2x,故AB=x,则sin B===.故答案为:.16.【解析】列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.17.【解析】方法一:∵关于x、y的二元一次方程组,的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组,的解是,由关于a、b的二元一次方程组可知解得:故答案为:18.y2<y1<y3【解析】设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.19.【解析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.20.9【解析】由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.三、解答题(本大题共6小题,满分74分)21.解:原式=xy(x+y)••=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.22.证明:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.23.解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.24.解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:,则直线AB解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.25.(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)解:BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.26.解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.2018年山东省东营市中考数学真题一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣的倒数是()A.﹣5B.5C.﹣D.2.(3分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6D.(xy2)2=x2y43.(3分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.(3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣15.(3分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是306.(3分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.157.(3分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.9.(3分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.10.(3分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12.(3分)分解因式:x3﹣4xy2=.13.(3分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.14.(3分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.15.(4分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.16.(4分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.(4分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M 为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.18.(4分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=,b=,c=,d=;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.23.(9分)关于x的方程2x2﹣5x sin A+2=0有两个相等的实数根,其中∠A是锐角三角形ABC 的一个内角.(1)求sin A的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.24.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.(12分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【参考答案】一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.A【解析】﹣的倒数是﹣5,故选:A.2.D【解析】A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.3.B【解析】A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.4.C【解析】∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.5.B【解析】该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D不正确.故选:B.6.B【解析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.7.D【解析】正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.8.C【解析】把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.9.D【解析】过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.10.A【解析】∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.4.147×1011【解析】4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×101112.x(x+2y)(x﹣2y)【解析】原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),故答案为:x(x+2y)(x﹣2y)13.【解析】∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.14.y=【解析】设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=15.15【解析】如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.16.20π【解析】根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π17.【解析】取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)18.【解析】分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,则﹣1是不等式组的解,不是不等式组的解.20.解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.21.解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.22.(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.23.解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sin A=或,∵∠A为锐角,∴sin A=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sin A=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sin A=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.24.解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.25.解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,∴点C的横坐标为,又OC=,点C在x轴下方,∴C(,﹣),设直线BM的解析式为y=kx+b,把点B(3,0),C(,﹣)代入得:,解得:b=﹣,k=,∴y=x﹣,又∵点C(,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x,x﹣),∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC的面积最大,S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,当x=﹣=时,S△BCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,﹣).2018 年山东省济宁市中考数学真题一、选择题:本大题共10 小题,每小题3 分,共30 分。

中考几何-动态试题解法(解析版)

中考几何-动态试题解法(解析版)

中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。

3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。

4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。

二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。

4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。

三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。

潍坊市2018年中考数学试卷及答案解析

潍坊市2018年中考数学试卷及答案解析

2018年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣2.(3分)生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣63.(3分)如图所示的几何体的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.a2•a3=a6 B.a3÷a=a3C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a35.(3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°6.(3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l7.(3分)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()A.22,3 B.22,4 C.21,3 D.21,48.(3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)9.(3分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x ≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或610.(3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°) C.Q(3,600°)D.Q(3,﹣500°)11.(3分)已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2 B.﹣1 C.2或﹣1 D.不存在12.(3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.(3分)因式分解:(x+2)x﹣x﹣2=.14.(3分)当m=时,解分式方程=会出现增根.15.(3分)用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.16.(3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.17.(3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x 轴正半轴于点A3;….按此作法进行下去,则的长是.18.(3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)三、解答题(本大题共7小题,共66分。

中考数学专题——动态问题(非常全面)

中考数学专题——动态问题(非常全面)

(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。

中考数学试题动态问题试题及答案

中考数学试题动态问题试题及答案

一、选择题1.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )2.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格3.下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )4.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43, B .()34, C .()12--, D .()21--,5.ABC △在如图所示的平面直角坐标系中,将ABC △向右平移3个单位长度后得111A B C △,再将111A B C △绕点O 旋转180°后得到222A B C △,则下列说法正确的是( )甲乙甲乙A .B .C .D.甲乙甲乙A .1A 的坐标为()31,B .113ABB A S =四边形C.2B C =D .245AC O ∠=°6.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处7.如图,把抛物线2y x =与直线1y =围成的图形OABC 绕原点O 顺时针旋转90°后,再沿x 轴向右平移1个单位得到图形1111O A B C ,则下列结论错误..的是( ) A .点1O 的坐标是(10), B .点1C 的坐标是(21)-,C .四边形111O BA B 是矩形D .若连接OC ,则梯形11OCA B 的面积是3(图1)8.如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ).A .π5168B .π24C .π584D .π129.将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了( )A .1圈B .1.5圈C .2圈D .2.5圈二、填空题10.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .11.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).12.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).13.如图,在Rt△ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.AEC (F )B 图(1) E AGB C (F ) D 图(2)C三、解答题14.已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.15.已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.AE CF BD图1图3ADFECBADBCE 图2F16. 在ABCD 中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转90得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转90得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=43,AE=1,在①的条件下,设CP 1=x ,S 11P FC =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.17. 如图,在平面直角坐标系xOy 中,ABC 三个机战的坐标分别为()6,0A -,()6,0B ,(0,C ,延长AC 到点D,使CD=12AC ,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何动态探究问题—动点+动面1.已知在矩形ABCD中,E为BC边上一点,AE
⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图①,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图②,△GMN从图①的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时点P从A点出发,以每秒1个单位的速度沿AD向点D 匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:
第1题图
(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S.请直接写出S与t之间的函数关系式以及自变量t的取值范围; (4)在运动过程中,是否存在某一时刻t,使得S:S△GMN=1:2?若存在,求出t的值,若不存在,请说明理由. 解:(1)在Rt△GMN中,GN=6,GM=8,∴MN=10.由题意,易知点G的运动线路平行于BC.如解图①所示,过点G作BC的平行线,分别交AE、AF于点Q、R.
第1题解图①
∵∠AED =∠EGM =90°,∴AE//GM . ∴四边形QEMG 为平行四边形, ∴QG =EM =10, ∴t =
1
10
=10秒; (2)存在符合条件的点P .
在Rt △ABE 中,AB =12,BE =16,由勾股定理得:AE =20.设∠AEB =θ,则sin θ=5
3,cos θ=5
4, ∵NE =t ,∴QE =NE •cos θ=54t , AQ =AE −QE =20−5
4t ,
△APQ 是等腰三角形,有三种可能的情形: ①AP =PQ .如解图②所示:
第1题解图②
过点P 作PK ⊥AE 于点K ,则AK =AP •cos θ=5
4t .
∵AQ =2AK ,∴20−54t =2×5
4t , 解得t =
3
25; ②AP =AQ .如解图③所示:
第1题解图③
有t =20−54t ,
解得t =9
100

③AQ =PQ .如解图④所示:
第1题解图④
过点Q 作QK ⊥AP 于点K ,则AK =AQ •cos θ=
441620165525t t ⎛⎫-⨯=- ⎪

⎭. ∵AP =2AK ,∴t =2(16−
t 25
16
),
解得:t =
57
800
. 综上所述,当t =325,9100或57
800秒时,存在点P ,使△APQ 是等腰三角形.
(3)如解图①所示,点N 到达点F 的时间为t =7; 由(1)知,点G 到达点Q 的时间为t =10; QE =10×5
4=8,AQ =20−8=12, ∵GR//BC ,∴EF QR =AE AQ ,即7QR =2012
, ∴QR =
5
21
. ∴点G 到达点R 的时间为t =10+
521=5
71; 点N 到达终点B 的时间为t =16. 则在△GMN 运动的过程中: ①当0≤t <7时,如解图⑤所示:
第1题解图⑤ 第1题解图⑥
QE =NE •cos θ=5
4t ,QN =NE •sin θ=5
3
t ,
S =21QE •QN =225
6
535421t t t =⋅⨯,
②当7≤t <10时,如解图⑥所示: 设QN 与AF 交于点I , ∵tan ∠INF =
34=GN GM ,tan ∠IFN =3
4
=BF AB , ∴∠INF =∠IFN ,△INF 为等腰三角形.
底边NF 上的高h =()()73
23
472
1tan 2
1-=⨯-⨯=∠⋅t t INF NF .
S △INF =()()()2731
73272
121-=-⨯-⨯=⋅t t t h NF ,
∴S =S △QNE −S △INF =()3
49
314757731256222-+-=--t t t t ;
③当10≤t <5
71
时,如解图⑦所示:
第1题解图⑦ 第1题解图⑧ 由②得:S △INF =()273
1-t ,
∴S =S △GMN −S △INF =24−()3
233143173122++-=-t t ; ④当
5
71
≤t ≤16时,如解图⑧所示:
FM =FE −ME =FE −(NE −MN )=17−t . 设GM 与AF 交于点I ,过点I 作IK ⊥MN 于点K . ∵tan ∠IFK =
3
4
=BF AB , ∴可设IK =4x ,FK =3x ,则KM =3x +17−t . ∵tan ∠IMF =431734=-+=t x x KM IK ,解得x =()t -177
3
. ∴IK =4x =
()t -177
12
. ∴S =()2177
6
21-=⋅t IK FM .
综上所述,S 与t 之间的函数关系式为:
2
2226(07)2571449(710)25331142371(10)3335671
(t 17)(16)
7
5t t t t t s t t t t ⎧≤<⎪⎪
⎪-+-≤<⎪=⎨
⎪-++≤<⎪⎪⎪-≤≤⎩; (4)存在,理由如下:
当S :S △GMN =1:2时,S =⨯2121
×MG ×NG =12,
当S =12时,代入S=25
6
t 2,得t =25(舍去),
代入S= 3493147572-+-t t ,得t=25-707
15

代入S= ,3
23314312++
-t t 得t=13或t=1(舍去), 代入S=()2177
6-t ,得t =1417±(舍去), ∴存在满足条件的时刻t 的值为13.
2.如图,已知正方形ABCD 的边长与Rt △PQR 的
直角边PQ 的长均为4cm ,QR =8cm ,AB 与QR 在同一直线
l 上,开始时点Q 与点A 重合,让△PQR 以1cm /s 的速度在
直线l 上运动,同时M 点从点Q 出发以1cm /s 沿QP 运动,
直至点Q 与点B 重合时,都停止运动,设运动的时间为t (s ),
四边形PMBN 的面积为S (cm 2
).
第2题图 (1)当t =1s 时,求S 的值;
(2)求S 与t 之间的函数关系式,并写出自变量t 的取值范
围(不考虑端点);
(3)是否存在某一时刻t ,使得四边形PMBN 的面积S=
4
1
S △PQR .若存在,求出此时t 的值;若不存在,说明理由; (4)是否存在某一时刻t ,使得四边形PMBN 为平行四边形?若存在,求出此时t 的值;若不存在,说明理由. 解:(1)当t =1时,AQ =MQ =1,AB =PQ =4, ∴MP =QB =4-1=3, ∵QR =8, ∴BR =8-3=5,
∵在Rt △PQR 中,PQ =4,QR =8, ∴tan ∠PRQ =
QR PQ =2
1
, ∴
21
=BR BN , ∴2
1
5=BN , ∴BN =2.5, S 四边形PMBN =
4
33
23)5.23(=⨯+(0≤t ≤4); (2)由题意得,
AQ =MQ =t ,PM =BQ =4-t ,BR =8-(4-t )=4+t , ∴BN =2+2
1t ,
∴S 四边形PMBN =142(4)
22
t t t ⎛
⎫-++- ⎪⎝⎭
=1244
1
2+-t t (0<t<4);
(3)由题意得,
842
1
41124412⨯⨯⨯=+-t t , 解得t 1=8+24(舍去),t 2=8-24, ∴t 的值为8-24; (4)存在,理由如下:
∵四边形PMBN 是平行四边形, ∴PM =BN ,
∴PM =4-t ,BN =2+2
1t , ∴4-t =2+2
1t ,
∴t =34,
∴t =3
4
时,四边形PMBN 是平行四边形.。

相关文档
最新文档