2015年全国各地高考数学试题及解答分类汇编大全(11 解析几何初步)

合集下载

2015年高考数学《解析几何初步》真题汇编

2015年高考数学《解析几何初步》真题汇编

解析几何初步(直线和圆)
1.(15北京文科)圆心为()1,1且过原点的圆的方程是( )
A .()()22111x y -+-=
B .()()22
111x y +++=
C .()()22112x y +++=
D .()()22112x y -+-=
2.(15年广东理科)平行于直线且与圆相切的直线的方程是
A .或 B. 或
C. 或
D. 或
3.(15年新课标2文科)已知三点,则△外接圆的圆心到原点的距离为( )
4.(15年陕西理科)设曲线在点(0,1)处的切线与曲线上点p 处的切线垂直,则p 的坐标为 .
5.(15年湖南理科)已知点,,A B C 在圆221x y +=上运动,且AB BC ⊥.若点P 的坐标为(2,0),则||PA PB PC ++ 的最大值为( )
A .6 B. 7 C. 8 D. 9
6.(15年山东理科)一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为( )
(A)5
3-或35- (B) 32-或32- (C) 54-或45- (D) 43-或34
- 7.(15年江苏)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线
)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 012=++y x 522=+y x 052=+-y x 052=--y x 052=++y x 052=-+y x 052=+-y x 052=--y x 052=++y x 052=-+y x (1,0),A B C ABC 5A.34D.3x y e =1(0)y x x
=
>。

2015年普通高等学校招生全国统一考试理科数学(陕西卷)(含答案全解析)

2015年普通高等学校招生全国统一考试理科数学(陕西卷)(含答案全解析)

2015年普通高等学校招生全国统一考试陕西理科数学1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,先按规定在试卷上填写姓名、准考证号,并在答题卡上填上对应的试卷类型信息.3.所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷及答题卡一并交回.第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分).1.(2015陕西,理1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案:A解析:解x2=x,得x=0或x=1,故M={0,1}.解lg x≤0,得0<x≤1,故N=(0,1].故M∪N=[0,1],选A.2.(2015陕西,理2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167答案:C解析:由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).选C.3.(2015陕西,理3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sinπx+φ +k.据此函数6可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10答案:C解析:因为sinπx+φ ∈[-1,1],所以函数y=3sinπx+φ +k的最小值为k-3,最大值为k+3.由题图可知函数最小值为k-3=2,解得k=5.所以y的最大值为k+3=5+3=8,故选C.4.(2015陕西,理4)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4答案:B解析:(x+1)n的展开式通项为T r+1=C n r x n-r.令n-r=2,即r=n-2.则x2的系数为C n n−2=C n2=15,解得n=6,故选B.5.(2015陕西,理5)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案:D解析:由三视图可知,该几何体是一个半圆柱,圆柱的底面半径r=1,高h=2.所以几何体的侧面积S1=C底·h=(π×1+2)×2=2π+4.几何体的底面积S2=12π×12=12π.故该几何体的表面积为S=S1+2S2=2π+4+2×π2=3π+4.故选D.6.(2015陕西,理6)“sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:由cos 2α=0,得cos2α-sin2α=0,即cos α=sin α或cos α=-sin α.故“sin α=cos α”是“cos 2α=0”的充分不必要条件.7.(2015陕西,理7)对任意向量a,b,下列关系式中不恒成立的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案:B解析:A项,a·b=|a||b|cos<a,b>≤|a||b|,所以不等式恒成立;B项,当a与b同向时,|a-b|=||a|-|b||;当a与b非零且反向时,|a-b|=|a|+|b|>||a|-|b||.故不等式不恒成立;C项,(a+b)2=|a+b|2恒成立;D项,(a+b)·(a-b)=a2-a·b+b·a-b2=a2-b2,故等式恒成立.综上,选B.8.(2015陕西,理8)根据右边框图,当输入x为2 006时,输出的y=()A.2B.4C.10D.28答案:C解析:由算法框图可知,每运行一次,x的值减少2,当框图运行了1 004次时,x=-2,此时x<0,停止循环,由y=3-x+1可知,y=3-(-2)+1=10,故输出y的值为10,故选C.9.(2015陕西,理9)设f(x)=ln x,0<a<b,若p=f(ab),q=f a+b2,r=12(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.p=r<qC.q=r>pD.p=r>q答案:B解析:因为0<a<b,所以a+b>ab.又因为f(x)=ln x在(0,+∞)上单调递增,所以f a+b2>f(ab),即p<q.而r=1(f(a)+f(b))=1(ln a+ln b)=12ln(ab)=ln ab,所以r=p,故p=r<q.选B.10.(2015陕西,理10)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元答案:D解析:设该企业每天生产甲产品x吨,乙产品y吨,获利z元.则由题意知3x+2y≤12,x+2y≤8,x≥0,y≥0,利润函数z=3x+4y.画出可行域如图所示,当直线3x+4y-z=0过点B 时,目标函数取得最大值.由 3x +2y =12,x +2y =8,解得 x =2,y =3.故利润函数的最大值为z=3×2+4×3=18(万元).故选D .11.(2015陕西,理11)设复数z=(x-1)+y i (x ,y ∈R ),若|z|≤1,则y ≥x 的概率为( )A.34+12π B.12+1πC.12-1πD.14-12π答案:D解析:由|z|≤1,得(x-1)2+y 2≤1.不等式表示以C (1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=1π×12-S △OAC =1π-1×1×1=π-1.故所求事件的概率P=S 阴S 圆=π4−12π×12=14-12π.12.(2015陕西,理12)对二次函数f (x )=ax 2+bx+c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ) A.-1是f (x )的零点 B.1是f (x )的极值点 C.3是f (x )的极值 D.点(2,8)在曲线y=f (x )上 答案:A解析:f'(x )=2ax+b.若A 正确,则f (-1)=0,即a-b+c=0, ① 若B 正确,则f'(1)=0,即2a+b=0, ② 若C 正确,则f'(x 0)=0,且f (x 0)=3, 即f −b=3,即c-b2=3.③ 若D 项正确,则f (2)=8,即4a+2b+c=8.④假设②③④正确,则由②得b=-2a ,代入④得c=8,代入③得8-4a 24a=3,解得a=5,b=-10,c=8.此时f (x )=5x 2-10x+8,f (-1)=5×(-1)2-10×(-1)+8=5+10+8=23≠0,即A 不成立.故B ,C ,D 可同时成立,而A 不成立.故选A .第二部分(共90分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分).13.(2015陕西,理13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 . 答案:5解析:由题意知,1 010为数列首项a 1与2 015的等差中项,故a 1+2 015=1 010,解得a 1=5.14.(2015陕西,理14)若抛物线y 2=2px (p>0)的准线经过双曲线x 2-y 2=1的一个焦点,则p= .答案:2解析:双曲线x 2-y 2=1的焦点为F 1(- 2,0),F 2( 2,0).抛物线的准线方程为x=-p 2.因p>0,故-p2=- 2,解得p=2 2.15.(2015陕西,理15)设曲线y=e x 在点(0,1)处的切线与曲线y=1(x>0)上点P 处的切线垂直,则P 的坐标为 . 答案:(1,1)解析:曲线y=e x 在点(0,1)处的切线斜率k=y'=e x |x=0=1;由y=1,可得y'=-12,因为曲线y=1(x>0)在点P 处的切线与曲线y=e x 在点(0,1)处的切线垂直,故-1P2=-1,解得x P =1,由y=1,得y P =1,故所求点P 的坐标为(1,1). 16.(2015陕西,理16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 .答案:1.2解析:以梯形的下底为x 轴,上、下底边的中点连线为y 轴,建立如图所示的坐标系,设抛物线的方程为y=ax 2,则抛物线过点(5,2),故2=25a ,得a=2,故抛物线的方程为y=2x 2.最大流量的比,即截面的面积比,由图可知,梯形的下底长为6,故梯形的面积为(10+6)×2=16,而当前的截面面积为2 52−2x 2 d x=2 2x −2x 3 |05=40,故原始流量与当前流量的比为16403=1.2. 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分).17.(本小题满分12分)(2015陕西,理17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m=(a , 3b )与n=(cos A ,sin B )平行. (1)求A ;(2)若a= 7,b=2,求△ABC 的面积.(1)解:因为m ∥n ,所以a sin B- b cos A=0.由正弦定理,得sin A sin B- 3sin B cos A=0. 又sin B ≠0,从而tan A= 3. 由于0<A<π,所以A=π3.(2)解法一:由余弦定理,得a 2=b 2+c 2-2bc cos A ,而a= 7,b=2,A=π3,得7=4+c 2-2c ,即c 2-2c-3=0. 因为c>0,所以c=3.故△ABC 的面积为12bc sin A=3 3.解法二:由正弦定理,得 7sin π3=2sin B ,从而sin B= 21.又由a>b ,知A>B ,所以cos B=2 7.故sin C=sin (A+B )=sin B +π=sin B cos π3+cos B sin π3=3 2114.所以△ABC 的面积为12ab sin C=3 32. 18.(本小题满分12分)(2015陕西,理18)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD=π,AB=BC=1,AD=2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图②.图①图②(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明:在题图①中,因为AB=BC=1,AD=2,E 是AD 的中点,∠BAD=π,所以BE ⊥AC ,即在题图②中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC. (2)解:由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE-C 的平面角, 所以∠A 1OC=π.如图,以O 为原点,建立空间直角坐标系,因为A 1B=A 1E=BC=ED=1,BC ∥ED , 所以B 2,0,0 ,E −2,0,0 ,A 1 0,0,2,C 0,2,0 ,得BC = − 2, 2,0 ,A 1C = 0, 2,− 2,CD =BE =(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 夹角为θ,则 n 1·BC =0,n 1·A 1C =0,得 −x 1+y 1=0,y 1−z 1=0,取n 1=(1,1,1); n 2·CD =0,n 2·A 1C =0,得x 2=0,y 2−z 2=0,取n 2=(0,1,1), 从而cos θ=|cos <n 1,n 2>|=3× 2= 63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为 6.19.(本小题满分12分)(2015陕西,理19)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得T的分布列为从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09,故P(A)=1-P(A)=0.91.20.(本小题满分12分)(2015陕西,理20)已知椭圆E:x2a2+y2b2=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为12c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=5的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.(1)解:过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d=bcb+c2=bc,由d=1c,得a=2b=2 a2−c2,解得离心率c=3.(2)解法一:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB|= 10.易知,AB 与x 轴不垂直,设其方程为y=k (x+2)+1,代入①得,(1+4k 2)x 2+8k (2k+1)x+4(2k+1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k2,x 1x 2=4(2k +1)2−4b21+4k2.由x 1+x 2=-4,得-8k (2k +1)1+4k2=-4,解得k=1.从而x 1x 2=8-2b 2.于是|AB|= 1+ 122|x 1-x 2|= 52 (x 1+x 2)2−4x 1x 2= 10(b 2−2). 由|AB|= 10,得 2−2)= 10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.解法二:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB|= 10. 设A (x 1,y 1),B (x 2,y 2),则x 12+4y 12=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2, 得-4(x 1-x 2)+8(y 1-y 2)=0. 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1−y 2x 1−x 2=12. 因此,直线AB的方程为y=12(x+2)+1,代入②得,x 2+4x+8-2b 2=0.所以x 1+x 2=-4,x 1x 2=8-2b 2. 于是|AB|= 1+ 122|x 1-x 2|= 5(x 1+x 2)2−4x 1x 2= 10(b 2−2). 由|AB|= 10,得 10(b 2−2)= 10,解得b 2=3.故椭圆E 的方程为x 2+y 2=1.21.(本小题满分12分)(2015陕西,理21)设f n (x )是等比数列1,x ,x 2,…,x n 的各项和,其中x>0,n ∈N ,n ≥2.(1)证明:函数F n (x )=f n (x )-2在 12,1 内有且仅有一个零点(记为x n ),且x n =12+12x n n +1;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x ),比较f n (x )和g n (x )的大小,并加以证明.(1)证明:F n (x )=f n (x )-2=1+x+x 2+…+x n -2,则F n (1)=n-1>0,F n 12 =1+12+ 12 2+…+ 12 n-2 =1− 12n +11−12-2=-1n <0,所以F n (x )在 1,1 内至少存在一个零点. 又F n '(x )=1+2x+…+nx n-1>0, 故F n (x )在 12,1 内单调递增,所以F n (x )在 1,1 内有且仅有一个零点x n . 因为x n 是F n (x )的零点,所以F n (x n )=0,即1−x nn +1n -2=0,故x n =1+1x n n +1. (2)解法一:由假设,g n (x )=(n +1)(1+x n )2.设h (x )=f n (x )-g n (x )=1+x+x 2+…+x n -(n +1)(1+x n ),x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,h'(x )=1+2x+…+nx n-1-n (n +1)x n−1. 若0<x<1,h'(x )>x n-1+2x n-1+…+nx n-1-n (n +1)x n-1=n (n +1)x n-1-n (n +1)x n-1=0. 若x>1,h'(x )<x n-1+2x n-1+…+nx n-1-n (n +1)2x n-1=n (n +1)2x n-1-n (n +1)2x n-1=0.所以h (x )在(0,1)上递增,在(1,+∞)上递减, 所以h (x )<h (1)=0,即f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).解法二:由题设,f n (x )=1+x+x 2+…+x n ,g n (x )=(n +1)(x n +1)2,x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,用数学归纳法可以证明f n (x )<g n (x ).①当n=2时,f 2(x )-g 2(x )=-1(1-x )2<0, 所以f 2(x )<g 2(x )成立.②假设n=k (k ≥2)时,不等式成立,即f k (x )<g k (x ). 那么,当n=k+1时,f k+1(x )=f k (x )+x k+1<g k (x )+x k+1=(k +1)(1+x k )2+x k+1 =2x k +1+(k +1)x k +k +1.又g k+1(x )-2x k +1+(k +1)x k +k +12=kx k +1−(k +1)x k +1,令h k (x )=kx k+1-(k+1)x k +1(x>0),则h k '(x )=k (k+1)x k -k (k+1)x k-1=k (k+1)x k-1(x-1). 所以,当0<x<1时,h k '(x )<0,h k (x )在(0,1)上递减; 当x>1时,h k '(x )>0,h k (x )在(1,+∞)上递增. 所以h k (x )>h k (1)=0, 从而g k+1(x )>2x k +1+(k +1)x k +k +12.故f k+1(x )<g k+1(x ),即n=k+1时不等式也成立. 由①和②知,对一切n ≥2的整数,都有f n (x )<g n (x ).解法三:由已知,记等差数列为{a k },等比数列为{b k },k=1,2,…,n+1.则a 1=b 1=1,a n+1=b n+1=x n , 所以a k =1+(k-1)·x n −1(2≤k ≤n ), b k =x k-1(2≤k ≤n ),令m k (x )=a k -b k =1+(k−1)(x n −1)n-x k-1,x>0(2≤k ≤n ), 当x=1时,a k =b k ,所以f n (x )=g n (x ). 当x ≠1时,m k '(x )=k−1·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1). 而2≤k ≤n ,所以k-1>0,n-k+1≥1. 若0<x<1,x n-k+1<1,m k '(x )<0;若x>1,x n-k+1>1,m k '(x )>0,从而m k (x )在(0,1)上递减,在(1,+∞)上递增, 所以m k (x )>m k (1)=0.所以当m>0且m ≠1时,a k >b k (2≤k ≤n ), 又a 1=b 1,a n+1=b n+1,故f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑.22.(本小题满分10分)(2015陕西,理22)选修4—1:几何证明选讲 如图,AB 切☉O 于点B ,直线AO 交☉O 于D ,E 两点,BC ⊥DE ,垂足为C.(1)证明:∠CBD=∠DBA ;(2)若AD=3DC ,BC= 2,求☉O 的直径. (1)证明:因为DE 为☉O 直径,则∠BED+∠EDB=90°.又BC ⊥DE ,所以∠CBD+∠EDB=90°, 从而∠CBD=∠BED.又AB 切☉O 于点B ,得∠DBA=∠BED , 所以∠CBD=∠DBA. (2)解:由(1)知BD 平分∠CBA ,则BA =AD=3, 又BC= 2,从而AB=3 2.所以AC=2−BC 2=4,所以AD=3. 由切割线定理得AB 2=AD ·AE ,即AE=AB 2=6,故DE=AE-AD=3,即☉O 直径为3.23.(本小题满分10分)(2015陕西,理23)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为 x =3+12t ,y = 3t(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,☉C 的极坐标方程为ρ=2 3sin θ. (1)写出☉C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=2 θ,得ρ2=2 3ρsin θ,从而有x 2+y 2=2 3y ,所以x 2+(y- 3)2=3. (2)设P 3+1t , 3t ,又C (0, 3),则|PC|= 3+1t + 3t − 3 2= t 2+12,故当t=0时,|PC|取得最小值, 此时,P 点的直角坐标为(3,0).24.(本小题满分10分)(2015陕西,理24)选修4—5:不等式选讲已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求at+12+bt的最大值.解:(1)由|x+a|<b,得-b-a<x<b-a,则−b−a=2,b−a=4,解得a=-3,b=1.(2)−3t+12+t=34−t+t≤[(3)2+12][(4−t)2+(t)2]=24−t+t=4,当且仅当4−t3=t,即t=1时等号成立.故(−3t+12+t)max=4.11。

2015年高考数学真题分类汇编-专题10-立体几何-文

2015年高考数学真题分类汇编-专题10-立体几何-文

2015年高考数学真题分类汇编 专题10 立体几何 文1.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A【解析】采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.【考点定位】直线、平面的位置关系.【名师点睛】本题主要考查空间直线、平面的位置关系.解答本题时要根据空间直线、平面的位置关系,从定理、公理以及排除法等角度,对个选项的结论进行确认真假.本题属于容易题,重点考查学生的空间想象能力以及排除错误结论的能力.2.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是14圆锥,底面周长是两个底面半径与14圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.3.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 【考点定位】1.三视图;2.空间几何体的体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.4.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A) 123π+ (B) 136π (C) 73π (D) 52π【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B.【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.5.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D 【解析】由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.6.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交【答案】A【解析】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A .【考点定位】空间点、线、面的位置关系.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要注意选项中的重要字眼“至少”、“至多”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C【解析】由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.【考点定位】1.圆锥曲线的定义;2.线面位置关系.【名师点睛】本题主要考查圆锥曲线的定义以及空间线面的位置关系.解答本题时要能够根据给出的线面位置关系,通过空间想象能力,得到一个无限延展的圆锥被一个与之成60角的平面截得的图形是椭圆的结论.本题属于中等题,重点考查学生的空间想象能力以及对圆锥曲线的定义的理解.8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A .【解析】若p :12,l l 是异面直线,由异面直线的定义知,12,l l 不相交,所以命题q :12,l l 不相交成立,即p 是q 的充分条件;反过来,若q :12,l l 不相交,则12,l l 可能平行,也可能异面,所以不能推出12,l l 是异面直线,即p 不是q 的必要条件,故应选A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.9、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.【考点定位】简单几何体的三视图;球的表面积公式;圆柱的测面积公式【名师点睛】本题考查简单组合体的三视图的识别,是常规提,对简单组合体三三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状,再根据“长对正,宽相等,高平齐”的法则组合体中的各个量.10.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()A.8+ B.11+.14+.15【答案】B【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,.底面积为12332⨯⨯=,侧面积为所以该几何体的表面积为11+B.【考点定位】三视图和表面积.【名师点睛】本题考查三视图和表面积计算,关键在于根据三视图还原体,要掌握常见几何体的三视图,比如三棱柱、三棱锥、圆锥、四棱柱、四棱锥、圆锥、球、圆台以及其组合体,并且要弄明白几何体的尺寸跟三视图尺寸的关系;有时候还可以利用外部补形法,将几何体补成长方体或者正方体等常见几何体,属于中档题.11.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A(B()()【答案】B【解析】由题意知,该等腰直角三角形的斜边长为,所得旋转体为同底等高的全等圆锥,所以,其体积为213π⨯⨯=,故选B.【考点定位】1.旋转体的几何特征;2.几何体的体积.【名师点睛】本题考查了旋转体的几何特征及几何体的体积计算,解答本题的关键,是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.本题属于基础题,在考查旋转体的几何特征及几何体的体积计算方法的同时,考查了考生的空间想象能力及运算能力,是“无图考图”的一道好题.12.【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材1112料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A 、89πB 、827πC【答案】A【考点定位】三视图、基本不等式求最值、圆锥的内接长方体【名师点睛】运用基本不等式求最值要紧紧抓住“一正二定三相等”条件,本题“和为定”是解决问题的关键.空间想象能力是解决三视图的关键,可从长方体三个侧面进行想象几何体.求组合体的体积,关键是确定组合体的组成形式及各部分几何体的特征,再结合分割法、补体法、转化法等方法求体积.13.【2015高考北京,文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B C D.2【答案】C【解析】四棱锥的直观图如图所示:AB,S A是四棱锥最长的棱,由三视图可知,SC⊥平面CDSA===,故选C.【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可.14【2015高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是()(A )1+(B )1+(C )2+ (D )【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知:2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C . 【考点定位】本题主要考查空间几何体的三视图、锥体表面积公式.【名师点睛】在利用空间几何体的三视图求几何体的体积或者表面积时,一定要正确还原几何体的直观图,然后再利用体积或表面积公式求之;本题主要考查了考生的空间想象力和基本运算能力.【2015高考上海,文6】若正三棱柱的所有棱长均为a ,且其体积为316,则=a .【答案】4【解析】依题意,3162321=⨯⨯⨯⨯a a a ,解得4=a . 【考点定位】等边三角形的性质,正三棱柱的性质.【名师点睛】正三棱柱的底面是正三角形,侧棱垂直于底面.柱体的体积等于底面积乘以高.边长为a 的正三角形的面积为243a . 15.【2015高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m.【答案】8π3【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= . 【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.16.【2015高考四川,文14】在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______. 【答案】124【解析】由题意,三棱柱是底面为直角边长为1的A 1 C 1B 1 P等腰直角三角形,高为1的直三棱柱,底面积为12 如图,因为AA 1∥PN ,故AA 1∥面PMN ,故三棱锥P -A 1MN 与三棱锥P -AMN 体积相等,三棱锥P -AMN 的底面积是三棱锥底面积的14,高为1 故三棱锥P -A 1MN 的体积为111132424⨯⨯= 【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力.【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥P -A 1MN 的体积可以直接计算,但转换为三棱锥P -AMN 的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.17.【2015高考安徽,文19】如图,三棱锥P -ABC 中,PA ⊥平面ABC ,1,1,2,60PA AB AC BAC ===∠=o .(Ⅰ)求三棱锥P -ABC 的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PM MC的值.【答案】(Ⅱ)13PM MC = 【解析】A BC M N(Ⅰ)解:由题设AB =1,,2=AC 60=∠BAC可得ABC S ∆︒⋅⋅⋅=60sin 21AC AB 23=. 由⊥PA 面ABC可知PA 是三棱锥ABC P -的高,又1=PA所以三棱锥ABC P -的体积6331=⋅⋅∆PA S V ABC = (Ⅱ)证:在平面ABC 内,过点B 作AC BN ⊥,垂足为N ,过N 作PA MN //交PC 于M ,连接BM .由⊥PA 面ABC 知AC PA ⊥,所以AC MN ⊥.由于N MN BN =⋂,故⊥AC 面MBN ,又⊂BM 面MBN ,所以BM AC ⊥.在直角BAN ∆中,21cos =∠⋅=BAC AB AN ,从而23=-=AN AC NC .由PA MN //,得31=NC AN MC PM =. 【考点定位】本题主要考查锥体的体积公式、线面垂直的判定定理和其性质定理.【名师点睛】本题将正弦定理求三角形的面积巧妙地结合到求锥体的体积之中,本题的第(Ⅱ)问需要学生构造出线面垂直,进而利用性质定理证明出面面垂直,本题考查了考生的空间想象能力、构造能力和运算能力.18.【2015高考北京,文18】(本小题满分14分)如图,在三棱锥V C -AB 中,平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,C C A ⊥B 且C C A =B =,O ,M 分别为AB ,V A 的中点.(I )求证:V //B 平面C MO ;(II )求证:平面C MO ⊥平面V AB ;(III )求三棱锥V C -AB 的体积.【答案】(I )证明详见解析;(II )证明详见解析;(III(Ⅱ)因为AC BC =,O 为AB 的中点,所以OC AB ⊥.又因为平面V AB ⊥平面C AB ,且OC ⊂平面C AB ,所以OC ⊥平面V AB .所以平面C MO ⊥平面V AB .(Ⅲ)在等腰直角三角形ACB 中,AC BC ==所以2,1AB OC ==.所以等边三角形V AB 的面积VAB S ∆=.又因为OC ⊥平面V AB ,所以三棱锥C V -AB 的体积等于13VAB OC S ∆⨯⨯=又因为三棱锥V C -AB 的体积与三棱锥C V -AB 的体积相等,所以三棱锥V C -AB 考点:线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积公式.【名师点晴】本题主要考查的是线面平行、面面垂直和几何体的体积,属于中档题.证明线面平行的关键是证明线线平行,证明线线平行常用的方法是三角形的中位线和构造平行四边形.证明面面垂直的关键是证明线面垂直,证明线面垂直可由面面垂直得到,但由面面垂直得到线面垂直一定要注意找两个面的交线,否则很容易出现错误.求几何体的体积的方法主要有公式法、割补法、等积法等,本题求三棱锥的体积,采用了等积法.19.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;【解析】解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点,所以C D A ⊥O .又PO 垂直于圆O 所在的平面,所以C PO ⊥A .因为D O PO =O ,所以C A ⊥平面D P O .(II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1.又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =,故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以PB ==.同理C P =C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值.又因为OP =OB ,C C ''P =B ,所以C 'O 垂直平分PB ,即E 为PB中点.从而C C ''O =OE +E =+= 亦即C E +OE.O A BP解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,PB ==.同理C P =所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值.所以在C '∆O P 中,由余弦定理得:()2C 1221cos 4560'O =+-⨯+1122=+--2=+从而C 'O ==所以C E +OE . 【考点定位】1、直线和平面垂直的判定;2、三棱锥体积.【名师点睛】证明直线和平面垂直可以利用判定定理,即线线垂直到线面垂直;也可以利用面面垂直的性质定理,即面面垂直到线面垂直;决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解.20.【2015高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3 【解析】试题分析:(1)由四边形CD AB 是长方形可证C//D B A ,进而可证C//B 平面D P A ;(2)先证C CD B ⊥,再证C B ⊥平面DC P ,进而可证C D B ⊥P ;(3)取CD 的中点E ,连结AE 和PE ,先证PE ⊥平面CD AB ,再设点C 到平面D P A 的距离为h ,利用C D CD V V -P A P-A =三棱锥三棱锥可得h 的值,进而可得点C 到平面D P A 的距离.试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P(3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在Rt D ∆PE 中,PE ===,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE ,即CD D 2S h S ∆A ∆P A ⋅PE ===,所以点C 到平面D P A【考点定位】1、线面平行;2、线线垂直;3、点到平面的距离.【名师点晴】本题主要考查的是线面平行、线线垂直和点到平面的距离,属于中档题.证明线面平行的关键是证明线线平行,证明线线平行常用的方法是三角形的中位线和构造平行四边形.证明线线垂直的关键是证明线面垂直,证明线面垂直可由面面垂直得到,但由面面垂直得到线面垂直一定要注意找两个面的交线,否则很容易出现错误.点到平面的距离是转化为几何体的体积问题,借助等积法来解决.21.【2015高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE . (Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由; (Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值. 【答案】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC .四面体EBCD 是一个鳖臑;(Ⅱ)124.V V = 【解析】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC . 由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠(Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC中,因为PD CD =,点E 是PC 的中点,所以DE CE ==,于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅ 【考点定位】本题考查直线与平面垂直的判定定理、直线与平面垂直的性质定理和简单几何体的体积,属中高档题.【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力.22.【2015高考湖南,文18】(本小题满分12分)如图4,直三棱柱111ABC A B C -的底面是边长为2的正三角形,,E F 分别是1,BC CC 的中点。

2015年高考数学理科试题解析汇编【解析几何题】

2015年高考数学理科试题解析汇编【解析几何题】
2 2
b2 4 3 截得的线段长为 c, | FM | 。 4 3
c a 2 b2 3 解: (I)∵ e a a 3
∴ a2
(2 c )2 4 2 1 2 a 3b
由(I)可知, a 2 3c 2 , b2 2c 2 代入上式化简整理得 c 2 2c 3 0 解得:c=1 或-3(舍去)
2
tan OQM
2
OM OQ tan ONQ OQ ON
∵椭圆的离心率是
2 2
即 OQ OM ON 设点 Q 的坐标为(0,yQ) ,则有
c a 2 b2 2 ∴e a a 2
∴ a 2b 2
2 2
yQ
2
m m m2 1 n 1 n 1 n2
m ) 3
∵直线 l 不过原点 O 且不平行于坐标轴 ∴k>0,且 k≠3 比较(I)可得: n
m (3 k ) 3
则 xM
m(k 2 3k ) 3(9 k 2 )
9 x k
【难度系数】★★★
由(I)的结论知, 直线 OM 的方程为 y
2105 年全国高考数学理科试题分类解析汇编——解析几何题
∵点 A(m,n)在椭圆 C 上
x2 ∴椭圆 C 的方程为 y2 1 2
由点 P、A 坐标可得,直线 PA 的方程为:
m2 m2 2 ∴ n 1 ,即 1 n2 2 2
∴ yQ 2 2 ,得 yQ 2 故,存在满足题述条件的点 Q,点 Q 的坐标为 (0, 2 )或(0, 2 )
(m≠0)都在椭圆 C 上,直线 PA 交 x 轴于点 M. (Ⅰ)求椭圆 C 的方程,并求点 M 的坐标(用 m,n 表示) ; (Ⅱ)设 O 为原点,点 B 与点 A 关于 x 轴对称,直线 PB 交 x 轴于点 N.问:y 轴上是否存在点 Q,使得 OQMONQ?若存在,求点 Q 的坐标;若不存在,说明理由。 解: (I)∵点 P(0,1)在椭圆 C 上 ∴b 1

2015年全国各地高考数学试题及解答分类大全( 数列)

2015年全国各地高考数学试题及解答分类大全( 数列)

2015年全国各地高考数学试题及解答分类大全(数列)一、选择题:1.(2015北京理) 设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a --> 【答案】C考点:1.等差数列通项公式;2.作差比较法2.(2015福建理)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( )A .6B .7C .8D .9 【答案】D 【解析】 试题分析:由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .考点:等差中项和等比中项.3、(2015全国新课标Ⅰ卷文)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )124. (2015全国新课标Ⅱ卷文)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列5.(2015全国新课标Ⅱ卷理)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( ) A .21 B .42 C .63 D .84 【答案】B考点:等比数列通项公式和性质.6.(2015全国新课标Ⅱ卷文)已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.7. (2015浙江理)已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>8.(2015重庆理)在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、6【答案】B【考点定位】本题属于数列的问题,考查等差数列的通项公式与等差数列的性质.二、填空题:1.(2015安徽文)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .2.(2015安徽理)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .3.(2015福建文)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.4.(2015广东理)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += 【答案】10.【解析】因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,345675525a a a a a a ++++==即55a =,285210a a a +==,故应填入10.【考点定位】本题考查等差数列的性质及简单运算,属于容易题.5. (2015广东文)若三个正数a ,b ,c 成等比数列,其中526a =+56c =-则b = .【答案】1 【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以(25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1. 考点:等比中项.6. (2015浙江文)已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = . 【答案】2,13- 【解析】试题分析:由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 考点:1.等差数列的定义和通项公式;2.等比中项.7.(2015湖南理)设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a = .【答案】13-n .【考点定位】等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量q 的方程即可求解,考查学生等价转化的思想与方程思想.8. (2015江苏)数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【解析】试题分析:由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++ 考点:数列通项,裂项求和9、(2015全国新课标Ⅰ卷文)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .10.(2015全国新课标Ⅱ卷理)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【答案】1n-【解析】试题分析:由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n S n n =---=-,所以1nS n =-. 考点:等差数列和递推关系.11. (2015陕西文、理)中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 【答案】5 【解析】试题分析:设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5. 考点:等差中项.三、解答题:1. (2015安徽文)已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .2.(2015安徽理) 设*n N ∈,n x 是曲线221n y x+=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式; (Ⅱ)记2221321n n T x x x -=,证明14n T n≥.3、(2015北京文)已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(1)42(1)22n a n n =+-=+;(2)6b 与数列{}n a 的第63项相等.【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;第二问,先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数. 试题解析:(Ⅰ)设等差数列{}n a 的公差为d. 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.4. (2015北京理)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 【解析】 ①试题分析:(Ⅰ)由16a =,可知23412,24,12,a a a ===则{6,12,24}M =;(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.第二步集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,用数学归纳法证明对任意n k ≥,n a 是3的倍数;第三步由于M 中的元素都不超过36,M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,由定义可知,1n a +和2n a 除以9的余数一样,分n a 中有3的倍数和n a 中没有3的倍数两种情况,研究集合M 中的元素个数,最后得出结论集合M 的元素个数的最大值为8.试题解析:(Ⅰ)由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.(Ⅲ)由于M 中的元素都不超过36,由136a ≤,易得236a ≤,类似可得36n a ≤,其次M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,另外,M 中的数除以9的余数,由定义可知,1n a +和2n a 除以9的余数一样,考点:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.5.(2015福建文) 等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101.【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d . 由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法.6、(2015广东文)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值; ()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.7.(2015广东理)数列{}n a 满足1212242-+-=+⋅⋅⋅++n n n na a a , *N n ∈. (1) 求3a 的值;(2) 求数列{}n a 前n 项和n T ; (3) 令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足n S n ln 22+<【答案】(1)14;(2)1122n -⎛⎫- ⎪⎝⎭;(3)见解析.(3)依题由1211112n n n a a a b a n n -+++⎛⎫=++++ ⎪⎝⎭知11b a =,1221122a b a ⎛⎫=++ ⎪⎝⎭,【考点定位】本题考查递推数列求项值、通项公式、等比数列前n 项和、不等式放缩等知识,属于中高档题. 8.(2015湖北理)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n -+-.2345113579212222222n n n T -=++++++. ② ①-②可得221111212323222222n n n n n n T --+=++++-=-,故n T 12362n n -+=-.考点:1.等差数列、等比数列通项公式,2.错位相减法求数列的前n 项和. 9. (2015湖北文)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n n T -+=-.【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向.10. (2015湖南文)设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I )证明:23n n a a +=; (II )求n S 。

2015年全国各地高考数学试题及解答分类大全( 计数原理、二项式定理)

2015年全国各地高考数学试题及解答分类大全( 计数原理、二项式定理)

2015年全国各地高考数学试题及解答分类大全(计数原理、二项式定理)一、选择题:1.(2015广东理)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。

从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.1B.2111C.2110 D.215【答案】C..【解析】从袋中任取2个球共有215105C =种,其中恰好1个白球1个红球共有1110550C C =种,所以恰好1个白球1个红球的概率为5010=10521,故选 C..【考点定位】本题考查排列组合、古典概率的计算,属于容易题.2.(2015湖南理)已知5x x 的展开式中含32x 的项的系数为30,则a =()3 B.3 C.6D .-6【答案】D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.3.(2015全国新课标Ⅰ卷理)25()x x y ++的展开式中,52x y 的系数为()(A )10(B )20(C )30(D )60【答案】C 【解析】试题分析:在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选C.考点:排列组合;二项式定理4.(2015陕西理)二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =()A.4B.5C.6D.7【答案】C考点:二项式定理.5.(2015四川理)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有(A)144个(B)120个(C)96个(D)72个【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.6.(2015湖北理)已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.122B.112C.102D.92【答案】D考点:1.二项式系数,2.二项式系数和.二、填空题:1.(2015安徽理)371(x x+的展开式中5x 的系数是.(用数字填写答案)2.(2015北京理)在()52x +的展开式中,3x 的系数为.(用数字作答)【答案】40【解析】试题分析:利用通项公式,5152r r r r T C x -+=⋅,令3r =,得出3x 的系数为325240C ⋅=考点:二项式定理3.(2015福建理)()52x +的展开式中,2x 的系数等于.(用数字作答)【答案】80试题分析:()52x +的展开式中2x 项为2325280C x =,所以2x 的系数等于80.考点:二项式定理.4、(2015广东理)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.【考点定位】本题考查排列组合问题,属于中档题.5.(2015广东理)在4)1(-x 的展开式中,x 的系数为【答案】6.【解析】由题可知()()()44214411r rrrrr r T CxC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】本题考查二项式定理,属于容易题.6.(2015全国新课标Ⅱ卷理)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3【解析】试题分析:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.考点:二项式定理.7.(2015山东理)观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=.【答案】14n -【考点定位】1、合情推理;2、组合数.【名师点睛】本题考查了合情推理与组合数,重点考查了学生对归纳推理的理解与运用,意在考查学生观察、分析、归纳、推理判断的能力,关键是能从前三个特殊的等式中观察、归纳、总结出一般的规律,从而得到结论.此题属基础题.8、(2015上海文、理)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【考点定位】组合,分类计数原理.10.(2015上海文)在62)12(x x +的二项式中,常数项等于(结果用数值表示).【答案】240【解析】由r r r rrrr x C xx C T 366626612)1()2(---+⋅⋅=⋅⋅=,令036=-r ,所以2=r ,所以常数项为2402426=⋅C .【考点定位】二项式定理.【名师点睛】求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等).11、(2015上海理)在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为(结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭ ,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C =【考点定位】二项展开式12.(2015四川理)在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).【答案】40-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.13.(2015天津理)在614x x ⎛⎫- ⎪⎝⎭的展开式中,2x 的系数为.【答案】1516考点:二项式定理及二项展开式的通项.14.(2015重庆理)532x x ⎛+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答).【答案】52【考点定位】二项式定理三、解答题1.(2015江苏)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除=}n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.【答案】(1)13(2)()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩下面用数学归纳法证明:①当6n =时,()666621323f =+++=,结论成立;②假设n k =(6k ≥)时结论成立,那么1n k =+时,1k S +在k S 的基础上新增加的元素在()1,1k +,考点:计数原理、数学归纳法。

2015-2017解析几何全国卷高考真题版

2015-2017解析几何全国卷高考真题版

2015-2017解析几何全国卷高考真题1、(2015年1卷5题)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值围是( )(A )(-3,3) (B )(-6,6)(C )(3-,3) (D )() 【答案】A【解析】由题知12(F F ,220012x y -=,所以12MF MF •=0000(,),)x y x y -•- =2220003310x y y +-=-<,解得033y -<<,故选 A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.2、(2015年1卷14题)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.【答案】0y a --=0y a ++=(Ⅱ)存在【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x -=-0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力4、(2015年2卷7题)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10 【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =C .考点:圆的方程.5、(2015年2卷11题).已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为()A.5 B.2 C.3 D.2【解析】设双曲线方程为22221(0,0)x ya ba b-=>>,如图所示,AB BM=,0120ABM∠=,过点M作MN x⊥轴,垂足为N,在Rt BMN∆中,BN a=,3MN a=,故点M的坐标为(2,3)M a a,代入双曲线方程得2222a b a c==-,即222c a=,所以2e=,故选D.考点:双曲线的标准方程和简单几何性质.6、(2015年2卷20题)(本题满分12分)已知椭圆222:9(0)C x y m m+=>,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅱ)若l过点(,)3mm,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由.【解析】(Ⅰ)设直线:l y kx b=+(0,0)k b≠≠,11(,)A x y,22(,)B x y,(,)M MM x y.将y kx b=+代入2229x y m+=得2222(9)20k x kbx b m+++-=,故12229Mx x kbxk+==-+,299M Mby kx bk=+=+.于是直线OM的斜率9MOMMykx k==-,即9OMk k⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9,y x kx y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m x k =+,即P x =.将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x ==2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l的斜率为4或4+OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.7、(2016年1卷5题)(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值围是(A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.8、(2016年1卷10题)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E两点.已知|AB |=,|DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.9、(2016年1卷20题)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x .所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值围为)38,12[. 考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试容,主要由求值、求方程、求定值、最值、求参数取值围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.10、(2016年2卷4题)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C(D )2【解析】A圆化为标准方程为:,故圆心为,,解得,故选A .11、(2016年2卷11题)已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(B )32(C(D )2 【解析】A离心率,由正弦定理得. 12、(2016年2卷20题)(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值围.2228130x y x y +--+=()()22144x y -+-=()14,1d ==43a =-1221F F e MF MF =-122112sin 31sin sin 13F F Me MF MF F F ====---【解析】 ⑴当时,椭圆E 的方程为,A 点坐标为, 则直线AM 的方程为.联立并整理得, 解得或,则因为,所以 因为,,,整理得, 无实根,所以. 所以的面积为. ⑵直线AM 的方程为,联立并整理得,解得或所以 所以因为所以,整理得,. 4t =22143x y +=()20-,()2y kx =+()221432x y y k x ⎧+=⎪⎨⎪=+⎩()2222341616120k x k x k +++-=2x =-228634k x k -=-+222861223434k AMk k -=+=++AM AN ⊥21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭AM AN =0k >212124343k k k=++()()21440k k k --+=2440k k -+=1k =AMN △221112144223449AM⎫==⎪+⎭(y k x =(2213x y t y k x ⎧+=⎪⎨⎪=+⎩()222223230tk x x t k t +++-=x =x =AM =+=3AN k k+2AM AN =23k k+23632k k t k -=-因为椭圆E 的焦点在x 轴,所以,即,整理得.13、(2016年3卷11题)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12 (C )23 (D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e的值;(2)建立,,a b c 的齐次等式,求得b a 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .14、(2016年3卷16题)已知直线l :30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =,则||CD =__________________.【答案】43t >236332k k k ->-()()231202k k k +-<-2k <考点:直线与圆的位置关系. 【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、(2016年3卷20题)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点. (I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且 )2,21(),,21(),,21(),,2(),0,2(22ba Rb Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分 (Ⅰ)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆.由题设可得221211b a x a b -=--,所以01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E .当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分 考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.16、(2017年1卷15题)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b aθ=b a =,解得223a b =∴e ==17、(2017年1卷20题)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得 222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-= 122814kb x x k -+=+,21224414b x x k -⋅=+则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠ 21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立. ∴直线l 的方程为21y kx k =-- 当2x =时,1y =-所以l 过定点()21-,.18、(2017年2卷9题)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .233【命题意图】主要考查双曲线的性质及直线与圆的位置关系,意在考查考生的转化与化归思想. 【解析】解法一:常规解法根据双曲线的标准方程可求得渐近线方程为by x a=±,根据直线与圆的位置关系可求得圆心到渐进线的距离为3,∴ 圆心到渐近线的距离为221b ab a ⋅⎛⎫+ ⎪⎝⎭,即2231b ab a ⋅=⎛⎫+ ⎪⎝⎭,解得2e =.解法二:待定系数法设渐进线的方程为y kx =,根据直线与圆的位置关系可求得圆心到渐进线的距离为3,∴ 圆心到渐近线的距离为221k k +,即2231k k =+,解得23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =.19、(2017年2卷16题)已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .【命题意图】本题主要考查抛物线的定义及直线与抛物线的位置关系,意在考查考生的转化与 化归思想运算求解的能力 【解析】解法一:几何法习. 20、(2017年2卷20题)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2) 设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【命题意图】椭圆,定值问题的探索;运算求解能力【基本解法】(Ⅰ)解法一:相关点法求轨迹:设()00,M x y ,()0,0N x ,(),P x y ,则:()0,NP x x y =-,()00,NM y =. 又2NP NM =,所以:())00,0,x x y y -=,则:00,x x y ==.又()00,M x y 在椭圆C 上,所以:220012x y +=。

2015年高考数学试卷附详细答案

2015年高考数学试卷附详细答案

2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•原题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2] C.(1,2)D.[1,2]2.(5分)(2015•原题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•原题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•原题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•原题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•原题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•原题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•原题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•原题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•原题)已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是.11.(6分)(2015•原题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•原题)若a=log43,则2a+2﹣a= .13.(4分)(2015•原题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•原题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•原题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•原题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•原题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•原题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•原题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•原题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年高考数学试卷(理科)答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(原题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由析:已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)一、选择题:1.(2015安徽文)直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( )(A )-2或12 (B )2或-12 (C )-2或-12 (D )2或122、(2015北京文)圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-= 【答案】D【解析】试题分析:由题意可得圆的半径为2r =,则圆的标准方程为()()22112x y -+-=.考点:圆的标准方程.3.(2015广东理)平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( ) A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x 【答案】D .【考点定位】本题考查直线与圆的位置关系,属于容易题. 4.(2015全国新课标Ⅱ卷理)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得262y =±-,所以46MN =C .考点:圆的方程.5. (2015全国新课标Ⅱ卷文)已知三点(1,0),(0,3),(2,3)A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 B.213 25C.3 4D.3【答案】B考点:直线与圆的方程.6. (2015上海文) 设),(n n n y x P 是直线)(12*∈+=-N n n ny x 与圆222=+y x 在第一象限的交点,则极限=--∞→11limn n n x y ( ).A. 1-B. 21-C. 1D. 2【答案】A7、(2015上海理)设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim1n n n y x →∞-=-( ) A .1- B .12-C .1D .2 【答案】A8.(2015重庆理)已知直线l :x +ay -1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B 、42 C 、6 D 、210【答案】C【考点定位】直线与圆的位置关系.9.(2015山东理)一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )(A )53-或35- (B )32- 或23- (C )54-或45- (D )43-或34- 【答案】D【考点定位】1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.【名师点睛】本题考查了圆与直线的方程的基础知识,重点考查利用对称性解决直线方程的有关问题以及直线与圆的位置关系的判断,意在考查学生对直线与直线、直线与圆的位置关系的理解与把握以及学生的运算求解能力.二、填空题:1. (2015湖北文)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________. 【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)12--.【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题.【名师点睛】将圆的标准方程、圆的切线方程与弦长问题联系起来,注重实际问题的特殊性,合理的挖掘问题的实质,充分体现了数学学科特点和知识间的内在联系,渗透着方程的数学思想,能较好的考查学生的综合知识运用能力.其解题突破口是观察出点C 的横坐标. 2.(2015湖北理)如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为_________________________; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是__________________. (写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)①②③所以2221(21)22222NB MA NA MB -=-=+--=-+,222121222222NB MA NAMB+=+=-++=-+,正确结论的序号是①②③.考点:1.圆的标准方程,2.直线与圆的位置关系.3. (2015湖南文) 若直线3x-4y+5=0与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=(O为坐标原点),则r=_____. 【答案】 【解析】试题分析:直线3x-4y+5=0与圆2220x y r r +=(>)交于A 、B 两点,∠AOB=120°,则△AOB 为顶角为120°的等腰三角形,顶点(圆心)到直线3x-4y+5=0的距离为12r ,代入点到直线距离公式,可构造关于r 的方程,解方程可得答案. 如图直线3x-4y+5=0与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x-4y+5=0的距离为12r ,221234r r =∴+,=2 .故答案为2.考点:直线与圆的位置关系4. (2015江苏)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 【答案】22(1) 2.x y -+=考点:直线与圆位置关系5. (2015山东文)过点P (1,)作圆的两条切线,切点分别为A ,B ,则= . 【答案】32考点:1.直线与圆的位置关系;2.平面向量的数量积.6. (2015重庆文)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为___________. 【答案】x+2y-5=0 【解析】试题分析:由点P (1,2)在以坐标原点为圆心的圆上知此圆的方程为:225x y +=,所以该圆在点P 处的切线方程为125x y ⨯+⨯=即x+2y-5=0; 故填:x+2y-5=0.考点:圆的切线.三、解答题:1.(2015广东理)已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B . (1)求圆1C 的圆心坐标; (2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L y k x =-与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)332525,,4477k ⎡⎤⎧⎫∈--⎨⎬⎢⎥⎩⎭⎣⎦U .【解析】(1)由22650x y x +-+=得()2234x y -+=, ∴ 圆1C 的圆心坐标为()3,0; (2)设(),M x y ,则∵ 点M 为弦AB 中点即1C M AB ⊥, ∴ 11C M AB k k ⋅=-即13y yx x⋅=--, ∴ 线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)由(2)知点M 的轨迹是以3,02C ⎛⎫⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且525,33E ⎛⎫ ⎪ ⎪⎝⎭,525,33F ⎛⎫- ⎪ ⎪⎝⎭,又直线L :()4y k x =-过定点()4,0D ,当直线L 与圆C 223402321k k ⎛⎫-- ⎪⎝⎭=+得34k =±,又25025543DE DFk k ⎛- ⎝⎭=-=-=-,结合上图可知当332525,4477k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦U 时,直线L :()4y k x =-与曲线C 只有一个交点.【考点定位】本题考查圆的标准方程、轨迹方程、直线斜率等知识与数形结合思想等应用,属于中高档题.2. (2015全国新课标Ⅰ卷文)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=u u u u r u u u r,其中O 为坐标原点,求MN .【答案】(I )4747骣-+琪琪桫(II )2DxyOC EF(II )设1122(,),(,)M x y N x y . 将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=,所以1212224(1)7,.11k x x x x k k ++==++21212121224(1)1181k k OM ON x x y y k x x k x x ku u u u r u u u r +?+=++++=++, 由题设可得24(1)8=121k k k +++,解得=1k ,所以l 的方程为1y x =+.故圆心在直线l 上,所以||2MN =.【考点定位】直线与圆的位置关系;设而不求思想;运算求解能力【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.。

相关文档
最新文档