2020人教版七年级数学下学期期末测试题
人教版七年级数学下册期末复习题(含答案)

人教版七年级数学下册期末复习题(含答案)一、选择题1.如图所示,下列结论中正确的是( )A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角 2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点(a 2+1,2020)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70°6.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min 30a }=a ,min 30b }30a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.在同一个平面内,A ∠为50°,B 的两边分别与A ∠的两边平行,则B 的度数为( ).A .50°B .40°或130°C .50°或130°D .40°8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-九、填空题9.0.0081的算术平方根是______十、填空题10.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.十一、填空题11.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________.十二、填空题12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.十三、填空题13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.十四、填空题14.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______十五、填空题15.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.十六、填空题16.在平面直角坐标系中,点(,)P x y 经过某种变换后得到点(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点已知点1P 的终结点为2P 点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1234,,,,,,n P P P P P ⋯⋯,若点1P 的坐标为(2,0),则点2021P 的坐标为____十七、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021;(2)()2133+3––6⎛⎫ ⎪⎝⎭. 十八、解答题18.求下列各式中x 的值:(1)(x +1)3﹣27=0(2)(2x ﹣1)2﹣25=0十九、解答题19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)二十、解答题20.如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各点的坐标;(2)将三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形;(3)求出三角形ABC的面积.二十一、解答题21.已知:a是815-的小数部分.+的小数部分,b是815(1)求a、b的值;(2)求4a+4b+5的平方根.二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E .(1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.二十四、解答题24.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.二十五、解答题25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】解:A 、∠1和∠2是同旁内角,故本选项错误;B 、∠2和∠3是同旁内角,故本选项正确;C 、∠1和∠4是同位角,故本选项错误;D 、∠3和∠4是邻补角,故本选项错误;故选:B .【点睛】本题考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是轴对称图形,故选项B不合题意;C.选项的图案可以通过平移得到.故选项C符合题意;D.是轴对称图形,故选项D不符合题意.故选:C.【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键.3.A【分析】根据点的横纵坐标的正负判断即可.【详解】解:因为a2+1≥1,所以点(a2+1,2020)所在象限是第一象限.故选:A.【点睛】本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.A【分析】根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.【详解】解:如图,∵AB∥CD,∴∠2=∠D,∵∠1=140°,∴∠D=∠2=180°−∠1=180°−140°=40°,故选:A.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】解:根据题意得:a30b30∵25<30<36,∴5306,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.C【分析】如图,分两种情况进行讨论求解即可.【详解】解:①如图所示,AC∥BF,AD∥BE,∴∠A=∠FOD,∠B=∠FOD,∴∠B=∠A=50°;②如图所示,AC∥BF,AD∥BE,∴∠A=∠BOD,∠B+∠BOD=180°,∴∠B+∠A=180°,∴∠B=130°,故选C.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.九、填空题9.3【分析】根据算术平方根的性质解答即可.【详解】解:,0.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.解析:3【分析】根据算术平方根的性质解答即可.【详解】,0.090.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.十、填空题10.(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P关于x轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要解析:(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P关于x轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键.十一、填空题11.10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即解析:10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.【详解】解:当高AD在△ABC的内部时.∵∠B=40°,∠C=60°,∴∠BAC=180°-40°-60°=80°,∵AE平分∠BAC,∴∠BAE=1∠BAC=40°,2∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°-∠B=50°,∴∠EAD=∠BAD-∠BAE=50°-40°=10°.当高AD在△ABC的外部时.同法可得∠EAD=10°+30°=40°故答案为10°或40°.【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数十二、填空题12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.十三、填空题13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.十四、填空题14..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索, 解析:43. 【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.十五、填空题15.【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.十六、填空题16.【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后解析:(2,0)【分析】利用点P (x ,y )的终结点的定义分别写出点P 2的坐标为(1,4),点P 3的坐标为(−3,3),点P 4的坐标为(−2,−1),点P 5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P 2021的坐标与点P 1的坐标相同.【详解】解:根据题意得点P 1的坐标为(2,0),则点P 2的坐标为(1,4),点P 3的坐标为(−3,3),点P 4的坐标为(−2,-1),点P 5的坐标为(2,0),…,而2021=4×505+1,所以点P 2021的坐标与点P 1的坐标相同,为(2,0),故答案为:(2,0).【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键. 十七、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.十八、解答题18.(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=±5,x=3或x=-2.【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.十九、解答题19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC=∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED=∠C (已知)∴ED∥BC(同位角相等,两直线平行)∴∠DEF=∠EHC (两直线平行,内错角相等)∵∠DEF=∠B(已知)∴∠EHC =∠B (等量代换)∴BD∥EH(同位角相等,两直线平行)∴∠BDG=∠DFE(两直线平行,内错角相等)∵∠DFE+∠EFG =180∘(邻补角的意义)∴∠EFG+∠BDG=180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.二十、解答题20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积.【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的△A1B1C1如下图所示:;(3)111545313247222ABCS= =⨯-⨯⨯-⨯⨯-⨯⨯.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.二十一、解答题21.(1)a=﹣3,b=4﹣;(2)±3.【分析】(1)根据3<<4,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可.【详解】解:(1)∵3<<4,∴11<8+<12,解析:(1)a153,b=4152)±3.【分析】(1)根据3154,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可.【详解】解:(1)∵3154,∴11<1512,4<8155,∵a是815b是815∴a=1511153,b=8154=415(2))(44543445121659a b ++=++=+-=, ∴4a +4b +5的平方根为:±3.【点睛】出a 、b 的值是解题关键.二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(18010)132x x︒-=,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.二十四、解答题24.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1 148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.二十五、解答题25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.。
2020-2021学年七年级数学下学期期末测试卷03(解析版)

2020-2021学年七年级数学下学期期末测试卷【人教版03】数学(答案卷)一.选择题(共12小题,满分48分,每小题4分)1.(4分)的相反数是()A.B.C.D.【分析】直接利用相反数的定义得出答案.【解答】解:﹣2的相反数是:﹣(﹣2)=2﹣.故选:A.2.(4分)(﹣7)2的算术平方根是()A.7B.±7C.﹣49D.49【分析】先求出式子的结果,再根据算术平方根的定义求出即可.【解答】解:∵(﹣7)2=49,=7,∴(﹣7)2的算术平方根是7,故选:A.3.(4分)据科学家统计,目前地球上已经被定义、命名的生物约有1500万种左右,数字1500万用科学记数法表示为()A.1.5×103B.1.5×106C.1.5×107D.15×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1500万=15000000=1.5×107.故选:C.4.(4分)下列各式正确的是()A.B.(﹣3)2=9C.﹣22=4D.=2【分析】根据平方根、立方根的意义计算.【解答】解:A.=2,故A错误,不符合题意;B.(﹣3)2=9,故B正确,符合题意;C.﹣22=﹣4,故C错误,不符合题意;D.=﹣2,故D错误,不符合题意;故选:B.5.(4分)如图,已知直线AB∥CD,点F为直线AB上一点,G为射线BD上一点.若∠HDG=2∠CDH,∠GBE=2∠EBF,HD交BE于点E,则∠E的度数为()A.45°B.55°C.60°D.无法确定【分析】设∠CDH=x,∠EBF=y,得到∠HDG=2x,∠DBE=2y,根据平行线的性质得到∠ABD=∠CDG=3x,求得x+y=60°,根据三角形的内角和即可得到结论.【解答】解:∵∠HDG=2∠CDH,∠GBE=2∠EBF,∴设∠CDH=x,∠EBF=y,∴∠HDG=2x,∠DBE=2y,∵AB∥CD,∴∠ABD=∠CDG=3x,∵∠ABD+∠DBE+∠EBF=180°,∴3x+2y+y=180°,∴x+y=60°,∵∠BDE=∠HDG=2x,∴∠E=180°﹣2x﹣2y=180°﹣2(x+y)=60°,故选:C.6.(4分)已知是二元一次方程mx+3y=7的一组解,则m的值为()A.﹣2B.2C.﹣D.【分析】把x与y的值代入方程计算,即可求出m的值.【解答】解:把代入方程得:﹣m+9=7,解得:m=2.故选:B.7.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,结合各选项中解集在数轴上的表示即可.【解答】解:解不等式﹣2x+5≥3,得:x≤1,解不等式3(x﹣1)<2x,得:x<3,故选:B.8.(4分)甲、乙两种品牌的方便面在2016~2020年销售增长率如图所示,下列说法一定正确的是()A.这几年内甲、乙两种品牌的方便面销售量都在逐步上升B.甲品牌方便面在2018年到2019年期间销售量在下降C.在2017到2018年期间,甲品牌方便面销售量高于乙品牌D.根据折线统计图的变化趋势,预测在2020~2021年期间,甲品牌的销售量高于乙品牌【分析】根据折线统计图可直接解答.【解答】解:从折线图来看:乙种品牌的方便面销售量呈上升趋势,甲种品牌的方便面销售量不稳定,有上升有下降,故A错误,不符合题意;甲品牌方便面在2018年到2019年期间只是增长率下降,不能得出销售量在下降,故B错误,不符合题意;在2017到2018年期间,甲品牌方便面销售量高于乙品牌,C正确,符合题意;根据折线统计图的变化趋势,不能预测在2020~2021年期间,甲品牌的销售量高于乙品牌,故D错误,不符合题意.故选:C.9.(4分)下列命题:①过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③相等的角是对顶角;④平行于同一条直线的两条直线互相平行.其中是真命题有()A.1个B.2个C.3个D.4个【分析】根据平行公理、平行线的判定定理、对顶角的概念判断即可.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题;②在同一平面内,垂直于同一条直线的两条直线互相平行,故本小题说法是假命题;③相等的角不一定是对顶角,故本小题说法是假命题;④平行于同一条直线的两条直线互相平行,本小题说法是真命题;故选:A.10.(4分)已知x>y,xy<0,a为任意有理数,下列式子一定正确的是()A.﹣x>﹣y B.a2x>a2y C.﹣x+a<﹣y+a D.x>﹣y【分析】根据已知求出x>0,y<0,再根据不等式的性质逐个判断即可.【解答】解:∵x>y且xy<0,∴x>0,y<0,∴A、﹣x<﹣y,故本选项不符合题意;B、当a=0时,a2x=a2y,即a2x>a2y错误,故本选项不符合题意;C、∵x>y,∴﹣x<﹣y,∴﹣x+a<﹣y+a,故本选项符合题意;D、根据题意不能判断x和﹣y的大小,故本选项不符合题意;故选:C.11.(4分)如图,把一张长方形纸条折叠成如图所示的形状,若已知∠2=65°,则∠1为()A.130°B.115°C.100°D.120°【分析】先根据翻折变换的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠2=65°,∴∠3=180°﹣2∠2=180°﹣2×65°=50°,∵矩形的两边互相平行,∴∠1=180°﹣∠3=180°﹣50°=130°.故选:A.12.(4分)为庆祝建党100周年,更加深入了解党的光荣历史,我校团委计划组织全校共青团员到曾家岩周公馆、红岩村纪念馆、烈士墓渣滓洞一线开展红色研学之旅.计划统一乘车前往,若调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位.设计划调配30座客车x辆,全校共青团员共有y人,则根据题意可列出方程组为()A.B.C.D.【分析】根据“调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位”列出方程即可.【解答】解:设计划调配30座客车x辆,全校共青团员共有y人,根据题意得:,故选:A.二.填空题(共4小题,满分16分,每小题4分)13.(4分)比较大小:<6﹣(填“>”“<”或“=”).【分析】分别判断出、6﹣与4的大小关系,即可判断出、6﹣的大小关系.【解答】解:∵<,=4,∴<4;∵6﹣>6﹣2=4,∴<6﹣.故答案为:<.14.(4分)若关于x、y的方程组的解满足x+y=2k,则k的值为﹣.【分析】根据等式的性质,可得答案.【解答】解:②+①,得2x+2y=2k﹣3,∴x+y=k﹣,∵关于x,y的方程组的解满足x+y=2k,∴2k=k﹣,解得k=﹣.故答案为:﹣.15.(4分)若关于x的不等式组.只有4个整数解,则a的取值范围是.【分析】先解不等式组得到2﹣3a<x<21,再利用不等式组只有4个整数解,则x只能取17、18、19、20,所以16≤2﹣3a<17,然后解关于a的不等式组即可.【解答】解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.(4分)如图,平面直角坐标系中O是原点,等边△OAB的顶点A的坐标是(2,0),动点P从点O出发,以每秒1个单位长度的速度,沿O→A→B→O→A…的路线作循环运动,则第2021秒时,点P的坐标是(,).【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可.【解答】解:由题意得,第1秒结束时P点的坐标为P1(1,0);第2秒结束时P点的坐标为P2(2,0);第3秒结束时P点的坐标为P3(2﹣1×cos60°,1×sin60°),即P3(,);第4秒结束时P点的坐标为P4(1,2×sin60°),即P4(1,);第5秒结束时P点的坐标为P5(,);第6秒结束时P点的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……由上可知,P点的坐标按每6秒进行循环,∵2021÷6=336……5,∴第2021秒结束后,点P的坐标与P5相同为(,),故答案为:(,).三.解答题(共8小题,满分86分)17.(8分)(1)计算;(2)解方程组.【分析】(1)利用实数混合运算的法则计算即可;(2)利用代入法可解.【解答】解:(1)原式=9+(﹣3)+2+2﹣=10﹣;(2).①+②得:20x+20y=60.∴x+y=3 ③.由③得:y=3﹣x④,把④代入①得:11x+9(3﹣x)=36.解得:x=4.5.把x=4.5代入④得:y=﹣1.5.∴原方程组的解为:.18.(8分)按要求解下列不等式(组).(1)解关于x的不等式1﹣≤,并将解集用数轴表示出来.(2)解不等式组,将解集用数轴表示出来,并写出它的所有整数解.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)1﹣≤,去分母得:6﹣2(2x﹣1)≤3(1+x),去括号得:6﹣4x+2≤3+3x,移项得:﹣4x﹣3x≤3﹣6﹣2,合并同类项得:﹣7x≤﹣5,系数化成1得:x≥,在数轴上表示为:;(2),解不等式①得:x≤1,解不等式②得:x>﹣3,所以不等式组的解集是﹣3<x≤1,在数轴上表示不等式组的解集为:,所以不等式组的整数解是﹣2,﹣1,0,1.19.(10分)已知:3a+21的立方根是3,4a﹣b﹣1的算术平方根是2,c的平方根是它本身.(1)求a,b,c的值;(2)求3a+10b+c的平方根.【分析】(1)根据立方根,算术平方根,平方根的概念即可求出答案;(2)根据(1)中所求a、b、c的值代入代数式3a+10b+c中即可求出答案.【解答】解:(1)根据题意可知,3a+21=27,解得a=2,4a﹣b﹣1=4,解得b=3,c=0,所以a=2,b=3,c=0;(2)因为3a+10b+c=3×2+10×3+0=36,36的平方根为±6.所以3a+10b+c的平方根为±6.20.(10分)填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG =∠HFD,求证:∠G=∠H.证明:∵∠BEF+∠EFD=180°,(已知).∴AB∥CD(同旁内角互补,两直线平行).∴∠AEF=∠EFD(两直线平行,内错角相等).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE.∴EG∥FH(内错角相等,两直线平行).∴∠G=∠H.(两直线平行,内错角相等).【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠AEF=∠EFD,求出∠GEF=∠HFE,根据平行线的判定推出EG∥FH,根据平行线的性质得出答案即可.【解答】证明:∵∠BEF+∠EFD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠AEF=∠EFD(两直线平行,内错角相等),又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE,∴EG∥FH(内错角相等,两直线平行),∴∠G=∠H(两直线平行,内错角相等),故答案为:已知,CD,同旁内角互补,两直线平行,∠AEF,两直线平行,内错角相等,∠GEF,∠HFE,EG,内错角相等,两直线平行,两直线平行,内错角相等.21.(12分)为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如图两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题:(1)这次调查的市民人数为1000人,图2中,n=35;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.【分析】(1)从条形、扇形统计图中可以得到“C组”有200人,占调查总人数的20%,可求出调查人数;计算出“A组”所占的百分比,进而可求“B组”所占的百分比,确定n的值;(2)计算出“B组”的人数,即可补全条形统计图;“A.非常了解”所占整体的28%,其所对应的圆心角就占360°的28%,求出360°×28%即可;(3)样本中“D.不太了解”的占17%,估计全市900万人中,也有17%的人“不太了解”.【解答】解:(1)这次调查的市民人数为:200÷20%=1000(人);∵m%=×100%=28%,n%=1﹣20%﹣17%﹣28%=35%∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补全统计图如图所示:“A.非常了解”所在扇形的圆心角度数为:360°×28%=100.8°;(3)根据题意得:“D.不太了解”的市民约有:900×17%=153(万人),提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.答:“D.不太了解”的市民约有153万人.提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.22.(12分)如图,△ABC的三个顶点坐标为:A(﹣3,1),B(1,﹣2),C(2,2),△ABC内有一点P (m,n)经过平移后的对应点为P1(m﹣1,n+2),将△ABC做同样平移得到△A1B1C1.(1)画出平移后的三角形A1B1C1;(2)写出A1、B1、C1三点的坐标;(3)求三角形A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点的位置确定坐标即可.(3)利用分割法求解即可.【解答】解:(1)如图,三角形A1B1C1即为所求作.(2)A1(﹣4,3),B1(0,0),C1(1,4).(3)三角形A1B1C1的面积=4×5﹣×1×5﹣×3×4﹣×1×4=9.5.23.(12分)某商店购进便携榨汁杯和酸奶机进行销售,其进价与售价如表:进价(元/台)售价(元/台)200250便携榨汁杯酸奶机160200(1)第一个月,商店购进这两种电器共30台,用去5600元,并且全部售完,这两种电器赚了多少钱?(2)第二个月,商店决定用不超过9000元的资金采购便携榨汁杯和酸奶机共50台,且便携榨汁杯的数量不少于酸奶机的,这家商店有哪几种进货方案?说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案赚钱最多?【分析】(1)设购进x台便携榨汁杯,y台酸奶机,根据总价=单价×数量,结合商店购进这两种电器30台且共用去5600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,根据“购进便携榨汁杯的数量不少于酸奶机的,且总费用不超过9000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各进货方案;(3)利用总利润=每台的利润×销售数量,分别求出3种进货方案可获得的利润,比较后即可得出结论.【解答】解:(1)设购进x台便携榨汁杯,y台酸奶机,依题意得:,解得:,∴(250﹣200)x+(200﹣160)y=(250﹣200)×20+(200﹣160)×10=1400(元).答:销售这两种电器赚了1400元.(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴这家商店有3种进货方案,方案1:购进23台便携榨汁杯,27台酸奶机;方案2:购进24台便携榨汁杯,26台酸奶机;方案3:购进25台便携榨汁杯,25台酸奶机.(3)方案1获得的利润为(250﹣200)×23+(200﹣160)×27=2230(元);方案2获得的利润为(250﹣200)×24+(200﹣160)×26=2240(元);方案3获得的利润为(250﹣200)×25+(200﹣160)×25=2250(元).∵2230<2240<2250,∴方案3赚钱最多.24.(14分)如图,射线PE分别与直线AB,CD相交于E,F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=n∠EMF.(1)如图1,当n=1时.①试证明AB∥CD;②点G为射线MA(不与M重合)上一点,H为射线MF(不与M,F重合)上一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(2)如图2,∠PEM=∠PME,∠PFM+∠PNF=70°.若∠EMF=20°时,直接写出n的值为.【分析】(1)①当n=1时.∠PFM=∠EMF,因为FM平分∠PFN,可得∠EMF=∠MFN,利用内错角相等,两直线平行可得结论;②分H在线段MF上和H在MF的延长线上两种情形解答即可;(2)利用已知,根据三角形的外角等于和它不相邻的两个内角之和求出∠EFM的度数即可得出结论.【解答】解:(1)①依题意,当n=1时.∠PFM=∠EMF.∵FM平分∠PFN,∴∠EFM=∠MFN.∴∠MFN=∠EMF.∴AB∥CD.②当H在线段MF上时,∠GHF+∠FMN=180°;当H在线段MF的延长线上时,∠GHF=∠FMN.理由:∵AB∥CD,∴∠PNF=∠PME.∵∠MGH=∠PNF,∴∠MGH=∠PME.∴GH∥PN.如图,当H在线段MF上时,∵GH∥PN,∴∠GHM=∠FMN.∵∠GHF+∠GHM=180°,∴∠GHF+∠FMN=180°.如图,当H在线段MF的延长线上时,∵GH∥PN,∴∠GHM=∠FMN.∴∠GHF=∠FMN.(2)∵∠PEM是△EFM的外角,∴∠PEM=∠EFM+∠EMF.∵∠EMF=20°,∴∠PEM=∠EFM+20°.∵∠PMF是△NFM的外角,∴∠PMF=∠MFN+∠FNM.∴∠PME+∠EMF=∠MFN+∠FNM.∴∠PME+20°=∠MFN+∠FNM.∵∠PEM=∠PME,∴∠EFM+20°+20°=∠MFN+∠FNM.∵∠PFM+∠PNF=70°,∠PFM=∠MFN,∴∠EFM+20°+20°=70°.∴∠EFM=30°.∴∠PFM=∠EMF.故答案为:.。
2020-2021学年新人教版七年级下期末数学试题(含答案解析)

山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
【人教版】数学七年级下册《期末检测试题》有答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共12小题,共36.0分)1. 下列实数中,最小的数是( )A .B . 0C . 1D . 2. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指( )A . 400B . 被抽取的400名考生C . 被抽取的400名考生的中考数学成绩D . 内江市2018年中考数学成绩3. 在平面直角坐标系内,点P (A ,A +3)的位置一定不在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 4. 若a b >,则下列式子一定成立的是( )A . 0a b +>B . 0a b ->C . 0ab >D . 0a b> 5. 下列长度的三条线段,能组成三角形的是( )A . 4C m ,5C m ,9C mB . 8C m ,8C m ,15C m C . 5C m ,5C m ,10C mD . 6C m ,7C m ,14C m 6. 规定以下两种变换::①f(m ,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)=--g m n m n ,如(2,1)(2,1)=--g .按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( ) A . (2-,3-) B . (2,3-) C . (2-,3) D . (2,3) 7. 《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则可列方程组( )A .25031502x y y x⎧+=⎪⎪⎨⎪+=⎪⎩B . 15022503x y y x⎧+=⎪⎪⎨⎪+=⎪⎩C . 15022503x y y x⎧-=⎪⎪⎨⎪-=⎪⎩D . 25031502x y y x⎧-=⎪⎪⎨⎪-=⎪⎩8. 如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( ) A . 120︒ B . 105︒ C . 60︒ D . 45︒9. 如图,,A B的坐标为()()1,0,0,2,若将线段AB平移至11A B,则-a b的值为()A . 1- B . 0 C . 1 D . 210. 已知关于x的方程2x-A =x-1的解是非负数,则A 的取值范围为()A . 1a≥ B . 1a> C . 1a≤ D . 1a<11. 某超市销售一批节能台灯,先以55元/个价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( ) A . 44个 B . 45个 C . 104个 D . 105个12. 如图,动点P从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A . ()1,4B . ()5,0C . ()7,4D . ()8,3二、填空题(本大题共6小题,共18.0分)13. 若将三个数3-、7、11表示在数轴上,则其中被墨迹覆盖的数是_______.14. 在平面直角坐标系中,若点P (2x +6,5x )在第四象限,则x 的取值范围是_________;15. 如图所示:在AEC 中,A E 边上的高是______.16. 若关于x 的一元一次不等式组{202x m x m ->+<无解,则m 的取值范围为______.17. 如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.18. 对于实数A ,B ,定义运算”◆”:A ◆B =22a b a b ab a b⎧⎪+≥⎨⎪⎩,,<,例如4◆3,因为4>3.所以4◆2243+.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x ◆y=_____________. 三、解答题(本大题共7小题,共56.0分)19. (1)求x 的值:4x 2-9=0;(2)计算:36-327+2(2)-.20. 为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A 只愿意就读普通高中;.B 只愿意就读中等职业技术学校;.C 就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A 区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.21. 如图,在ABC 内,AD 是BC 边上的高,BE 平分ABC ∠交AC 边于E ,60BAC ∠=︒,25ABE ∠=︒,求DAC ∠的度数.22. 已知在平面直角坐标系中有 A (-2,1), B (3, 1),C (2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.23. 先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2=222121()()x x y y -+-.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A (2,4),B (-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),你能判断三角形A B C 的形状吗?说明理由.24. 某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.()1若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元? ()2在()1的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?25. 已知在四边形A B C D 中,A x ∠=,C y ∠=,(0180,0180)x y <<<<.()1ABC ADC ∠+∠=______(用含x 、y 的代数式直接填空);()2如图1,若90.x y DE ==平分ADC ∠,B F 平分CBM ∠,请写出D E 与B F 的位置关系,并说明理由;()3如图2,DFB ∠为四边形A B C D 的ABC ∠、ADC ∠相邻的外角平分线所在直线构成的锐角. ①若120x y +=,20DFB ∠=,试求x 、y .②小明在作图时,发现DFB ∠不一定存在,请直接指出x 、y 满足什么条件时,DFB ∠不存在.答案与解析选择题(本大题共12小题,共36.0分)1. 下列实数中,最小的数是()A .B . 0C . 1D .【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<:故选A .【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A . 400B . 被抽取的400名考生C . 被抽取的400名考生的中考数学成绩D . 内江市2018年中考数学成绩【答案】C【解析】【详解】分析:直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而进行分析得出答案.详解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.故选C .点睛:此题主要考查了样本的定义,正确把握定义是解题的关键.3. 在平面直角坐标系内,点P(A ,A +3)的位置一定不在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】【分析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当A 为正数的时候,A +3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当A 为负数的时候,A +3可能为正数,也可能为负数,所以点P 可能在第二象限,也可能在第三象限,故选D .【点睛】本题考查了点的坐标的知识点,解题的关键是由A 的取值判断出相应的象限.4. 若a b >,则下列式子一定成立的是( )A . 0a b +>B . 0a b ->C . 0ab >D . 0a b> 【答案】B【解析】【分析】根据不等式的基本性质进行解答即可.【详解】A 、若0>A >B 时,A +B <0.故A 选项错误;B 、在A >B 的两边同时减去B ,不等式仍成立,即A -B >0.故B 选项正确;C 、若A >0>B 时,A B <0.故C 选项错误;D 、若B =0时,该不等式不成立.故D 选项错误.故选B .【点睛】本题考查了不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5. 下列长度的三条线段,能组成三角形的是( )A . 4C m ,5C m ,9C mB . 8C m ,8C m ,15C m C . 5C m ,5C m ,10C mD . 6C m ,7C m ,14C m 【答案】B【解析】【详解】分析:结合”三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论. 详解:A 、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B 、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C 、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D 、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B .点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.6. 规定以下两种变换::①f(m,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)=--g m n m n ,如(2,1)(2,1)=--g .按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( ) A . (2-,3-)B . (2,3-)C . (2-,3)D . (2,3) 【答案】D【解析】【分析】根据f (m ,n )=(m ,-n ),g (2,1)=(-2,-1),可得答案.【详解】g[f(−2,3)]=g[−2,−3]=(2,3),故D 正确,故选D .【点睛】此题考查点的坐标,解题关键在于掌握其变化规律.7. 《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则可列方程组( )A . 25031502x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B . 15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩C . 15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D . 25031502x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】B【解析】 【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,列出方程组求解即可.【详解】解:由题意得:15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩, 故选B .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.8. 如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )A . 120︒B . 105︒C . 60︒D . 45︒【答案】B【解析】 【详解】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B .点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键. 9. 如图, ,A B 的坐标为()()1,0,0,2,若将线段AB 平移至11A B ,则-a b 的值为( )A . 1-B . 0C . 1D . 2【答案】B【解析】【分析】直接利用平移中点的变化规律求解即可.【详解】解:由B 点平移前后的纵坐标分别为2、4,可得B 点向上平移了2个单位,由A 点平移前后的横坐标分别是为1、3,可得A 点向右平移了2个单位,由此得线段A B 的平移的过程是:向上平移2个单位,再向右平移2个单位,所以点A 、B 均按此规律平移,由此可得A =0+2=2,B =0+2=2,∴A -B =2-2=0,故选:B .【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10. 已知关于x 的方程2x-A =x-1的解是非负数,则A 的取值范围为( )A . 1a ≥B . 1a >C . 1a ≤D . 1a <【答案】A【解析】【分析】本题首先要解这个关于x 的方程,然后根据解是非负数,就可以得到一个关于A 的不等式,最后求出A 的取值范围.【详解】解:原方程可整理为:(2-1)x=A -1,解得:x=A -1,∵方程x 的方程2x-A =x-1的解是非负数,∴A -1≥0,解得:A ≥1.故选A .点睛:本题综合考查了一元一次方程的解与解一元一次不等式.解关于x 的不等式是本题的一个难点. 11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A . 44个B . 45个C . 104个D . 105个 【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x 个,根据题意得5500×60+5000(x -60)>550000∴5000(x -60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D .【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式. 12. 如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A . ()1,4B . ()5,0C . ()7,4D . ()8,3【答案】C【解析】 【分析】理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.二、填空题(本大题共6小题,共18.0分)13. 若将三个数3-、7、11表示在数轴上,则其中被墨迹覆盖的数是_______.【答案】7【解析】【分析】首先利用估算的方法分别得到3-、7、11前后的整数(即它们分别在哪两个整数之间),从而可判断出被覆盖的数.【详解】解:∵-2<3-<-1,2<7<3,3<11<4,且墨迹覆盖的范围是1-3,∴能被墨迹覆盖的数是7.故答案为:7.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度不大.14. 在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;【答案】﹣3<x<0【解析】【分析】根据第四象限内横坐标为正,纵坐标为负可得出答案.【详解】∵点P(2x-6,x-5)在第四象限,∴2+6050xx⎧⎨⎩><解得-3<x<0.故答案为-3<x<0.【点睛】本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.15. 如图所示:在AEC中,A E边上的高是______.【答案】C D .【分析】根据三角形中高线的概念即可作答.【详解】由题意可得:△A EC 中,A E 边上的高是C D ,故答案为C D .【点睛】本题考查了三角形高线的概念,三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.16. 若关于x 的一元一次不等式组{202x m x m ->+<无解,则m 的取值范围为______.【答案】2m ≥-【解析】 【分析】根据一元一次方程组的解法结合题意可求出m 的取值范围作答即可.【详解】202x m x m -⎧⎨+⎩<①>② ,解不等式①得,x <2m ,解不等式②得,x >m-2,∵不等式组无解,∴2m≥m -2,∴m≥-2,故答案为m≥-2. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟知:同大取大;同小取小;大小小大中间找;大大小小不用找的原则. 17. 如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【分析】由角平分线定义和已知可求出∠B A C ,由AD 是BC 边上的高和已知条件可以求出∠C ,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B +∠C =180°∴∠B =180°-60°-70°=50° 故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.18. 对于实数A ,B ,定义运算”◆”:A ◆B =a b ab a b≥⎪⎩,<,例如4◆3,因为4>3.所以4◆.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x ◆y=_____________. 【答案】60【解析】 【详解】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案. 详解:由题意可知:48229x y x y -=⎧⎨+=⎩, 解得:512x y =⎧⎨=⎩. ∵x <y ,∴原式=5×12=60. 故答案为60. 点睛:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型. 三、解答题(本大题共7小题,共56.0分) 19. (1)求x 的值:4x 2-9=0;(2)计算:36-327+2(2)-.【答案】(1)32±;(2)5. 【解析】【分析】(1)方程变形后,开方即可求出解;(2) 首先化简每个二次根式,然后合并同类项即可【详解】()21490x -=, 249x =,294x = 32x =±; ()2原式6325=-+=.【点睛】本题考查了实数的运算和二次根式的混合运算,熟练掌握运算法则是解本题的关键.20. 为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A 只愿意就读普通高中;.B 只愿意就读中等职业技术学校;.C 就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A 区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.【答案】(1)800;(2)216°;(3) 840人. 【解析】【分析】(1)根据C 的人数除以其所占的百分比,求出调查的学生总数即可;(2)用总数减去A 、C 区域的人数得到B 区域的学生数,从而补全图一;再根据百分比=频数总数计算可得A 所占百分比,再乘以,从而求出A 区域的圆心角的度数;(3)求出B 占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:80÷36360=800(名), 则调查的学生总数为800名.故答案为800;(2)B 的人数为:800-(480+80)=240(名),A 区域的圆心角的度数为480800×360°=216°, 补全统计图,如图所示:(3)根据题意得:240800240800×2800=840人.所以估计该校八、九年级学生只愿意就读中等职业技术学校的有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.21. 如图,在ABC 内,AD 是BC 边上的高,BE 平分ABC ∠交AC 边于E ,60BAC ∠=︒,25ABE ∠=︒,求DAC ∠的度数.【答案】20°.【解析】【分析】先根据角平分线的定义求出∠A B C 的度数,再根据直角三角形的性质求出∠B A D 的度数,然后根据角的和差计算即可.【详解】解:BE 平分ABC ∠,12ABE CBE ABC ∴∠=∠=∠, 25ABE ∠=︒,50ABC =∴∠︒,AD 是BC 边上的高,90ADB ∴∠=︒,则在ABD △中,90BAD ABD ∠=︒-∠9050=︒-︒40=︒,DAC BAC BAD ∠=∠-∠,60BAC ∠=︒,604020DAC ∴∠=︒-︒=︒.【点睛】本题考查了角平分线的定义、直角三角形两锐角互余的性质等知识,属于基础题型,熟练掌握基本知识是解题关键.22. 已知在平面直角坐标系中有 A (-2,1), B (3, 1),C (2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△A B C 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A (-2,1),B (3,1),∴A B =5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P (0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.23. 先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2222121()()x x y y -+-同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A (2,4),B (-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),你能判断三角形A B C 的形状吗?说明理由.【答案】(1) A ,B 两点间的距离是13;(2) A ,B 两点间的距离是6;(3)三角形A B C 是等腰三角形.理由见解析.【解析】【分析】(1)根据两点间的距离公式P1P2来求A 、B 两点间的距离;(2)根据两点间的距离公式|y2-y1|来求A 、B 两点间的距离;(3)先将A 、B 、C 三点置于平面直角坐标系中,然后根据两点间的距离公式分别求得A B 、B C 、A C 的长度;最后根据三角形的三条边长来判断该三角形的形状.【详解】(1)∵A (2,4),B (-3,-8),∴A B ,∵132=169,=13,即A ,B 两点间的距离是13;(2)∵点A ,B 所在的直线平行于y轴,点A 的纵坐标为5,点B 的纵坐标为-1,∴A B =|-1-5|=6,即A ,B 两点间的距离是6;(3)三角形A B C 是等腰三角形,理由:∵一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),∴A B ,B C ,A C =5,∴A B =A C ,∴三角形A B C 是等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24. 某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.()1若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元?()2在()1的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?【答案】()1挂式空调每台的采购价是1800元,电风扇每台的采购价是150元;()2该经营业主最多可再购进空调11台.【解析】【分析】(1)设挂式空调每台的采购价是x 元,电风扇每台的采购价是y 元,根据采购价格=单价×数量,可列出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设再购进空调A 台,则购进风扇(70﹣A )台,根据采购价格=单价×数量,可列出关于A 的一元一次不等式,解不等式即可求解.【详解】()1设挂式空调每台的采购价是x 元,电风扇每台的采购价是y 元,根据题意,得82017400103022500x y x y +=⎧+=⎨⎩, 解{1800150x y ==. 答:挂式空调每台的采购价是1800元,电风扇每台的采购价是150元.()2设再购进空调A 台,则购进风扇()70a -台,由已知,得()18001507030000a a +-≤,解得:91111a ≤, 故该经营业主最多可再购进空调11台.【点睛】本题考查了二元一次方程组的应用以及解一元一次不等式,根据数量关系列出方程(方程组或不等式)是关键.25. 已知在四边形A B C D 中,A x ∠=,C y ∠=,(0180,0180)x y <<<<.()1ABC ADC ∠+∠=______(用含x 、y 的代数式直接填空); ()2如图1,若90.x y DE ==平分ADC ∠,B F 平分CBM ∠,请写出D E 与B F 的位置关系,并说明理由; ()3如图2,DFB ∠为四边形A B C D 的ABC ∠、ADC ∠相邻的外角平分线所在直线构成的锐角. ①若120x y +=,20DFB ∠=,试求x 、y . ②小明在作图时,发现DFB ∠不一定存在,请直接指出x 、y 满足什么条件时,DFB ∠不存在.【答案】(1)360x y --; (2)DE BF ⊥,理由见解析;(3) ①x=40°,y=80°;②∠D FB 不存在,理由见解析.【解析】【分析】(1)利用四边形的内角和进行计算即可;(2)由三角形外角的性质及角的平分线性质得出B F 和D E 的位置关系,进而作答;(3)①利用角平分线的定义以及三角形内角和定理,得出113022DFB y x ∠=-=︒ ,进而得出x ,y 的值;②当x=y 时,D C ∥B F ,即∠D FB =0,进而得出答案. 【详解】()1360A ABC C ADC ∠+∠+∠+∠=,A x ∠=,C y ∠=, 360ABC ADC x y ∴∠+∠=--.故答案为360x y --.()2DE BF ⊥.理由:如图1,DE 平分ADC ∠,B F 平分MBC ∠,12CDE ADC ∴∠=∠,12CBF CBM ∠=∠, 又()180180180CBM ABC ADC ADC ∠=-∠=--∠=∠, CDE CBF ∴∠=∠,又DGC BGE ∠=∠,90BEG C ∴∠=∠=,DE BF ∴⊥;()3①由()1得:()360360CDN CBM x y x y ∠+∠=---=+, BF 、D F 分别平分CBM ∠、CDN ∠,()12CDF CBF x y ∴∠+∠=+, 如图2,连接D B ,则180CBD CDB y ∠+∠=-, ()111180180222FBD FDB y x y y x ∴∠+∠=-++=-+, 112022DFB y x ∴∠=-=, 解方程组:120112022x y y x ⎧+=⎪⎨-=⎪⎩, 可得:4080x y ⎧=⎨=⎩; ②当x y =时,1118018022FBD FDB y x ∠+∠=-+=, ABC ∴∠、ADC ∠相邻的外角平分线所在直线互相平行,此时,DFB ∠不存在.【点睛】本题主要考查了多边形的内角和角平分线的定义以及三角形内角和定理等知识,正确应用角平分线的定义是解题关键.。
最新人教版数学七年级下册《期末测试卷》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是( )A . 5AB . A 5C . A 6D . A 82. 已知∠A =30°,则∠A 的余角的度数为( )A . 60°B . 90°C . 150°D . 180°3. 下列图形是四个银行的标志,其中是轴对称图形的共有( )A . 1个B . 2个C . 3个D . 4个4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数6. 如图一个三角形有三条对称轴,那么这个三角形一定是( )A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:氮肥施用量0 34 67 101 135 202 259 336 404 471/kg土豆产量/t 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED =A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .1211. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”)13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm(1nm=10﹣9m).110nm用科学记数法表示为______m.14. 从某玉米种子中抽取6批,同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1000 2000 5000发芽种子粒数85 298 652 793 1604 4005 发芽频率0.850 0.745 0.815 0.793 0.802 0.801 根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)与已行驶路程x (千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x ≤150时,行驶1千米的平均耗电量是多少;当150≤x ≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF ,A B =A C ,D E =D F .[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E 和C F .他们发现B E 与C F 之间存在着一定的数量关系,这个关系是 . [探究二](2)创新小组同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F ,A ,D ,C 在同一直线上,连接B F 和C E ,他们发现了B F 和C E 之间的数量和位置关系,请写出这些关系并说明理由; [探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF ,不写作法,保留作图痕迹. A .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论. B .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.参考答案一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是()A . 5AB . A 5C . A 6D . A 8【答案】B【解析】【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即A m•A n=A m+n.【详解】解:A 2•A 3=A 5.故选:B .【点睛】本题考察的是底数幂的乘法运算,掌握同底数幂乘法法则是解题的关键.2. 已知∠A =30°,则∠A 的余角的度数为()A . 60°B . 90°C . 150°D . 180°【答案】A【解析】【分析】根据余角定义直接解答.【详解】解:∠A 的度数是90°﹣∠A =90°﹣30°=60°.故选:A .【点睛】本题比较容易,考查互余角的数量关系.互余的两个角的和等于90°.3. 下列图形是四个银行的标志,其中是轴对称图形的共有()A . 1个B . 2个C . 3个D . 4个【答案】C【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,所以,轴对称图形有3个.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm【答案】A【解析】【分析】根据三角形的三边关系”任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、3+3=6>5,能摆成三角形;B 、1+2=3,不能摆成三角形;C 、2+3=5,不能摆成三角形;D 、3+5<9,不能摆成三角形.故选:A .【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数【答案】C【解析】【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A 、是随机事件,故此选项不符合题意;B 、是随机事件,故此选项不符合题意;C 、是必然事件,故此选项符合题意;D 、是随机事件,故此选项不符合题意,故选:C .【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6. 如图一个三角形有三条对称轴,那么这个三角形一定是()A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形【答案】D【解析】【分析】直接利用直角三角形、等腰直角三角形、钝角三角形、等边三角形的特点分析得出答案.【详解】解:A 、一般直角三角形,没有对称轴,不合题意;B 、等腰直角三角形,有1条对称轴,不合题意;C 、一般钝角三角形,没有对称轴,不合题意;D 、等边三角形,有3条对称轴,符合题意.故选:D .【点睛】本题考查了轴对称的性质,解题的关键是了解各类三角形的特征.7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg【答案】C【解析】【分析】A 、表格反映的是土豆的产量与氮肥的施用量的关系;B 、直接从表格中找出施用氮肥时对应的土豆产量;C 、根据表格中土豆产量的增长和减少数量来说明氮肥的施用量对土豆产量的影响;D 、从表格中找出土豆的产量为39.45t时,氮肥对应的施用量.【详解】解:A 、氮肥施用量大于336时,土豆产量逐渐减少,故选项不符合题意;B 、当氮肥的施用量是110kg时,土豆产量为32.29t~34.03t,故选项不符合题意;C 、当氮肥的施用量低于336kg时,土豆产量随施肥量的增加而增加,故选项符合题意;D 、土豆产量为39.45t时,氮肥的施用量可能是202kg,故选项不符合题意.故选:C .【点睛】本题考查函数的定义和结合实际土豆产量和施用氮肥量确定函数关系,解题的关键是掌握函数的定义.8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .【答案】A【解析】【分析】根据高线的定义即可得出结论.的边BC上的高,【详解】B,C,D都不是ABC故选:A.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED=A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”【答案】B【解析】【分析】由”A SA ”可证△ED C ≌△A B C .【详解】解:由题意可得∠A B C =∠C D E=90°,在△ED C 和△A B C 中ACB DCE CD BCABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ED C ≌△A B C (A SA ),故选:B .【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .12【答案】C【解析】【分析】直接利用直角三角形的定义结合概率求法得出答案.【详解】解:如图所示:第三枚棋子所在格点恰好是直角三角形顶点有6个,故这三枚棋子所在格点恰好是直角三角形顶点的概率为:614=37.故选:C .【点睛】此题主要考查了概率公式以及直角三角形的定义,正确得出符合题意的点是解题关键.11. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23【答案】C【解析】【分析】利用概率公式求解可得.【详解】解:由图知第三枚棋子可摆放的位置共有14种,其中这三枚棋子所在格点恰好是等腰三角形顶点的有8种,∴这三枚棋子所在格点恰好是等腰三角形顶点的概率为814=47,故选:C .【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P(A )=事件A 可能出现的结果数÷所有可能出现的结果数.二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”) 【答案】不一定 【解析】【分析】根据直角三角形全等的判定定理判断即可. 【详解】解:当还有一条边对应相等时,两直角三角形全等, 当三角形的边不相等时,两直角三角形不全等, 即两个锐角分别相等的直角三角形不一定全等, 故答案为:不一定.【点睛】本题考查全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm (1nm =10﹣9m ).110nm 用科学记数法表示为______m .【答案】1.1×10﹣7 【解析】【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为A ×10-n ,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:110nm=110×10-9m=1.1×10-7m , 故答案为:1.1×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为A ×10-n ,其中1≤|A |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1). 【答案】0.8 【解析】【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.801,故可以估计种子发芽的概率为0.801,精确到0.1,即为0.8,故本题答案为:0.8.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.【答案】3【解析】【分析】当D E⊥A B 时,线段D E的长度最小,根据角平分线的性质得出C D =D E,代入求出即可.【详解】解:当D E⊥A B 时,线段D E的长度最小(根据垂线段最短),∵A D 平分∠C A B ,∠C =90°,D E⊥A B ,∴D E=C D ,∵C D =3,∴D E=3,即线段D E的长度的最小值是3,故答案为:3.【点睛】本题考查了角平分线的性质和垂线段最短,能灵活运用性质进行推理是解此题的关键.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.【答案】30°【解析】【分析】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【详解】解:∵A B =A C ,∠B A C =40°,∴∠B =12(180°﹣40°)=70°,∵A B 的垂直平分线交直线B C 于点D ,∴D B =A D ,∴∠B A D =∠B =70°,∴∠C A D =∠B A D ﹣∠B A C =70°﹣40°=30°.故答案为:30°.【点睛】本题主要考查等腰三角形的性质和垂直平分线的性质,解答本题的关键是会综合运用等腰三角形的性质和和垂直平分线的性质进行答题,此题难度一般.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)【答案】32α﹣90°【解析】【分析】【详解】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【解答】解:∵A B =A C ,∠B A C =α,∴∠B =12(180°﹣α)=90°﹣12α,∵A B 的垂直平分线交直线B C 于点D ,∴∠B A D =90°﹣12α,∴∠C A D =∠B A C ﹣∠B A D =α﹣(90°﹣12α)=32α﹣90°.故答案为:32α﹣90°.【点睛】本题考查了线段垂直平分线的性质和等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题.三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.【答案】(1)x2﹣3y2+xy;(2)3A +2B ;(3)9【解析】【分析】(1)根据平方差公式和单项式乘以多项式的运算法则展开括号,再合并即可求出答案.(2)原式先去小括号合并后再根据多项式除以单项式的运算法则进行计算即可求出答案.(3)原式先计算负整数指数幂和零次幂,然后再计算除法,最后计算加法即可得到答案.【详解】解:(1)(x+2y)(x﹣2y)+y(x+y)=x2﹣4y2+xy+y2=x2﹣3y2+xy;(2)[(3A +B )2﹣B 2]÷3A=(9A 2+6A B +B 2﹣B 2)÷3A=(9A 2+6A B )÷3A=3A +2B .(3)2÷(﹣2)﹣2+20=2÷14+1=24+1=8+1=9.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.【答案】105°【解析】【分析】由同位角相等,两直线平行判定A ∥B ,然后根据两直线平行,同位角相等,对顶角相等的性质求解【详解】∵∠1=70°,∠2=70°,∴∠1=∠2,∴A ∥B ,∴∠3=∠5.又∠3=105°,∴∠5=105°,∴∠4=∠5=105°.【点睛】本题考查平行线的判定和性质以及对顶角相等,理解相关性质正确推理是解题关键.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?【答案】(1)小明获胜概率851,小颖获胜概率4051;(2)小颖获胜的概率是0,小明获胜的概率是1617【解析】【分析】(1)小明已经摸到的牌面为4,而小4的结果为4×2,大于4的结果数为4×10,然后根据概率公式求解;(2)小明已经摸到的牌面为2,而小于2的结果为0,大于2的结果数为4×12,然后根据概率公式求解;小明已经摸到的牌面为A ,而小于A 的结果为4×12,大于2的结果数为0,然后根据概率公式求解.【详解】解:(1)由题意知,去掉大王、小王的扑克牌共有52张,其中比4小的牌有2,3,所以,小明获胜的概率是2451=851;小明与小颖摸到的相同的牌面的概率为3 51,所以,小颖获胜的概率是1﹣851﹣351=4051;(2)若小明已经摸到的牌面为2,比2小的牌没有,所以小明获胜的概率是0,小颖获胜的概率是1﹣351=1617;若小明已经摸到的牌面为A ,没有比A 更大的牌,所以小颖获胜的概率是0,小明获胜的概率是1﹣351=1617.【点睛】本题考查了概率公式:某随机事件的概率=这个随机事件发生的情况数除以总情况数.21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)【答案】见解析【解析】【分析】根据全等三角形的判定和性质解答即可.【详解】证明:如图所示:通过图可知:D F=B E=2,C F=EA =5,∠D FC =∠B EA =90°,∴△D FC ≌△B EA (SA S),∴∠A =∠C ,∵∠A GH=∠C GP,∴∠A HG=∠A PC =90°,∴直线C D 为线段A B 的垂线.【点睛】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定与性质.22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)【答案】(1)至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元【解析】【分析】(1)求出卫生间,厨房及客厅的面积之和即可得到需要地砖的面积;用地砖的面积乘以地砖的价格即可得出需要的费用;(2)求出客厅与卧室的面积,乘以高hm,即可得到需要的壁纸数;用需要的壁纸数乘以壁纸的价格即可得出贴完壁纸的总费用.【详解】解:(1)由题意得:xy+y×2x+2y×4x=xy+2xy+8xy=11xy(m2).11xy•B =11B xy(元).答:至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)由题意得:2y•h×2+4x•h×2+2x•h×2+2y•h×2=4hy+8hx+4hx+4hy=(12hx+8hy)m2.(12hx+8hy)×A +(12hx+8hy)×5=(12A hx+8A hy+60hx+40hy)元;答:至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元.【点睛】本题考查了整式的混合运算应用,根据图形列出代数式并熟练根据法则进行计算是解题的关键.23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.【答案】(1)①见解析;②见解析;(2)∠D A E12∠D A C =40°【解析】【分析】(1)根据垂直平分线与角平分线的尺规作图方法即可求解;(2)根据垂直平分线的性质得到D B =D A ,求出∠C A D =80°,再利用角平分线的性质即可求解.【详解】解:(1)如图,点D ,射线A E即为所求.(2)∵D F垂直平分线段A B ,∴D B =D A ,∴∠D A B =∠B =30°,∵∠C =40°,∴∠B A C =180°﹣30°﹣40°=110°,∴∠C A D =110°﹣30°=80°,∵A E平分∠D A C ,∴∠D A E12∠D A C =40°.【点睛】此题主要考查垂直平分线与角平分线,解题的关键是熟知尺规作图的方法.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)与已行驶路程x(千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x≤150时,行驶1千米的平均耗电量是多少;当150≤x≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.【答案】(1)当0≤x≤150时,行驶1千米的平均耗电量是16千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是12千瓦时;(2)当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,进而解答即可;(2)把x=120代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,A 点表示充满电后行驶150千米时,剩余电量为35千瓦时;当0≤x≤150时,行驶1千米的平均耗电量是1 (6035)1506-÷=千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是1 (3510)(200150)2-÷-=千瓦时;(2)6011206-⨯=40(千瓦时),35203012-=(千米),150+30=180(千米)答:当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF,A B =A C ,D E=D F.[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E和C F.他们发现B E与C F之间存在着一定的数量关系,这个关系是.[探究二](2)创新小组的同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F,A ,D ,C 在同一直线上,连接B F和C E,他们发现了B F和C E之间的数量和位置关系,请写出这些关系并说明理由;[探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF,不写作法,保留作图痕迹.A .如图4,利用△ABC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论.B .如图4,利用△A BC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.。
2020-2021学年七年级下期末数学试卷附答案解析

第 1 页 共 16 页2020-2021学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分30分)1.(3分)点P (a ,b )在第四象限,且|a |>|b |,那么点Q (a +b ,a ﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .x ≥﹣1B .x >1C .﹣3<x ≤﹣1D .x >﹣33.(3分)下列说法中,错误的是( )A .9的算术平方根是3B .√16平方根是±2C .27的平方根是±3D .立方根等于﹣1的实数是﹣14.(3分)下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .{x =1y =−1B .{x =2y =1C .{x =−1y =−2D .{x =4y =−15.(3分)如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD +∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)6.(3分)若√3的整数部分为x ,小数部分为y ,则√3x ﹣y 的值是( )A .1B .√3C .3√3−3D .37.(3分)为了解某中学七年级560名学生的身高情况,抽查了其中80名学生的身高进行统计分析.下面叙述正确的是( )A .560名学生是总体B .每名学生是总体的一个个体。
湖北省武汉市任家路中学2019 2020学年度七年级人教版下学期数学期末测试

任家路中学2019-2020学年度七年级下学期数学期末测试一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个实数中无理数是( )A .1- BC .227 D2.下列调查适合全面调查的是( )A .了解武汉市民消费水平B .了解全班同学每周体育锻炼的时间C .了解武汉市中学生的眼睛视力情况D .了解一批节能灯的使用寿命情况3.下列各点中,在第二象限的是( )A .()5,2B .()3,0-C .()4,2-D .()3,1--4.下列方程组的解为31=⎧⎨=⎩x y 的是( ) A .224-=⎧⎨+=⎩x y x yB .253-=⎧⎨+=⎩x y x yC .32+=⎧⎨-=⎩x y x yD .2536-=⎧⎨+=⎩x y x y5.如图,若CD AB ,则下列说法错误的是( ) A .12∠=∠B .3∠=∠AC .45∠=∠D .180∠+∠=︒A ADC 6.等式组211213+>-⎧⎨-≤⎩x x 的解集在数轴上表示正确的是( )A .B .C .D .7.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,…”设一大桶、一小桶分别可盛x 斛,y 斛,求一个大桶和一个小桶一共可盛酒斛,则可列方程组正确的是( )A .5253+=⎧⎨+=⎩x y x yB .5352+=⎧⎨+=⎩x y x yC .5352+=⎧⎨=+⎩x y x yD .5352=+⎧⎨+=⎩x y x y8.下列说法中真命题的个数是( )①两条直线被第三条直线所截,同位角相等;②点到直线的垂线段叫做点到直线的距离; ③无限不循环小数为无理数;④23为49的平方根;⑤过一点有且只有一条直线与这条直线平行 A .1个 B .2个 C .3个 D .4个9.若方程组221-=⎧⎨-=⎩x y m y x 中未知数x 、y 满足0+>x y ,则m 的取值范围为( ) A .1<-m B .1>-m C .1≥-m D .1≤-m10.古希腊数学家把1、3、6、10、15、21、…叫做三角形数,它有一定的规律性.若把第一个三角形记为1a ,第二个三角形记为2a ,…第n 个三角形记为n a ,则12320201111++++a a a a 的值是( )A .20202021B .20191010C .20211011D .40402021二、填空题(本大题共6小题,每小题3分,共18分)=____________.12.把方程310+-=x y 改写成用含x 的式子表示y 的形式:_____________.13.如图,不添加辅助线,请写出一个能判定DE BC 的条件_________.14.已知样本容量为60的频数分布直方图中,若其中一个小长方形的面积是其余7个小长方形的面积和的15,则这一组的频数为___________.15.在平面直角坐标系中,(),5A a ,()1,42-B a ,()1,C b ,且210+=a b ,并且13316≤+≤a b .则∆ABC的面积的最大值为______________.16.关于x 的不等式0->x a 的最小整数解为36+a ,则=a _________.三、解答题(本大题共8小题,共72分)17.(1(2)解方程组:4231-=⎧⎨+=⎩x y x y18.解下列不等式或不等式组,并把解集在数轴上表示出来: (1)解不等式()()32741+-<-x x(2)解不等式组23425233+≥+⎧⎪+⎨-<-⎪⎩x x x x 19.完成下列推理过程:如图,M 、F 两点在直线CD 上,AB CD ,CB DE ,BM 、DN 分别是∠ABC 、∠EDF 的平分线,求证:BM DN .证明:∵BM 、DN 分别是∠ABC 、∠EDF 的平分线 ∴112∠=∠ABC ,3∠=______________(角平分线定义) ∵AB CD∴12∠=∠,∠=ABC ( )∵CB DE∴∠=BCD ( )∴2∠=( )∴BM DN ( )20.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x 小时进行分组整理,并绘制了不完整的频数分布直方图和扇形统计图(如图),根据图中提供的信息,解答下列问题:(1)这次抽样调查的学生人数是___________人;(2)扇形统计图中“A ”组对应的圆心角度数为_________,并将条形统计图补充完整;(3)若该校有2000名学生,试估计全校有多少名学生每周的课外阅读时间不少于6小时?21.如图,在平面直角坐标系中,每个小正方形的边长为一个单位长度,已知∆ABC 的顶点()2,5-A 、()4,1-B 、()2,3C ,将∆ABC 平移得到'''∆A B C ,点(),A a b 对应点()3,4'+-A a b(1)画出'''∆A B C 并写出点'B 、'C 的坐标;(2)求'''∆A B C 的面积;(3)在x 轴上存在一点P ,使得6∆=ABP S ,则点P 的坐标是___________.22.某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的23,求该校本次购买A 型和B 型课桌凳共有几种购买方案?怎样的方案总费用最低?并求出最低费用. 23.如图1,已知直线EF 分别与直线AB ,CD 相交于点,E F ,AB CD ,EM 平分∠BEF ,FM 平分∠EFD .(1)求证:90∠=︒EMF ;(2)如图2,若FN 平分∠MFD 交EM 的延长线于点N ,且∠BEN 与∠EFN 的比为4:3.求∠N 的度数;(3)如图3,若点H 是直线EA 之间一动点,FG 平分∠HFE 交AB 于点G ,过点G 作⊥GQ FM 于点Q .根据题意画出图形,请直接写出∠EHF 与∠FGQ 关系.24.如图,在平面直角坐标系中,直线AB 与x 轴交于点(),0A a ,与y 轴交于点()0,B b ,且0=.(1)求A 、B 两点的坐标;(2)若(),P x y 为直线AB 上一点, ①若34∆∆≤APO BPO S S ,求x 的取值范围; ②P 到x 轴和到y 轴距离和的最小值为1,此时x 的取值范围;(3)已知()2,2--Q m m ,若12∆=ABQ S ,求m .。
【人教版】数学七年级下册《期末考试题》(带答案)

22.某校在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:
“A--国学诵读”、“B--演讲”、“C--书法”、“D---课本剧”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:
12 如果 ,则x-y=_______.
15.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x文钱,乙原有y文钱,可列方程组是________.
16.如图,把一块含有30°角的直角三角板的直角顶点放在相互平行的两条直线的其中一条上,如果∠1=38°,那么∠2的度数是______________.
【答案】C
【解析】
分析:根据无理数是无限不循环小数,判断出 , ,0.123112233111222333…, ,- ,这些数中,无理数有多少个即可.
详解: , ,0.123112233111222333…, ,- ,其中无理数有3个: ,0.123112233111222333…,- .
故选C.
点睛:此题主要考查了无理数的含义和求法,要熟练掌握,解答此题的关键是要明确:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.
17.对于非负实数x “四舍五入”到个位的值记为 ,即当m为非负整数时,若 ,则 .如: , ,……根据以上材料,若 ,则x应满足的条件是_______________________.
三、解答题(18小题5分,19(1)小题6分,19(2)小题7分,20小题7分,满分25分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
B
E
A
2020七年级第二学期期末测试卷(一)
(100分 90分钟)
一、填空题:(每题2分,共20分)
1.已知一个样本中,50个数据分别落在5个组内,第一、二、
三、四、五组数据的个数分别为2,8,15,20,5,则第四组
的频数为______。
2.如果1<x<2,化简│x-1│+│x-2│=________.
3.在△ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是
_________.
4.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.
5.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.
6.方程3x-5y=17,用含x 的代数式表示y,y=_______,当x=-1时,y=______.
7.已知5,7
x y =⎧⎨
=⎩是方程kx-2y-1=0的解,则k=________.
8.在自然数范围内,方程3x+y=10的解是_______. 9.不等式3x-12>0的解集是_______.
10.不等式组12,
4
x x ->⎧⎨
<⎩的解集是_______.
二、选择题:(每题2分,共20分)
11.在直角坐标中有两点M(a,b),N(a,-b),则这两点( )
A.关于x 轴对称;
B.关于y 轴对称;
C.关于原点对称;
D.
上述结论都不正确
12.点P(a,b)在第四象限,则点P 到x 轴的距离是( )
A.a
B.b
C.-a
D.-b
13.下列各式中是二元一次方程的是( )
A.3x-2y=9
B.2x+y=6z;
C.1x
+2=3y D.x-3=4y 2
14.下列各组数中是方程组23,3410x y x y -=⎧⎨+=⎩
的解为( )
A. 2
1x y =⎧⎨
=⎩ B. 2
7x y =-⎧⎨=-⎩ C. 1
1x y =⎧⎨=-⎩ D. 3
3x y =⎧⎨=⎩
15.已知a<b,则下列式子正确的是( )
A.a+5>b+5
B.3a>3b;
C.-5a>-5b
D.3
a >3
b
16.不等式2x+3<2的解集是( )
A.2x<-1
B.x<-2
C.x<-12
D.x<12
17.如图,不能作为判断AB ∥CD 的条件是( )
A.∠FEB=∠ECD
B.∠AEC=∠ECD;
C.∠BEC+
∠ECD=180° D.∠AEG=∠DCH
18.以下说法正确的是( )
A.有公共顶点,并且相等的两个角是对顶角
B.两条直线相交,任意两个角都是对顶角
C.两角的两边互为反向延长线的两个角是对顶角
D.两角的两边分别在同一直线上,这两个角互为对顶角
19.一个容量为80的样本最大值为143,最小值为50,取组距为10,
则可以分成()
A、10组
B、9组
C、8组
D、7组
20.已知三角形三边分别为2,a-1,4,那么a的取值范围是( )
A.1<a<5
B.2<a<6
C.3<a<7
D.4<a<6
三、解答题:(21、22题各12分,其余每题6分,共60分)
21.解下列方程组:
(1)
1
31,
2
22;
x y
x y
⎧
-=
⎪
⎨
⎪+=
⎩
(2) 2525,
4315.
x y
x y
+=
⎧
⎨
+=
⎩
22.解不等式(组):
(1)2(x+1)-3(x+2)<0; (2)
236,
145 2.
x x
x x
-<-
⎧
⎨
-≤-
⎩
23.若A(2x-5,6-2x)在第四象限,求a的取值范围.
24.已知8-+b a +(a-3b )2=0,求a,b.
25.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.
F
D
C
B
E
A
26.如图,在△ABC 中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,求∠CDE 的度数.
D
E
A
27.x 取哪些非负整数时,325
x -的值大于213
x +与1的差.。