习题解析
模电习题讲解与解析(第6版)2020

vi2
∵i3=i4,
0
vn R3
vn vo R4
vo
(1
R4 R3
)vn
vo表达式
vo
(1
R4 R3
)(
R2 R1 R2
vi1
R1 R1 R2
vi2 )
当R1=R2 =R3 时, vo vi1 vi2
分析:A1、 A2 电压跟随器
A3: vo1“”端 ,vo2“+”端, 加减电路
R2 R1
)
2
=
(1
6V
20 ) 10
2
0 2 2 vo 10 20
vO =6V
in=0
in=0
(c) vn = vp =0 , in=0
vo vn= 2V
vo = 2V
(d) vn = vp =2V, in=0
vo = vn = vp =2V
方法一:公式法 vi“+”端 ,同相放大电路 同相放大电路通用公式:
vo vo vo =0.6+1.2V =1.8V
vp1
vp2
方法二:虚短虚断法 : vp = vn, ip=in=0
A1: i1=i21 , vn1=vp1=0
vi1 vn1 R1
vn1 vo1 , R21
vo1
R21 R1
vi
100 0.6=1.2V
50
A2:i2=i22 ,
vo1 vn2 vn2 vo ,
工 作 区 ③
+
DZ
符号
①
(b) 伏安特性
稳压管, RL//DZ ,VO =VZ
解: (1) VO = VZ , IR = IO + IZ , VI = VR + VO
速算巧算习题及解析(1)

速算巧算习题(1)1、计算:(1)184+339+252+416+761(2)900-124-76-38(3)2686-(686+479)2、计算:(1)986+426+588(2)417-(317-89)+211(3)8+98+998+9998+999983、计算:189+937-451+129-937+1514、计算:(1)375+383+372+376+379+374(2)6+66+666+6666+666665、计算:876+997-1997+4524-148-526、计算:(1)125×236×8(2)67×314+33×314(3)497500÷4÷257、计算:(1)25×232×5(2)4256÷56(3)1997×19998、计算:(1)21210÷42×6(2)8125÷25+375÷25(3)2005×187610、计算:1949×-1999×11、计算:(1)5678+1999;(2)8765-1998.12、计算:(8641+8642+8643+8641+8643+8638+8639)÷7.13、计算:(1)85×27+85×73;(2)99×99+99.14、计算:56×32+56×27+56×96-56×57+56.15、计算999×222+333×334.16、计算125×31.17、计算:(1)23×27,64×66,75×75;(2)43×63,27×87,56×56.18、计算5÷(7÷15)÷(15÷17)÷(17÷21).19、计算:(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999).20、求所得结果末尾有多少个零?21、五个连续奇数的和是555,求其中最大的和最小的数.22、计算98766×98768-98765×98769.23、将下列乘式结果按从大到小排序.331×339,332×338,333×337,334×336,335×335.24、计算765×213÷27+765×327+27.25、有一个按一定规律排列的数列1,4,9,16,25,36,…,请问第2004个数比第2003个数大多少?26、计算(1+46+57+68)×(46+57+68+79)-(1+46+57+68+79)×(46+57+68).速算巧算习题解析(1)1、分析与解答:(1)本题中184与416、339与761的和均为整百数,我们把这种关系称为互补关系.根据加法交换律和结合律,可令这样的两个数先相加,使计算简单化.所以:原式=(184+416)+(339+761)+252=600+1100+252=1952(2)类似地,在本题中的两个减数124和76互为补数,我们可以利用减法的性质(a-b -c=a-(b+c))把这两个数先求和,再相减.所以有:原式=900-(124+76)=900-200=700(3)观察题目中的数字特点,发现如果2686能先减去686就可以得到一个整百数;再观察运算符号的特点,发现可以经过转化达到这一目的,所以我们不妨反向利用减法的性质,打开括号,先减686,再减479,即:原式=2686-686-479=2000-479=15212、分析与解答:(1)观察题目中的三个加数,发现任意两个加数间都没有互补关系.但观察到986加14就得到1000,所以我们可以把其余两个加数中的一个数拆成14与一个数的和,从而达到简算的目的,所以:解法一:原式=1000+1000=2000解法二:原式=2000由以上这道题,我们发现:当一个算式从数字上不具备简算特征时,通过转化,我们仍可以使计算简单化.(2)观察发现,417和317相减具备简算特征,而89和211相加也具备简算特征.现在考察运算符号:根据加减法计算中去括号的法则:a-(b-c)=a-b+c,可以把原式转化为:417-317+89+211进行简算.所以:原式=417-317+(89+211)=100+300=400(3)观察题中数字特点,发现几个数都比整十、整百数少2,如果把每个加数都补上2,那么本题就简单了.所以:解法一:可以把8拆成4个2的和,这样:原式=(2+98)+(2+998)+(2+9998)+(2+99998)=111100解法二:也可以用先补后减的方法,即:原式=(8+2)+(98+2)+(998+2)+(9998+2)+(99998+2)-10=1111003、分析与解答:观察算式的特点,不难发现:先加937,再减937,相当于没加没减;451和151如果能相减,也能简算,所以计算时,我们可以利用“带符号搬家”的计算方法(即同级运算可以调整运算顺序)把可能简算的数凑到一起,然后再利用运算定律、性质简算.即:原式=189+129+937-937-451+151=(189+129)+(937-937)-(451-151)=318+0-300=184、分析与解答:(1)观察算式的数字特征,发现算式中没有任意两个数可以简算.但注意到每个加数都在370以上且仅比370多一些.所以计算时可以把它们都看作是370和另一个数的和,这样利用乘法的意义使计算简单化.所以:原式=370×6+(5+13+2+6+9+4)=2220+39=2259(2)观察算式中各数是有规律地排列的,可以每一个数化成6与1,6与11,6与111,6与1111及6与11111的积,然后简算.原式=6×(1+11+111+1111+11111)=6×12345=740705、分析与解答:在本题中如果按顺序计算会发现减1997时不够减,看样子要选用一定的计算方法改变运算顺序.注意到加997再减1997,如果能让1997先减997就可以凑成整百数;而且876和4524相加也可以凑成整百数;148和52又是互补数,如果能相加也可凑成整百数.所以:原式=876+4524-1997+997-148-52=(876+4524)-(1997-997)-(148+52)=5400-1000-200=42006、分析与解答:(1)本题中125与8的积是1000,又因为1与任何数相乘结果仍得原数,所以计算时可根据乘法交换律和乘法结合律,即:原式=(125×8)×236=236000(2)首先观察算式中运算符号的特点,发现是两乘积相加,符合乘法分配律a×(b+c)=ac+be的特点;再观察数字中有相同的因数314,所以可以应用乘法分配律简算.即:原式=(67+33)×314=31400(3)观察算式,发现这是一道整数除法中的连除算式,而且数目较大.但进一步观察发现:除数4与25的积刚好是100,这样计算就简便得多.能不能这样做呢?根据混合运算中乘除法间的关系a÷b÷c=a÷(b×c) ①a÷b×c=a÷(b÷c) ②可以把除数4和25通过加括号的方法改成求积,所以:原式=497500÷(4×25)=49757、分析与解答:(1)观察算式:发现有因数25和5,而5×2=10,25×4=100,所以要巧算本题就要从因数中拆出2和4.注意到232=4×2×29,所以根据乘法交换律和结合律有:原式=25×(4×29×2)×5=(25×4)×29×(2×5)=29000(2)观察算式发现:这是一道除数是两位数的除法算式,计算时较麻烦,注意到被除数4256一定能除以7,而除数56=7×8,根据关系式:a÷(b×c)=a÷b÷c有:原式=4256÷(7×8)=4256÷7÷8=608÷8=76(3)这是一道四位数乘法计算题,计算时较繁琐,注意到因数1999=2000-1,而1997乘以2可以口算,所以根据a×(b-c)=ac-bc有:原式=1997×(2000-1)=1997×2000-1997=-1997=8、分析与解答:(1)按照运算顺序要先用21210除以42,这一步计算较复杂.如果根据关系式a÷b×c=a÷(b÷c)能不能简算呢?注意到42除以6商7是一位数,计算时比较简单.所以根据上述关系有:原式=21210÷(42÷6)=21210÷7=3030(2)首先观察算式中数字特点,发现有相同的除数25,且被除数8125与375求和后可得整百数;再观察运算符号,发现与乘法分配律极相似,所以有:原式=(8125+375)÷25=8500÷25=85×4=340算一算6÷(3+3)和6÷3+6÷3.它们的商一样吗?想想什么时候才能去括号?另解:本题也可以根据商不变的性质.分别解答,但与前一种方法比要复杂一些.原式=8125×4÷100+375×4÷100=325+15=340(3)同例2中的(3)相类似,发现2005=2000+5,即把2005拆成2000与5的和,再根据乘法分配律进行简算.此外因为5=10÷2,所以1876×5=1876×10÷2,也可以口算出得数.所以:原式=(2000+5)×1876=2000×1876+5×1876=+9380=9、分析与解答:(1)观察算式,从运算符号上看不出可以简算,同时数字也不是很接近整十、整百的数,所以也不能应用乘法分配律进行简算.但注意到两个因数十位数字都是7,而且个位数字和是10.我们把这种情况称为“头同尾补”,像这种“头同尾补”的乘法算式可以这样算:原式=7×(7+1)×100+4×6=5600+24=5624规律是:积的末两位是两个个位数字之积,首位是十位数字乘以比它大1的数.也就是用“头数×(头数+1)×100+尾数×尾数.”(2)如果因数中有9、99、999等数字就可以利用乘法分配律进行计算,分析算式,注意到333=3×111,这样可以凑成999,从而使计算简便.所以:原式=(333×3)×111=(1000-1)×111=110889(3)受题(2)的启示,可以把拆成的积,从而凑出.所以:原式=22……200……0-22222222210、分析与解答:观察题目中,被减数与减数的因数部分虽然各不相同,但它们间数字极相似.注意到=1999×10001,=1949×10001,这样:原式=1949×1999×10001-1999×1949×10001=011、分析算式中出现有接近整十、整百、整千……的数时,利用补数凑整是十分常用的办法,但需要注意的是,在凑整的计算过程中,应注意把多加的数减去,多减的数加上,切忌发生该加却减,该减却加的情况.解(1)5678+1999=5678+2000-1=7678-1=7677.(2)8765-1998=8765-(2000-2)=8765-2000+2=6765+2=6767.12、分析这里的7个加数都不接近整十、整百、整千……不能采用上题的凑整的办法,但是可以发现括号内所有加数都接近于8640,要么大一点点,要么小一点点,这样我们可以选择8640作基准数,然后再补上大的或是小的那一点.解(8641+8642+8643+8641+8643+8638+8639)÷7=(8640×7+1+2+3+1+3-2-1)÷7=(8640×7+7)÷7=8640+1=8641.13、分析在计算两个积的和或差时,常常使用乘法分配律,提出相同的项,剩下的项求和或是求差刚好可以凑成整数.解(1)85×27+85×73=85×(27+73)=85×100=8500.(2)99×99+99=99×99+99×1=99×(99+1)=99×100=9900.14、分析乘法分配律同样适用于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意提走公共乘数后所剩的乘数前面的符号.同样的,乘法分配律也可以反着用,即将一个乘数凑成一个整数,再补上它们的和或是差.解56×32+56×27+56×96-56×57+56=56×(32+27+96-57+1)=56×99=56×(100-1)=56×100-56×1=5600-56=5544.15、分析看到此题的结构,应感觉到也许可以用前面的乘法分配律进行简算,但4个乘数中并没有相同项,仔细观察可以发现999=333×3,这样我们就制造出一个相同的乘数,然后再利用乘法分配律.解999×222+333×334=333×3×222+333×334=333×666+333×334=333×(666+334)=333×1000=333000.16、分析我们都知道5×2=70,25×4=100,125×8=1000,所以当见到题目中出现的125时,就会想到去找125×8,但本题却是125和一个奇数相乘,应该怎么办呢?可以联想到前面的乘法分配律,我们将31写成32-1,32是8的4倍,这样就有8了.解125×31=125×(32-1)=125×32-125×1=125×8×4-125=4000-125=3875.17、分析(1)这3道题中,相乘的两个两位数有如下特点,十位数字相同,个位数字之和为10,我们把这种情况称为头同尾补,头同尾补有如下速算法:积=头×(头+1)×100+尾×尾.对于23×27可以这样计算23×27=2×(2+1)×100+3×7=621.这个方法不仅对于两位数适用,对于多位数的头同尾补也适用,例如:191×199=19×(19+1)×100+1×9=38009.(2)这3道题中,相乘的两个两位数,十位数字之和为10,个位数字相同,我们称之为头补尾同,这时的速算法为:积=(头×头+尾)×100+尾×尾.对于43×63可以这样计算43×63=(4×6+3)×100+3×3=2709.解(1)23×27=2×(2+1)×100+3×7=621,64×66=6×(6+1)×100+4×6=4224,75×75=7×(7+1)×100+5×5=5625.(2)43×63=(4×6+3)×100+3×3=2709,27×87=(2×8+7)×100+7×7=2349,56×56=(5×5+6)×100+6×6=3136.18、分析按照一般的运算优先次序,应该先计算括号内的算式,可是括号内的除法不能整除,商都不是整数,计算起来比较麻烦,我们利用去括号和带符号搬家的办法来解这道题,在乘除法运算中去括号或添括号的办法是如果括号前面是乘号,去掉括号后,原括号内的符号不变,如果括号前面是除号,去掉括号后,原括号内的乘号变成除号,原除号变成乘号,添括号的方法与去括号类似.解5÷(7÷15)÷(15÷17)÷(17÷21)=5÷7×15÷15×17÷17×21=5÷7×21=5×(21÷7)=5×3=15.19、分析题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦.但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…=1000-999=1,因此可以对算式进行分组运算.解解法一:分组法解法二:等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500.20、分析对于一个乘数中所有数字都是9的乘法运算,最常用的办法就是凑数.在本题中可将化为来运算.解答结果末尾有4016个零.21、分析我们已经知道在奇数个数组成的等差数列中,中项是数列中所有数的平均值,求出中项,自然可以得到其他的数.解555÷5=111,最大的数和最小的数分别比中间数大4和小4.所以这五个数是107,109,111,113,115.答最小的数是107,最大的数是115.22、分析将乘数进行拆分后可以利用乘法分配律,将98766拆成98765+1,将98769拆成98768+1,这样就保证了减号两边都有相同的项.解98766×98768-98765×98769=(98765+1)×98768-98765×(98768+1)=98765×98768+98768-(98765×98768+98765)=98765×98768+98768-98765×98768-98765=98768-98765=3.23、分析这几组乘式符合头同尾补的速算法,即积=头×(头+1)×100+尾×尾.由于所有乘数的前两位都相同,因此要比较大小,我们只需看它们尾数之积的大小,即比较1×9,2×8,3×7,4×6,5×5的大小,可以看出335×335最大.请注意上面每个乘式中两个乘数之和都等于670,也就是说这些数是由同一个整数670拆成的两部分,对于这种情况有下面的规则.一般地说,将一个整数拆成两部分或两个整数,两部分的差值越小,这两部分的乘积越大.解结果从大到小是335×335,334×336,333×337,332×338,331×339.24、分析类似乘法分配律,求除数相同的两个商的和或差有a÷C+b÷C=(a+b)÷C;a÷C-b÷C=(a-b)÷C.25、分析首先要找到题中数列的规律,发现第一项1=1×1,第二项4=2×2,第三项9=3×3,第四项16=4×4,……可以推出第2004项是2004×2004,第2003项是2003×2003,然后利用乘法分配律求差.解2004×2004-2003×2003=2004×(2003+1)-2003×2003=2004×2003+2004-2003×2003=2004×2003-2003×2003+2004=(2004-2003)×2003+2004=2003+2004=4007.26、分析我们注意到算式的特点,式子(1+46+57+68),(46+57+68)反复出现.我们不妨把一些长式子看作一个整体,设(1+46+57+68)=a,(46+57+68)=b,则有a -b=1.则原式=a×(b+79)-(a+79)×b=a×b+79×a-a×b-79×b=79×(a-b)=79.。
《无机材料物理性能》课后习题答案解析

课后习题《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:).1()()(0)0()1)(()1()(10//0----==∞=-∞=-=e EEe e Et t t στεσεεεσεττ;;则有:其蠕变曲线方程为:./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0123450.00.20.40.60.81.0σ(t )/σ(0)t/τ应力松弛曲线0123450.00.20.40.60.81.0ε(t )/ε(∞)t/τ应变蠕变曲线)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
李春葆数据结构习题与解析(修订版)

李春葆数据结构习题与解析(修订版)清华⼤学出版社⼀、绪论选择题1.数据结构是⼀门研究⾮数值计算的程序设计问题中计算机的 1 以及它们之间的 2 和运算等的学科。
1 A.数据元素 B.计算⽅法 C.逻辑存储 D.数据映像2 A.结构 B.关系 C.运算 D.算法2.数据结构被形式地定义为 (K, R),其中K是 1 的有限集,R是K上的 2 有限集。
1 A.算法 B.数据元素 C.数据操作 D.逻辑结构2 A.操作 B.映像 C.存储 D.关系3.在数据结构中,从逻辑上可以把数据结构分成。
A.动态结构和静态结构B.紧凑结构和⾮紧凑结构C.线性结构和⾮线性结构D.内部结构和外部结构4.线性结构的顺序存储结构是⼀种 1 的存储结构,线性表的链式存储结构是⼀种 2 的存储结构。
A.随机存取B.顺序存取C.索引存取D.散列存取5.算法分析的⽬的是 1 ,算法分析的两个主要⽅⾯是 2 。
1 A.找出数据结构的合理性 B.研究算法中的输⼊和输出的关系C.分析算法的效率以求改进D.分析算法的易懂性和⽂档性2 A.空间复杂度和时间复杂度 B.正确性和简单性C.可读性和⽂档性D.数据复杂性和程序复杂性6.计算机算法指的是 1 ,它必须具备输⼊、输出和 2 等5个特性。
1 A.计算⽅法 B.排序⽅法 C.解决问题的有限运算序列 D.调度⽅法2 A.可执⾏性、可移植性和可扩充性 B.可⾏性、确定性和有穷性C.确定性、有穷性和稳定性D.易读性、稳定性和安全性7.线性表的逻辑顺序与存储顺序总是⼀致的,这种说法。
A.正确B.不正确8线性表若采⽤链式存储结构时,要求内存中可⽤存储单元的地址。
A.必须连续的B.部分地址必须连续的C.⼀定是不续的D连续不连续都可以9.以下的叙述中,正确的是。
A.线性表的存储结构优于链式存储结构B.⼆维数组是其数据元素为线性表的线性表C.栈的操作⽅式是先进先出D.队列的操作⽅式是先进后出10.每种数据结构都具备三个基本运算:插⼊、删除和查找,这种说法。
分段函数习题及解析

1.已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = 2 .解析:f (0)=2,f (f (0))=f(2)=4+2a=4a ,所以a=22. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = A.4 B. 14 C.-4 D-14【答案】B 【解析】根据分段函数可得311()log 299f ==-,则211(())(2)294f f f -=-==, 所以B 正确.3.定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( )A.-1B. 0C.1D. 2【解析】:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1,故选C.4.设函数2()2()g x x x R =-∈,()4,(),(),().(){g x x x g x g x x x g x f x ++<-≥=则()f x 的值域是 (A )9,0(1,)4⎡⎤-⋃+∞⎢⎥⎣⎦ (B )[0,)+∞ (C )9[,)4-+∞(D )9,0(2,)4⎡⎤-⋃+∞⎢⎥⎣⎦【答案】D【解析】本题主要考查函数分类函数值域的基本求法,属于难题。
依题意知22222(4),2()2,2x x x x f x x x x x ⎧-++<-⎪⎨--≥-⎪⎩,222,12()2,12x x x f x x x x ⎧+<->⎪⎨---≤≤⎪⎩或 5.若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)【答案】C【解析】本题主要考查函数的对数的单调性、对数的基本运算及分类讨论思想,属于中等题。
电路分析基础章后习题答案及解析(第四版)

第1章习题解析一.填空题:1.电路通常由电源、负载和中间环节三个部分组成。
2.电力系统中,电路的功能是对发电厂发出的电能进行传输、分配和转换。
3. 电阻元件只具有单一耗能的电特性,电感元件只具有建立磁场储存磁能的电特性,电容元件只具有建立电场储存电能的电特性,它们都是理想电路元件。
4. 电路理论中,由理想电路元件构成的电路图称为与其相对应的实际电路的电路模型。
5. 电位的高低正负与参考点有关,是相对的量;电压是电路中产生电流的根本原因,其大小仅取决于电路中两点电位的差值,与参考点无关,是绝对的量6.串联电阻越多,串联等效电阻的数值越大,并联电阻越多,并联等效电阻的数值越小。
7.反映元件本身电压、电流约束关系的是欧姆定律;反映电路中任一结点上各电流之间约束关系的是KCL定律;反映电路中任一回路中各电压之间约束关系的是KVL定律。
8.负载上获得最大功率的条件是:负载电阻等于电源内阻。
9.电桥的平衡条件是:对臂电阻的乘积相等。
10.在没有独立源作用的电路中,受控源是无源元件;在受独立源产生的电量控制下,受控源是有源元件。
二.判断说法的正确与错误:1.电力系统的特点是高电压、大电流,电子技术电路的特点是低电压,小电流。
(错)2.理想电阻、理想电感和理想电容是电阻器、电感线圈和电容器的理想化和近似。
(对)3. 当实际电压源的内阻能视为零时,可按理想电压源处理。
(对)4.电压和电流都是既有大小又有方向的电量,因此它们都是矢量。
(错)5.压源模型处于开路状态时,其开路电压数值与它内部理想电压源的数值相等。
(对)6.电功率大的用电器,其消耗的电功也一定比电功率小的用电器多。
(错)7.两个电路等效,说明它们对其内部作用效果完全相同。
(错)8.对电路中的任意结点而言,流入结点的电流与流出该结点的电流必定相同。
(对)9.基尔霍夫电压定律仅适用于闭合回路中各电压之间的约束关系。
(错)10.当电桥电路中对臂电阻的乘积相等时,则该电桥电路的桥支路上电流必为零。
半导体物理 课后习题答案解析

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。
解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
不等式的解法练习题及解析

不等式的解法练习题及解析1. 解下列不等式:2x - 5 < 3x + 4解析:我们可以通过移项和合并同类项的方式来求解不等式。
首先,将3x移到等式的左边,将-5移到等式的右边,得到2x - 3x < 4 + 5。
然后合并同类项,得到-x < 9。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x > -9。
2. 解下列不等式:3(x - 2) ≥ 5x + 6解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将5x移到等式的右边,将6移到等式的左边,得到3x - 5x ≥ 6 - 10。
然后合并同类项,得到-2x ≥ -4。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x ≤ 2。
3. 解下列不等式:4 - 3x > 7x + 2解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将7x移到等式的左边,将4移到等式的右边,得到-3x - 7x > 2 - 4。
然后合并同类项,得到-10x > -2。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x < 0.2。
4. 解下列不等式:2(3x - 4) + 5 > 4(5 - x) - 7解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将4(5 - x)移到等式的左边,将2(3x - 4)移到等式的右边,得到10 -4x > 6x - 8 - 7。
然后进行合并计算,得到10 - 4x > 6x - 15。
接着将4x和6x移到等式的右边,将10移到等式的左边,得到-4x - 6x > -15 - 10。
合并计算后得到-10x > -25。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x < 2.5。
5. 解下列不等式:|2x - 3| < 7解析:这是一个绝对值不等式,我们需要分别考虑绝对值内部的正负情况。