第五章 例题与解析(操作题)
大学物理第五章 习题解答

第五章 习题解答5-1解:等压过程系统做功W ,根据等压过程做功的公式:W=p(V 2-V 1)=νR ΔT 可得ΔT=W/νR ,ν=1mol ,ΔT=W/RW W i T R i T T C Q p 272222)(12=+=∆+=-=υυp 5-2 J T R i E 65.124131.823102=⨯⨯⨯=∆=∆υ5-3 解:等容过程有W=0,Q=ΔE J T R i E 747930031.82322=⨯⨯⨯=∆=∆=υ 5-4解:等压过程系统做功W ,根据等压过程做功的公式:W=p(V 2-V 1)=νR ΔT=200JW i T R i T T C Q 2222)(12+=∆+=-=υυp 单原子分子 i =3,J Q 500200223=⨯+= 单原子分子 i =5,J Q 700200225=⨯+= 5-5. 一系统由如图所示的a 状态沿acb 到达b 状态,有334J 热量传入系统,系统做功J 126。
(1)经adb 过程,系统做功J 42,问有多少热量传入系统?(2)当系统由b 状态沿曲线ba 返回状态a 时,外界对系统做功为J 84,试问系统是吸热还是放热?热量传递了多少?解:由acb 过程可求出b 态和a 态的内能之差Q=ΔE+W ,ΔE=Q -W=334-126=208 Jadb 过程,系统作功W=42 J , Q=ΔE+W=208+42=250J 系统吸收热量ba 过程,外界对系统作功A=-84 J , Q=ΔE +W=-208-84=-292 J 系统放热 5-6解:ab 过程吸热,bc 过程吸热 cd 过程放热,da 过程放热取1atm=105Pa 根据等温、等压过程的吸热公式可得J V p V p i T T C Q a a b b ab 336)(2)(12=-=-=V υ J V p V p i Q b b c c bc 560)(22=-+= J V p V p i Q c c d d cd 504)(2-=-= J V p V p i Q d d a a da 280)(22-=-+= 整个过程总吸热J Q Q Q bc ab 8961=+=,总放热J Q Q Q da cd 7842=+=p净功J Q Q W 11221=-=,效率%5.128967841112=-=-=Q Q η 5-7 卡诺热机的效率为%4028011112=-=-=T T T 卡η,可得高温热源温度7.4661=T K 如果%50'28011112=-=-=T T T 卡η,可得560'1=T K ,温度提高了3.93'11=-T T K 5-8 %251068.11026.1117712=⨯⨯-=-=Q Q η。
微型计算机原理作业第五章 习题与思考题

第五章习题与思考题典型例题解析例5-1 计算机输入/输出控制方式有哪几种?各有什么特点?答:CPU与外设进行数据传送,系统中对数据传送的控制方式一般分为四种:①程序控制方式,程序控制方式是指CPU与外设间的数据传送是在程序的控制下完成的一种数据传送方式,这种方式又分为无条件传送和条件传送二种。
在这种I/O方式中,程序设计简单,硬件软件较省,但费时,CPU效率较低,实时性差,主要用于中低速外设和实时性要求不高的场合。
②中断控制方式,中断控制方式是指利用中断技术控制CPU与外设进行数据传送的一种方式。
这种方式实时性好,不需要反复查询等待,减少了CPU等待时间,CPU与外设可并行工作,但这种方式需要进行现场保护及恢复等工作,仍花费CPU时间。
③DMA方式,DMA方式是指由专门硬件控制,不需CPU介入,直接由存储器与外设进行数据传送的方式。
这种方式不需CPU介入,减少了CPU的开销,能实现高速的数据块传送,提高了效率。
但这种方式增加了硬件开销,提高了系统的成本。
④IOP方式,IOP方式是指由输入/输出协处理器IOP控制数据传送的方式。
这种控制方式由于输入/输出协处理器具有单独的指令系统,因此能在数据传送时,同时进行数据处理,数据传送支持DMA方式,因此传送速度快而且不须CPU介入,CPU与IOP可并行工作,效率高。
这四种方式中,程序控制方式和中断方式属于软件控制方式,DMA方式和IOP方式属于硬件方式。
例5-2 试述I/O端口两种编址方法的特点与区别。
..答:I/O端口的编址方法有二种:即I/O端口单独编址方式和I/O端口与存储器单元统一编址方式。
I/O端口与内存单元地址统一编址方式是将I/O端口地址与内存地址统一安排在内存的地址空间中,即把内存的一部分地址分配给I/O端口,由I/O端口来占用这部分地址。
这种方式控制逻辑较简单,I/O端口数目不受限制,所有访问存储器的指令都可用于I/O端口,指令丰富,功能强。
四年级上册-第五章 平行四边形和梯形(知识梳理 同步测试)人教新课标版(含解析)

2020-2021学年四年级数学上册暑假预习与检测衔接讲义第五章平行四边形和梯形【知识点归纳】一、平行与垂直1、同一平面内的两条直线的位置关系,不是平行就是相交。
2、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
图一:“直线A和直线B是平行线;直线A 和直线B互相平行。
”3、平行可以用符号“//”表示。
a与b互相平行,记作a//b,读作:a平行于b。
4、如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
图二:“直线A和直线B相互垂直;直线A是直线B的垂线;点C是垂足。
”5、垂直可以用符号“⊥”表示。
a与b互相垂直,记作a⊥b,读作:a垂直于b。
6、两条直线互相垂直,可以组成4个直角。
有1个垂足。
7、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
垂直的线段最短。
9、两条平行线之间可以画无数条垂直线段,这些垂直线段不仅互相平行而且长度相等。
平行线间的垂直线段都相等。
10、过直线上一点和直线外一点画已知直线的垂线,只可以画1条。
过直线外一点画已知直线的平行线只可以画1条。
二、画垂线的方法1、过直线上一点画这条直线的垂线:2、过直线外一点画这条直线的垂线:3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
垂直的线段最短。
即“点A到直线所画的垂直线段最短;点A到这条直线的距离是10厘米”三、画平行线的方法1、可以用直尺和三角尺来画平行线,先把三角尺的一条直角边紧靠直线,再把直尺紧靠三角尺的另一条直角边,这时沿直尺平移三角尺,再画一条直线就可以了。
2、平行线间的垂直线段最短3、画出一条长3厘米,宽2厘米的长方形先画一条长3厘米的线段;再过线段端点画一条2厘米的垂线;再过另一个点也画一条2厘米的垂线;连接两个端点就可以了。
四、平行四边形1、两组对边分别平行的四边形,叫做平行四边形。
概率论与数理统计》课后习题习题详解第五章

习题解答习题5.11.设样本值如下:15, 20, 32, 26, 37, 18, 19, 43计算样本均值、样本方差、2阶样本矩及2阶样本中心矩.解 由样本均值的计算公式,有()8111152032263718194326.2588i i x x ===⨯+++++++=∑由样本方差的计算公式,有()28211102.2181i i s x x==-=-∑由2阶样本矩的计算公式,有82211778.58i i a x ===∑由2阶样本中心矩的计算公式,有()2821189.448i i b x x==-=∑2. 设总体~(12,4)X N ,125(,,,)X X X 是来自总体X 的样本,求概率12345{m a x (,,,,)12}P X X X X X >. 解 12345{m a x (,,,,)12}P X X X X X > []551311(0) 1()232=-Φ=-=3. 设总体X ~ P (λ),X 是容量为n 的样本的均值,求 ()E X 和 ()D X . 解 因总体X ~ P (λ),故有(),()E X D X λλ==,于是()()E X E X λ==()()D X D X n nλ== 4. 某保险公司记录的6n =起火灾事故的损失数据如下(单位:万元):1.86, 0.75, 3.21,2.45, 1.98, 4.12. 求该样本的经验分布函数.解 将样本观测值排序可得:0.751.86 1.982.453.21<<<<< 则经验分布函数为60, 0.751, 0.75 1.8661, 1.86 1.9831(), 1.98 2.4522, 2.45 3.2135, 3.21 4.1261, 4.12x x x F x x x x x <⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩5.求标准正态分布的上侧0.01分位数和上侧0.48分位数 .解 由题知,X ~ (0,1)N ,求X 的上侧α分位数. 即求u α使满足{}P X u αα>=得{}1P X u αα≤=-即()1u ααΦ=-取0.01α=,查标准正态分布表得上侧0.01分位数为0.012.33u u α==取0.48α=,查标准正态分布表得上侧0.48分位数为0.480.05u u α==习题5.21.设总体~(8,36)X N ,129(,,,)X X X 是取自总体X 的样本,X 是样本均值,求{|7|2}P X -< .解 因~(8,36)X N ,且样本容量9n =,故36~(8,), ~(8,4)9X N X N 即 ,于是 9858{|7|2}{59}()()22P X P X ---<=<<=Φ-Φ (0.5)( 1.5)(0.5)(1.5)10.69150.933210.6247=Φ-Φ-=Φ+Φ-=+-=2.设 2~(9)X χ ,求λ使其满足()0.95P X λ<=解 由()0.95P X λ<=,得()0.05P X λ≥=,因为2~(9)X χ,所以查表可得20.05(9)16.919λχ==3. 设总体~(0,1X N ,1210(,,,)X X X 是取自总体X 的样本,求2221210()E X X X +++ 及2221210()D X X X +++ .解 由总体~(0,1)X N 可知~(0,1) (1,2,,10)i X N i = ,且1210,,,X X X 相互独立,于是22221210()~(10)X X X χ+++故有2221210()10E X X X +++= 2221210()21020D X X X +++=⨯=4. 设总体X ~ N (20 ,3),从中独立地抽取容量分别为10和15的两个样本,求它们的样本均值之差的绝对值大于0.3的概率.解 设这两个样本分别为1210,,,X X X 和1215,,,Y Y Y , 则对样本均值有101110i i X X ==∑ ~15131(20,),1015i i N Y Y ==∑~3(20,)15N依定理 X Y -~1(0,)2N ,所以{}0.3P X Y P ⎫->=>1P ⎫=-≤1=-ΦΦ(1210.6744⎡⎤=-Φ-=⎢⎥⎣⎦(查标准正态分布表可得)5.设X ~ t (12) ,(1) 求 a 使得()0.05P X a <=;(2)求 b 使得()0.99P X b >= 解 (1)由()0.05P X a <=利用t 分布的对称性可得()0.05P X a >-=,查表可得0.05(12) 1.7823 1.7823a t a -==⇒=-(2)由()0.99P X b >=得()0.01P X b ≤=,又由t 分布的对称性可得()0.01P X b >-=于是0.01(12) 2.6810 2.6810b t b -==⇒=-6.设~(8,12)X F ,求 λ 使得()0.01P X λ<=.解 由()0.01P X λ<= 得 ()0.99P X λ>=,于是查表可得0.990.0111(8,12)0.176(12,8) 5.67f f λ====习题5.31.设总体X ~ N (μ ,4),(X 1 ,X 2 ,… ,X 16)为其样本,2S 为样本方差,求: (1) P ()666.62<S ; (2) P ()865.4279.22<<S . 解 因为()221n S σ-~()21n χ-所以本题中2154S ~()215χ 则 (1) {}(){}22215156.666 6.6661524.997544P S P S P χ⎧⎫<=<⨯=<⎨⎬⎩⎭(){}211524.997510.050.95P χ=-≥=-=(2) {}221515152.279 4.865 2.279 4.865444P S P S ⎧⎫<<=⨯<<⨯⎨⎬⎩⎭(){}28.546251518.24375P χ=<<(){}(){}22158.546251518.24375P P χχ=>-≥0.900.250.6=-= 2. 总体2~(0,)X N σ,1225(,,,)X X X 是总体X 的样本,2X S 和分别是样本均值和样本方差,求λ,使5()0.99XP Sλ<=. 解 根据抽样分布定理知5~(24)X Xt S = 又由5()0.99XP Sλ<=得 5()0.01XP Sλ>= 故查表可得0.01(24) 2.4922t λ==3.设总体X ~ N (30 ,64),为使样本均值大于28的概率不小于0.9 ,样本容量n 至少应是多少?解 因为X ~(30,64)N , 所以样本均值X .~64(30,)N n因此X ()0,1N , 故{}{}28128P X P X >=-≤1X P ⎧⎫=-≤1⎛=-Φ ⎝0.9=Φ≥1.29≥,解得 27n ≥,所以n 至少应取27.*4.设总体X ~ N )16(1,μ 与总体Y ~ N )36(2,μ 相互独立,(X 1 ,X 2 ,… ,X 13)和(Y 1 ,Y 2 ,… ,Y 10)分别为来自总体X 和总体Y 的样本.试求两总体样本方差之比落入区间(0.159 ,1.058)内的概率.解 因为()221n S σ-~()21n χ-,所以本题中211216S ~()222912,36S χ~()29χ又因为21212222121291694936S S F S S ==~()12,9F从而221122229990.159 1.0580.159 1.058444S S P P S S ⎧⎫⎧⎫<<=⨯<<⨯⎨⎬⎨⎬⎩⎭⎩⎭(){}0.3577512,92.3805P F =<< 0.85=(查F 分布表*5. 设从两个正态总体~(4,1)~(6,1)X N Y N 和中分别独立地抽取两个样本1219(,,,)X X X 和1216(,,,)Y Y Y ,样本方差分别为2212S S 和.求λ,使2122()0.05S P S λ<=.解 根据抽样分布定理可知2122~(18,15)S F S 又由2122()0.05S P S λ<=可得2122()0.95S P S λ>=,于是查表可得0.950.0511(18,15)0.44(15,18) 2.27f f λ====*6.设总体X 与总体Y 相互独立,且都服从正态分布N (0 ,9),(X 1 ,X 2 ,… ,X 9)和(Y 1 ,Y 2 ,… ,Y 9)分别为来自总体X 和Y 的样本.试证明统计量T =∑∑==91291i ii iYX服从自由度为9的t 分布.证明 由正态分布的性质及样本的独立性知91ii X=∑~2(0,9)N得9119i i X =∑~(0,1)N 又因为i Y ~(0,9) (1,2,,9)N i =所以()22222291212913339Y Y Y Y Y Y ⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ~()29χ 由于两个总体X 和Y 是相互独立的,所以其相应的样本也是相互独立的,故 9119i i X =∑与92119i i Y =∑也相互独立,于是由t 分布的定义知991ii XX T ==∑∑ ~ ()9t综合练习五一、填空题1.设总体X 的一组样本观测值为1.4 ,2.3 ,1.8 ,3.4 ,2.7则样本均值 x= ( 2.32 ) ,样本方差 2s = ( 0.607 ) .2.设总体X 服从正态分布N (2 ,5),(X 1 ,X 2 ,… ,X 10)为其样本,则样本均值X 的分布为 ( 122N ⎛⎫⎪⎝⎭, ).3.设总体X 服从具有n 个自由度的2χ 分布,(X 1 ,X 2 ,… ,X n )为其样本,X为样本均值,则有 ()( )E X n = ,()( 2 )D X = .4.设总体X ~ N (μ ,2σ),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别为样本均值和样本方差,则有 X ~( 2N n σμ⎛⎫ ⎪⎝⎭, ),22)1(σS n - ~( 2(1)n χ- ),nSX μ- ~( t (n - 1) ).5.设总体X ~ N (1 ,4),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)2()(X X X b X X a --+-则当a = (81 ) 、1()24b =时有T ~ 2χ(2) . 二、选择题1.设总体X ~ N (μ ,1),其中 μ 为未知参数,若(X 1 ,X 2 ,… ,X n )为来自总体X 的样本,则下列样本函数中( (b ) ) 不是统计量.(a )∑=ni i X1;(b )∑=-ni iX12)(μ ;(c) X 1 X 2 … X n ; (d )∑=ni i X12.2.设总体X ~ N (2 ,4),(X 1 ,X 2 ,… ,X 9)为其样本,X 为样本均值,则下列统计量中服从标准正态分布的是( (c ) ).(a ) X ; (b))2(43-X ; (c ))2(23-X ; (d ) )2(29-X . 3.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)(2)(3X X X X X +++则有T ~ ( (b ) ) .(a ) t (5) ; (b ) F (1 ,1) ; (c ) F (2 ,3) ; (d ) F (3 ,2) . 4.设总体X ~ N ⎪⎪⎭⎫ ⎝⎛410,,(X 1 ,X 2 ,… ,X 5)为其样本,令T=则有T ~( (d ) ).(a ) t (1) ; (b ) t (2) ; (c ) t (3) ; (d ) t (4) . 5.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别是样本均值和样本标准差,则 ( (c ) ) .(a ) n X ~ N (0 ,1): (b ) X ~ N (0 ,1); (c )∑=ni i X 12 ~ 2χ(n ) ; (d )SX~ t (n - 1) . 6.设随机变量X 和Y 都服从标准正态分布,则 ( (c ) ) .(a ) Y X + 服从正态分布; (b ) 22Y X + 服从 2χ 分布;(c ) 2X 和 2Y 都服从 2χ 分布; (d )22Y X 服从F 分布.三、解答题1.设总体~(2,16)X N ,12(,,,)n X X X 是总体X 的样本,令2211ni i A X n ==∑,求2A 的数学期望2()E A .解 因为~(2,16)X N ,所以~(2,16) (1,2,,)i X N i n = ,则有 22()()()16420i i i E X D X E X =+=+= 于是22111()()2020n i i E A E X n n n===⨯⨯=∑2.设总体~(15,9),X N ,129(,,,)X X X 是总体X 的样本,X 是样本均值,.求常数c ,使()0.95.P X c ≤=解 根据抽样分布定理可知~(15,1)X N 又由()0.95P X c ≤=可得15()()0.951c P X c -≤=Φ= 查表可得15 1.645c -=,于是得16.645c =3.设一组数据20.5,15.5,30.2,20.5,18.6, 21.3,18.6,23.4来自于总体,X 求经验分布函数.解 将样本观测值排序可得:15.518.618.620.520.521.32<=<=<<< 则由定义可得经验分布函数为80, 15.51, 15.518.683, 18.620.585(), 20.521.386, 21.323.487, 23.430.081, 30.2x x x F x x x x x ≤⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩4.设总体X ~ N (0 ,4),(X 1 ,X 2 ,… ,X 9)为其样本.求系数a 、b 、c ,使得T = 298762543221)()()(X X X X c X X X b X X a ++++++++服从 2χ 分布,并求其自由度.解 由于129,,,X X X 相互独立且来自总体X ~(0,4)N ,则由正态分布的线性运算性质有12X X +~(0,8)N ,345X X X ++~(0,12)N ,6789X X X X +++~(0,16)N于是,由2χ分布与正态分布的关系,有()()()22212345678981216X X X X X X X X X T ++++++=++ 服从2χ(3)分布,因此111,,81216a b c ===,自由度为3。
(精选试题附答案)高中数学第五章三角函数题型总结及解题方法

(名师选题)(精选试题附答案)高中数学第五章三角函数题型总结及解题方法单选题1、海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深值(单位:m)记录表已知港口的水的深度随时间变化符合函数f(x)=Asin(ωx+φ)+B,现有一条货船的吃水深度(船底与水面的距离)为4m,安全条例规定至少要有2m的安全间隙(船底与海底的距离),该船计划在中午12点之后按规定驶入港口,并开始卸货,卸货时,其吃水深度以每小时0.25m的速度减小,4小时卸完,则其在港口最多能停放()A.4小时B.5小时C.6小时D.7小时答案:B分析:由已知表格中数据求得f(x)=2sinπ6x+5,根据驶入港口f(x)大于等于6,离开时f(x)大于等于5,分析即可得答案.由表格中的数据可知,f(x)max=7,f(x)min=3,则A=f(x)max−f(x)min2=7−32=2,B=f(x)max+f(x)min2=7+32=5.由T=12,∴ω=2πT =π6,故f(x)=2sin(π6x+φ)+5,当x=3时,f(x)=7,则2sin(π6x+φ)+5=7∴2cosφ=2,即cosφ=1,得φ=0.∴f(x)=2sinπ6x+5.由f(x)=2sinπ6x+5=6,得sinπ6x=12,即π6x=π6+2kπ,k∈Z或π6x=5π6+2kπ,k∈Z又该船计划在中午12点之后按规定驶入港口, ∴k =1时,x =13,即该船应在13点入港并开始卸货,卸货时,其吃水深度以每小时0.25m 的速度减小,4小时卸完,卸完后的吃水深度为4−0.25×4=3, 所以该货船需要的安全水深为3+2=5米,由f(x)=2sin π6x +5=5,得sin π6x =0, 即π6x =0+2kπ,k ∈Z 或π6x =π+2kπ,k ∈Z∴x =12k,k ∈Z 或x =12k +6,k ∈Z .所以可以停留到18点,此时水深为5米,货船需要离港,则其在港口最多能停放5小时. 故选:B2、已知简谐振动f (x )=Asin (ωx +φ)(|φ|<π2)的振幅是32,图象上相邻最高点和最低点的距离是5,且过点(0,34),则该简谐振动的频率和初相是( ) A .16,π6B .18,π3C .18,π6D .16,π3 答案:C分析:根据正弦型函数的图象与性质求出振幅、周期,再由过点(0,34)求出初相即可得解.由题意可知,A =32,32+(T2)2=52,则T =8,ω=2π8=π4, ∴ y =32sin (π4x +φ).由32sin φ=34,得sin φ=12. ∵|φ|<π2, ∴φ=π6.故选:C3、已知α,β为锐角,sinα=45,cos(α+β)=−√22,则cosβ=( )A .3√210B .√210C .7√210D .9√210 答案:B分析:利用同角三角函数基本关系式,求出cosα,sin(α+β),再利用角变换β=α+β−α,利用两角差的余弦公式求得答案.由α是锐角,sinα=45,则cosα=√1−sin 2α=35, 又α,β是锐角,得α+β∈(0,π), 又cos (α+β)=−√22,则sin(α+β)=√22, 则cosβ=cos[(α+β)−α]=cos(α+β)cosα+sin(α+β)sinα=−√22×35+√22×45=−3√2+4√210= √210. 故选:B .4、一个扇形的半径为3,圆心角为α,且周长为8,则α=( ) A .53B .23C .35D .32答案:B分析:根据扇形的中心角公式计算.设扇形的弧长为l ,则l =8−3−3=2,则α=lr =23 故选:B .5、若α∈(0,π),tan2α=cosα,则tanα=( )A .√1515B .√55C .√53D .√153答案:A分析:由二倍角公式可得tan2α=sin2αcos2α=2sinαcosα1−2sin 2α,再结合已知可求得sinα=14,利用同角三角函数的基本关系即可求解.∵tan2α=cosα2−sinα∴tan2α=sin2αcos2α=2sinαcosα1−2sin 2α=cosα2−sinα,∵α∈(0,π2),∴cosα≠0,∴2sinα1−2sin 2α=12−sinα,解得sinα=14,∴cosα=√1−sin 2α=√154,∴tanα=sinαcosα=√1515. 故选:A.小提示:关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sinα.6、将函数f (x )=2cosx 的图象先向右平移φ(0<φ<π)个单位长度,再把所得函数图象的横坐标变为原来的1ω(ω>0)倍,纵坐标不变,得到函数g (x )的图象,若对g (x )满足|g (x 1)−g (x 2)|=4,有|x 1−x 2|min =π4恒成立,且g (x )在区间(π6,π3)上单调递减,则φ的取值范围是( ) A .[π12,π3]B .[π3,π2]C .(π3,2π3]D .[π3,2π3]答案:D分析:可得g (x )=2cos (ωx −φ),根据题意可求出最小正周期,得出ω,求出g (x )的单调递减区间,根据包含关系可求出.由题可得g (x )=2cos (ωx −φ),若满足|g (x 1)−g (x 2)|=4,则x 1和x 2必然一个极大值点,一个极小值点, 又|x 1−x 2|min =π4,则T2=π4,即T =π2,所以ω=2πT=4,即g (x )的单调递减区间为[kπ2+φ4,kπ2+π4+φ4],k ∈Z ,因为g (x )在区间(π6,π3)上单调递减,所以(π6,π3)⊆[kπ2+φ4,kπ2+π4+φ4],k ∈Z ,则{kπ2+φ4≤π6kπ2+φ4+π4≥π3,解得−2kπ+π3≤φ≤−2kπ+2π3,k ∈Z ,因为0<φ<π,所以可得π3≤φ≤2π3.故选:D.7、若sin(π−α)+cos(−α)=15,α∈(0,π),则tan (32π−α)的值为( )A .−43或−34B .−43C .−34D .34答案:C分析:根据同角三角函数的基本关系及诱导公式求解. 由sin(π−α)+cos(−α)=15可得:sinα+cosα=15,平方得:sin 2α+2sinαcosα+cos 2α=125 所以tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43或tanα=−34, 又sinα+cosα=15,所以|sinα|>|cosα|, 故tanα=−43, 故选:C8、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( ) A .−2B .2C .−12D .12分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3, 于是tan (α+π4)= tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C.9、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +rsin∠BPO =5,所以r +rsin1=5, 所以r =5sin11+sin1,10、若角α的终边上一点的坐标为(1,−1),则cosα=( ) A .−1B .−√22C .√22D .1 答案:C分析:根据任意角三角函数的定义即可求解.∵角α的终边上一点的坐标为(1,−1),它与原点的距离r =√12+(−1)2=√2, ∴cosα=xr =√2=√22, 故选:C. 填空题11、若α∈(π2,π),且cos 2α−sin α=14 ,则tan α=_____. 答案:−√33分析:根据同角平方和关系可解得sin α=12,进而根据角的范围可得α=5π6,进而可求.因为cos 2α−sin α=14,所以4(1-sin 2α)-4sin α-1=0即4sin 2α+4sin α-3=0 ,∴解得sin α=12或sin α=−32 (舍去). ∵α∈(π2,π),∴α=5π6,因此tan α=tan 5π6=−√33. 所以答案是:−√3312、设函数f (x )=sin (ωx +φ),A >0,ω>0,若f (x )在区间[π6,π2]上单调,且f (π2)=f (2π3)=−f (π6),则f (x )的最小正周期为____. 答案:π分析:根据单调性可确定0<ω≤3,结合f (π2)=f (2π3)=−f (π6),可得x =7π12,(π3,0)分别为对称轴和对称中心,即可结合周期求解.则T 2=πω≥π2-π6,∴0<ω≤3.∵f (π2)=f (2π3)=−f (π6),∴x =π2+2π32=7π12为f (x )=sin (ωx +φ)的一条对称轴,且(π6+π22,0)即(π3,0)为f (x )=sin (ωx +φ)的一个对称中心,只有当T4=14⋅2πω=7π12−π3=π4时,解得ω=2∈(0,3],∴T=2π2=π,故答案为:π13、关于函数f (x )=sinx +1sinx 有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =π2对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 答案:②③分析:利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取−π<x <0可判断命题④的正误.综合可得出结论. 对于命题①,f(π6)=12+2=52,f(−π6)=−12−2=−52,则f(−π6)≠f(π6),所以,函数f(x)的图象不关于y 轴对称,命题①错误;对于命题②,函数f(x)的定义域为{x|x ≠kπ,k ∈Z},定义域关于原点对称, f(−x)=sin(−x)+1sin(−x)=−sinx −1sinx =−(sinx +1sinx )=−f(x), 所以,函数f(x)的图象关于原点对称,命题②正确; 对于命题③,∵f(π2−x)=sin(π2−x)+1sin(π2−x)=cosx +1cosx,ππ11ππ所以,函数f(x)的图象关于直线x =π2对称,命题③正确;对于命题④,当−π<x <0时,sinx <0,则f(x)=sinx +1sinx <0<2, 命题④错误. 所以答案是:②③.小提示:本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题. 14、已知−π<x <0,sinx +cosx =15,则sinx −cosx =______.答案:−75分析:利用同角三角函数关系求解即可. (sinx +cosx )2=1+2sinxcosx =125,解得2sinxcosx =−2425.因为−π<x <0,2sinxcosx <0,所以−π2<x <0. 所以(sinx −cosx )2=1−2sinxcosx =4925, 又sinx −cosx <0,所以sinx −cosx =−75. 所以答案是:−7515、如图所示,在Rt △ABC 中,∠C =90∘,AC =6,BC =8,D 为AC 的中点,点E 在BC 上,分别连接BD 、AE ,交点为F ,若∠BFE =45∘,则CE =__________.答案:3011出关于x 的方程,即可解得x 的值. 设CE =x ,∠CBD =α,∠CAE =β,根据题意可得∠CDB =90∘−α=45∘+β,整理可得α+β=45∘, 所以tan (α+β)=tan α+tan β1−tan αtan β=1,在Rt △BCD 中,tan α=38,在Rt △ACE 中,tan β=x6, 则tan (α+β)=tan α+tan β1−tan αtan β=38+x 61−38⋅x 6=1,解得x =3011,所以CE =3011.所以答案是:3011.解答题16、已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过函数f (x )=−3−a x−3(a >0且a ≠1)的定点M .(1)求sinα−2cosα的值;(2)求sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)的值.答案:(1)−2 (2)5221分析:(1)易知函数f (x )=−3−a x−3的定点M 的坐标为(3,−4),利用三角函数的定义则可求出sinα=−45,cosα=35则可求出答案;(2)利用诱导公式化简,再将sinα=−45,cosα=35,tanα=−43代入,即可得出答案.(1)∵函数f (x )=−3−a x−3(a >0且a ≠1)的定点M 的坐标为(3,−4), ∴角α的终边经过点M (3,−4),∴OM =√32+(−4)2=5(O 为坐标原点), 43∴sinα−2cosα=−45−2×35=−2. (2)sin (π+α)+cos(π2+α)cos (2π+α)+sin (−α)−tan (5π+α)=−sinα−sinαcosα−sinα−tanα=−2sinαcosα−sinα−(−43) =−2×(−45)35−(−45)+43=87+43=5221. 17、已知3sinα+4cosα=5 ,求tanα.答案:34. 分析:将给定等式两边平方,再利用同角公式变形求解作答.将3sinα+4cosα=5两边平方得:9sin 2α+24sinαcosα+16cos 2α=25=25sin 2α+25cos 2α,整理得:16sin 2α−24sinαcosα+9cos 2α=0,即(4sinα−3cosα)2=0,有4sinα=3cosα,所以tanα=34. 18、已知函数f (x )=Asin (ωx +φ)(A >0,ω>0,0≤φ<π)的图象如图所示.(1)求函数f (x )的解析式;(2)首先将函数f (x )的图象上每一点横坐标缩短为原来的12,然后将所得函数图象向右平移π8个单位,最后再向上平移1个单位得到函数g (x )的图象,求函数g (x )在[0,π2]内的值域. 答案:(1)f (x )=2sin (2x +π3)(2)[−1,3]分析:(1)依题意可得A =2,13π12−π3=34T ,即可求出ω,再根据函数过点(13π12,2),即可求出φ,从而求出函数解析式;(2)首先根据三角函数的变换规则得到g (x )的解析式,再由x 的取值范围求出4x −π6的取值范围,最后根据正弦函数的性质计算可得;(1)解:由图象得A =2,13π12−π3=34T =34⋅2πω,所以ω=2, 由2×13π12+φ=π2+2kπ,所以φ=−5π3+2kπ(k ∈Z ),∵0≤φ≤π,∴φ=π3,∴f (x )=2sin (2x +π3)(2)解:将函数f (x )的图象上每一点横坐标缩短为原来的12,得到y =2sin (4x +π3),再将y =2sin (4x +π3)向右平移π8个单位得到y =2sin (4(x −π8)+π3)=2sin (4x −π6),最后再向上平移1个单位得到y =2sin (4x −π6)+1,即g (x )=2sin (4x −π6)+1当x ∈[0,π2]时,所以4x −π6∈[−π6,11π6],所以sin (4x −π6)∈[−1,1], ∴g (x )∈[−1,3] 19、(1)已知sinα+cosα=√2,求sinα⋅cosα及sin 4α+cos 4α的值;(2)已知sinα+cosα=15(0<α<π),求tanα的值.答案:(1)sinα⋅cosα=12,sin 4α+cos 4α=12;(2)−43.分析:(1)把已知等式平方,结合平方关系可得sinαcosα,再把1=sin 2α+cos 2α平方可求得sin 4α+cos 2α;(2)已知等式平方求得sinαcosα确定出sinα,cosα的正负,求出sinα−cosα,与已知式联立求得sinα,cosα后可得tanα.解:(1)∵sinα+cosα=√2;1+2sinαcosα=2∴sinα⋅cosα=12sin 4α+cos 4α=(sin 2α+cos 2α)2−2sin 2αcos 2α=1−2⋅(12)2=12(2)∵sinα+cosα=15,①∴(sinα+cosα)2+2sinαcosα=125∴2sinαcosα=−2425.∵0<α<π,∴π2<α<π,∴sinα>0,cosα<0,∴sinα−cosα>0,∴sinα−cosα=√(sinα−cosα)2=75.②由①,②得sinα=45,cosα=−35,∴tanα=−43。
第5章_课后习题答案.pptx

Q、Q 的
电压波形,输入端RD、SD 的电压波形如图中所示。
解:见下图:
图 5-33
5-4 画出图 5-34 由或非门组成的基本 RS 触发器输出端 Q、 Q 的电压波形,输入端 SD、RD 的电压波形如图中所示。
1
学海无 涯
解:见下图:
图 5-34
5-5 图 5-35 所示为一个防抖动输出的开关电路。当拨动开关 S 时,由于开关触点接通
5-15 图 5-45(a)中 FF1、FF2 是 CMOS 边沿触发器,FF3、FF4 是 TTL 边沿触发器。 CP 及其A、B、C 输入端的波形用如图 5-45(b)所示。设各触发器的初态均为 0。试画出各触发 器输出端Q 的波形图。
9
学海无 涯
解:见下图:
图 5-45
5-16 在图 5-46(a)所示的T 触发器电路中,已知CP 和输入端 T 的波形如图 5-46(b)所 示,设初始状态为 0,试画Q 和 Q 的波形图。
瞬间发生振颤, RD、S D 的电压波形如图中所示。试画出Q、 Q 端对应的电压波形。
解:见下图:
图 5-35
5-6 在图 5-36 电路中、若 CP、S、R 的电压波形如图中所示,试画出 Q、Q 端与之对
2
学海无 涯
应的电压波形。假定触发器的初始状态为 Q=0。
解:见下图:
图 5-36
5-7 在图 5-37(a)所示的主从 RS 触发器中,CP、R、S 的波形如图 5-37(b)所示,试画 出相应的Qm、 Qm 、Q 和 Q 的波形图。
图 5-38
解:主从 JK 触发翻的工作过程是上升沿接收,下降沿翻转。根据状态转换图可画出波 形图如下图所示。
5-9 TTL 主从触发器的输入端 J、K、Rd 、Sd 及 CP 的波形图如图 5-39 所示,试画出 输出端Q 的波形图。
第五章 数据库的维护和应用

第五章数据库的维护和应用一、例题解析【例题1】设数据表已经打开,为了在表尾增加一条空记录,应使用的命令是()。
A.APPEND B.APPEND BLANK C.INSERT D.INSERT BLANK【解析】答案A,APPEND命令打开一个输入记录的浏览窗口;答案D,INSERT BLANK是插入一条空记录,但必须将记录指针移动到文件尾;答案B是在文件尾追加一条空记录,这个命令常常配合REPLACE命令用于程序中添加记录。
答案:B【例题2】在打开的职工表在有字符型字段“职称”和数值型字段“工资”等,若要求先按职称的升序,职称相同再按工资降序建立排序好的zcgz.dbf文件,应使用的命令是()。
A.SORT ON职称,工资/D Tozcgz.dbfB.SORT ON工资/D,职称/A Tozcgz.dbfC.SORT ON职称+工资Tozcgz.dbfD.SORT ON职称+工资/D Tozcgz.dbf【解析】在SORT命令中,排序的依据只能是关键字段名,而不能使用关键字表达式,因此,答案C和D都是错误的。
答案B是先按工资排序,工资相同再按职称排序,与题意不符,所以正确的答案是A。
答案:A【例题3】在打开的学生档案表中有字符字段“性别”和日期型字段“出生日期”等若要先按性别排序,性别相同时再按出生日期排序创建单索引文件,应使用的命令是()。
A.INDEX ON性别,出生日期TO Xbrq.idxB.INDEX ON性别+出生日期TO xbrq.idxC.INDEX ON性别+STR(出生日期)TO xbrq.idxD.INDEX ON性别+DTOC(出生日期)TO xbrq.idx【解析】对于多重索引,索引表达式中的各字段数据类型必须是一致的。
本题中,“性别”和“出生日期”的数据类型不一致,为构成一个索引表达式,通常是使用转换函数把非字符型的数据转换成字符型的数据。
这里要用DTOC()函数将日期型转换成字符型的,因而答案B、C是错误的;答案A中,索引表达式不能是用逗号隔开的式子。
高中数学典型例题解析(第五章不等式1)

第五章 不等式§5.1不等式的解法一、知识导学1. 一元一次不等式ax>b(1)当a>0时,解为a b x >;(2)当a <0时,解为abx <;(3)当a =0,b ≥0时无解;当a =0,b <0时,解为R .2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0的两实根,且x 1<x 23.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积;③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成)()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即:)()(x g x f >0⇔f(x)·g (x)>0 )()(x g x f ≥0⇔0)x (g )x (f 0)x (g 0)x (f >或⋅⎩⎨⎧≠=然后用“根轴法”或化为不等式组求解.二、疑难知识导析1.不等式解法的基本思路解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.2.不等式组的解集是本组各不等式解集的交集,所以在解不等式组时,先要解出本组内各不等式的解集,然后取其交集,在取交集时,一定要利用数轴,将本组内各不等式的解集在同一数轴上表示出来,注意同一不等式解的示意线要一样高,不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集.3.集合的思想和方法在解不等式问题中有广泛的应用,其难点是区分何时取交集,何时取并集.解不等式的另一个难点是含字母系数的不等式求解—注意分类. 三、经典例题导讲[例1] 如果kx 2+2kx -(k+2)<0恒成立,则实数k 的取值范围是___. A. -1≤k ≤0 B. -1≤k<0 C. -1<k ≤0 D. -1<k<0 错解:由题意:⎩⎨⎧<+-⋅-<0)]2([4)2(02k k k k解得:-1<k<0错因:将kx 2+2kx -(k+2)<0看成了一定是一元二次不等式,忽略了k =0的情况. 正解:当k =0时,原不等式等价于-2<0,显然恒成立,∴ k =0符合题意.当k ≠0时,由题意:⎩⎨⎧<+-⋅-<0)]2([4)2(02k k k k 解得:-1<k<0∴ 01≤<-k ,故选C.[例2] 命题:1A x -<3,命题:(2)()B x x a ++<0,若A 是B 的充分不必要条件,则a 的取值范围是_______A.(4,)+∞B.[)4,+∞C.(,4)-∞-D.(],4-∞- 错解:由|x -1|<3得:-2<x <4, 又由(x +2)(x +a)=0得x=-2或x =-a,A 是B 的充分不必要条件,∴{x|-2<x <4}⊂{x|-2<x <-a } ∴-a>4故选D.错因:忽略了a =-4时,{x|-2<x <4}={x|-2<x <-a },此时A 是B 的充要条件,不是充分不必要条件.正解:由|x -1|<3得:-2<x <4, 又由(x +2)(x +a)=0得x=-2或x =-a,A 是B 的充分不必要条件,∴{x|-2<x <4}⊂{x|-2<x <-a } ∴-a>4故选C.[例3]已知f(x) = a x + x b,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围.错解: 由条件得⎪⎩⎪⎨⎧≤+≤≤+≤-622303ba b a ②① ②×2-① 156≤≤a ③ ①×2-②得 32338-≤≤-b ④ ③+④得 .343)3(310,34333310≤≤≤+≤f b a 即 错因:采用这种解法,忽视了这样一个事实:作为满足条件的函数bxax x f +=)(,其值是同时受b a 和制约的.当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的.正解: 由题意有⎪⎩⎪⎨⎧+=+=22)2()1(b a f b a f ,解得:)],2()1(2[32)],1()2(2[31f f b f f a -=-=).1(95)2(91633)3(f f b a f -=+=∴ 把)1(f 和)2(f 的范围代入得 .337)3(316≤≤f[例4] 解不等式(x+2)2(x+3)(x -2)0≥ 错解: (x+2)20≥∴原不等式可化为:(x+3)(x -2)0≥∴原不等式的解集为{x| x ≤ -3或x 2≥}错因:忽视了“≥”的含义,机械的将等式的运算性质套用到不等式运算中.正解:原不等式可化为:(x+2)2(x+3)(x -2)0= ①或(x+2)2(x+3)(x -2)0>②,解①得:x=-3或x =-2或x =2 解②得:x < -3或x >2∴原不等式的解集为{x| x ≤ -3或x 2≥或x 2-=}[例5] 解关于x 的不等式)()(ab x b ab x a +>- 解:将原不等式展开,整理得:)()(b a ab x b a +>-讨论:当b a >时,ba b a ab x -+>)(当b a =时,若b a =≥0时φ∈x ;若b a =<0时R x ∈ 当b a <时,ba b a ab x -+<)(点评:在解一次不等式时,要讨论一次项系数的符号.[例6]关于x 的不等式02<++c bx ax 的解集为}212|{->-<x x x 或 求关于x 的不等式02>+-c bx ax 的解集. 解:由题设知 0<a ,且21,2=-=x x 是方程02=++c bx ax 的两根 ∴25-=-a b , 1=ac从而 02>+-c bx ax 可以变形为02<+-acx a b x 即:01252<+-x x ∴221<<x 点评:二次不等式的解集与二次方程的根之间的联系是解本题的关健,这也体现了方程思想在解题中的简单应用. [例7]不等式3)61(log 2≤++xx 的解集为 解:∵3)61(log 2≤++x x ,∴0<168x x ++≤,∴ 12160x x x x ⎧+≤⎪⎪⎨⎪++>⎪⎩∴⎪⎩⎪⎨⎧>+-<<--=<0x 2232231,0或或x x x解得{}(331x ∈---+⋃反思:在数的比较大小过程中,要遵循这样的规律,异中求同即先将这些数的部分因式化成相同的部分,再去比较它们剩余部分,就会很轻易啦.一般在数的比较大小中有如下几种方法:(1)作差比较法和作商比较法,前者和零比较,后者和1比较大小;(2)找中间量,往往是1,在这些数中,有的比1大,有的比1小;,(3)计算所有数的值;(4)选用数形结合的方法,画出相应的图形;(5)利用函数的单调性等等. 四、典型习题导练1.解不等式0322322<--+-x x x x 2. 解不等式 62323+>+x x x3.解不等式 0)2)(54(22<++--x x x x 4. 解不等式 0)2)(1()1()2(32<-+-+x x x x5.解不等式1116-<-x x 6.k 为何值时,下式恒成立:13642222<++++x x kkx x 7. 解不等式0343>---x x8. 解不等式24622+<+-x x x§5.2简单的线性规划一、知识导学1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若 直 线 不 过 原点,通 常 选 择 原 点 代入检验.3. 平 移 直 线 y=-k x +P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.三、经典例题导讲[例1] .画出不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.错解:如图(1)所示阴影部分即为不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.错因一是实虚线不清,二是部分不等式所表示的平面区域弄错了.正解:如图(2)所示阴影部分即为不等式组10236010220x y x y x y x y +->⎧⎪+-≤⎪⎨--≤⎪⎪-+>⎩表示的平面区域.[例2] 已知1≤x -y ≤2,且2≤x+y ≤4,求4x -2y 的范围. 错解:由于 1≤x -y ≤2 ①,2≤x+y ≤4 ②,①+② 得3≤2x ≤6 ③①×(-1)+② 得:0≤2y ≤3 ④. ③×2+④×(-1)得. 3≤4x -2y ≤12错因:可行域范围扩大了. 正解:线性约束条件是:⎩⎨⎧≤+≤≤≤4y x 22y -x 1令z =4x -2y ,画出可行域如右图所示, 由⎩⎨⎧=+=2y x 1y -x 得A 点坐标(1.5,0.5)此时z =4×1.5-2×0.5=5.由⎩⎨⎧=+=4y x 2y -x 得B 点坐标(3,1)此时z =4×3-2×1=10.∴5≤4x -2y ≤10[例3] 已知⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x ,求x 2+y 2的最值.错解:不等式组⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x 表示的平面区域如右图所示∆ABC 的内部(包括边界),令z= x 2+y 2 由⎩⎨⎧≥++≤--010402357y x y x 得A 点坐标(4,1),此时z =x 2+y 2=42+12=17, 由⎩⎨⎧≥++≤--010402357y x y x 得B 点坐标(-1,-6),此时z =x 2+y 2=(-1)2+(-6)2=37,由⎩⎨⎧≥++≤-+01040117y x y x 得C 点坐标(-3,2),此时z =x 2+y 2=(-3)2+22=13,∴ 当⎩⎨⎧-=-=61y x 时x 2+y 2取得最大值37,当⎩⎨⎧=-=23y x 时x 2+y 2取得最小值13. 错因:误将求可行域内的点到原点的距离的平方的最值误认为是求三点A 、B 、C 到原点的距离的平方的最值.正解:不等式组⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x 表示的平面区域如图所示∆ABC 的内部(包括边界),令z= x 2+y 2,则z 即为点(x ,y )到原点的距离的平方. 由⎩⎨⎧≥++≤--010402357y x y x 得A 点坐标(4,1),此时z =x 2+y 2=42+12=17, 由⎩⎨⎧≥++≤--010402357y x y x 得B 点坐标(-1,-6),此时z =x 2+y 2=(-1)2+(-6)2=37,由⎩⎨⎧≥++≤-+01040117y x y x 得C 点坐标(-3,2),此时z =x 2+y 2=(-3)2+22=13, 而在原点处,⎩⎨⎧==0y x ,此时z =x 2+y 2=02+02=0, ∴ 当⎩⎨⎧-=-=61y x 时x 2+y 2取得最大值37,当⎩⎨⎧==00y x 时x 2+y 2取得最小值0.[例4]某家具厂有方木料90m 3,五合板600m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m 3,五合板2m 2,生产每个书橱需要方木料0.2m 3,五合板1m 2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使得利润最大? 分析:设生产书桌x 张,书橱y 张,利润z 元,则约束条件为⎪⎪⎩⎪⎪⎨⎧∈∈≤+≤+N y N x 600y 2x 902.01.0y x目标函数z=80x+120y作出上可行域:作出一组平行直线2x+3y=t, 此直线经过点A (100,400)时,即合理安排生产,生产书桌100张,书橱400张,有最大利润为z max =80×100+400×120=56000(元)若只生产书桌,得0<x ≤300,即最多生产300张书桌,利润为z=80×300=24000(元)若只生产书橱,得0<y ≤450,即最多生产450张书橱,利润为z=120×450=54000(元) 答:略[例5]某钢材厂要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格小钢板的块数如下表:每张钢板的面积,第一种为1m 2,第二种为2 m 2,今需要A 、B 、C 三种规格的成品各12、15、27块,请你们为该厂计划一下,应该分别截这两种钢板多少张,可以得到所需的三种规格成品,而且使所用钢板的面积最小?只用第一种钢板行吗?解:设需要截第一种钢板x 张,第二种钢板y 张,所用钢板面积为z m 2,则⎪⎪⎩⎪⎪⎨⎧∈≥+≥+≥+Ny x y x y x y x ,27315212目标函数z=x+2y作出可行域如图作一组平行直线x+2y=t ,由⎩⎨⎧=+=+27312y x y x可得交点⎪⎭⎫⎝⎛215,29,但点⎪⎭⎫⎝⎛215,29不是可行域内的整点,其附近的整点(4,8)或(6,7)可都使z 有最小值,且z min =4+2×8=20 或z min =6+2×7=20若只截第一种钢板,由上可知x ≥27,所用钢板面积最少为z=27(m 2);若只截第二种钢板,则y ≥15,最少需要钢板面积z=2×15=30(m 2).它们都比z min 大,因此都不行. 答:略[例6]设610z x y =+,式中,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.解:由引例可知:直线0l 与AC 所在直线平行,则由引例的解题过程知,当l 与AC 所在直线35250x y +-=重合时z 最大,此时满足条件的最优解有无数多个,当l 经过点(1,1)B 时,对应z 最小,∴max 61050z x y =+=,min 6110116z =⨯+⨯=.说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;2.线性目标函数的最值也可在可行域的边界上取得,即满足条件的最优解有无数多个.四、典型习题导练1.画出不等式-x +2y -4<0表示的平面区域.2.画出不等式组⎪⎪⎩⎪⎪⎨⎧<≤≥-≥-+53006x y y x y x 表示的平面区域3.求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y xx+2y=04.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品?5.某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?6.在约束条件0,0,,2 4.xyy x sy x≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s≤≤时,目标函数32z x y=+的最大值的变化范围是A.[6,15]B.[7,15]C.[6,8]D.[7,8]§5.3 基本不等式的证明一、知识导学1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法).(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0⇔a≥b;a-b≤0⇔a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法.(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1⇔a≥b;a/b≤1⇔a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法.2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B.3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件.4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法.5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法.主要有两种换元形式.(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示.此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题; (2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简.如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元.二、疑难知识导析1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定不等号的方向.2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜于表述,因为它条理清晰,形式简洁,适合人们的思维习惯.但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把“只需证明”等字眼不写,就成了错误.而用综合法书写的形式,它掩盖了分析、探索的过程.因而证明不等式时,分析法、综合法常常是不能分离的.如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程,以适应人们习惯的思维规律.还有的不等式证明难度较大,需一边分析,一边综合,实现两头往中间靠以达到证题的目的.这充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系.分析的终点是综合的起点,综合的终点又成为进一步分析的起点.3.分析法证明过程中的每一步不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件.如果非要“步步可逆”,则限制了分析法解决问题的范围,使得分析法只能使用于证明等价命题了.用分析法证明问题时,一定要恰当地用好“要证”、“只需证”、“即证”、“也即证”等词语.4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾.5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视,否则可能会出现错误的结果.这是换元法的重点,也是难点,且要注意整体思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.2 操作题例题与解析
【例5-11】在第1张幻灯片中后插入一张指定文件夹中的图片A1.jpg,作为背景。
【答案与解析】
打开PPT文件,选择第1张幻灯片。
单击“设计”菜单下的“背景样式”命令,弹出图5-49设置背景样式对话窗,在其中选项中选择“插入自文件”。
也可以在背景空白处用鼠标右键单击,在快捷菜单下选择“设置背景格式”。
“插入图片窗口”中选择指定文件夹,然后选择A1.jpg文件,按“打开”按钮,最后单击“关闭”按钮或“全部应用”按钮完成操作。
注意“全部应用”按
钮作用的不同之处。
图5-49 设置背景样式
【例5-12】用“样本模板”方式新建幻灯片文件,要求选择样本模板中的“PowerPoint2010简介”样式。
【答案与解析】
单击“文件”菜单下的新建,选择“样本模板”命令;
在样本模板窗口中出现多种内容向导;
在其中选择“PowerPoint2010简介”选项,直接双击即可默认完成。
【例5-13】新建空演示文稿,然后连续插入3张新幻灯片,并将全部4张幻灯片的设计模板选择设置为“龙腾四海”。
【答案与解析】
单击进入“文件”菜单下的新建,选择单击“空白演示文稿”菜单;
连续按3次“Ctrl + M”组合键,完成插入3张新幻灯片;
选择“设计”菜单,工具栏出现多种不同名称和风格的设计模板,选择“龙腾四海”即可完成。
注意当鼠标指向某一设计模板时,稍停即可出现该设计模板的名称,如“龙腾四海”、“跋涉”等。
【例5-14】自行新建3张幻灯片的空演示文稿,在第1张幻灯片中插入默认的“组织结构图”。
在第2张幻灯片中插入默认的“饼图图表”。
在第3张幻灯片中插入艺术字,输入自己的姓名,艺术字样式不限。
【答案与解析】
进入“文件”新建选项,选择“空白演示文稿”,然后用“Ctrl + M”连续插入2张新幻灯片;
选第1张幻灯片,按“插入”→“SmartArt”的层次结构中,选择“组织结构图”,点击“确定”;
选第2张幻灯片,按“插入”→“图表”选项中,选择“饼图”点击“确定”;
选第3张幻灯片,按“插入”→“艺术字”,自行选择任意样式并输入自己的真实姓名,点击“确定”。
【例5-15】打开上例已完成的幻灯片,要求设置全部幻灯片的片间切换效果为“立方体”,换片持续时间为2.0秒,换片方式为“每隔3秒”自动换片,并观看播放效果。
【答案与解析】
打开PPT文件,进入幻灯片浏览视图,按“Ctrl+ A”键,选择全部幻灯片;
选择“切换”菜单选项,在工具栏中选择“立方体”切换效果;
然后在右面的设置换片时间选项中,分别设置换片速度保持为2秒、换片方式设置自动换片时间“每隔3秒”,即可观看播放效果。