语音信号处理作业
《语音数字信号处理》课程介绍与教学大纲

《语音数字信号处理》课程简介课程编号:06044008课程名称:语音数字信号处理/ Speech Digital Signal Processing学分:2学时:32 (实验:0 上机:0 课外实践:0 )适用专业:电子信息工程建议修读学期:7开课单位:电气与信息工程学院电子信息与通信工程系先修课程:《数字信号处理》、《MATLAB及应用》、《随机信号处理》考核方式与成绩评定标准:作业、考试(闭卷)教材与主要参考书目:主要教材:《语音信号处理》主编:赵力机械工业出版社2011-6T参考书目:《离散时间语音信号处理》主编:夸特尔瑞电子工业出版社2004-87内容概述:《语音数字信号处理》是电子信息工程专业本科生的专业必修课程。
它系统地介绍了语音信号处理涉及的主要内容和方法,讲述语音信号的应用前景、语音信号处理流程及流程中涉及到的相关知识点,每个知识点通过案例仿真讲述其应用的结果。
主要内容分四部分:(1)基础部分:语音信号基础知识、人的发音原理、人的听觉原理、语音的数学模型;(2)语音信号分析方法:时域分析、频域分析、同态处理和线性预测分析;(3)语音信号涉及的新技术:矢量量化和隐马尔可夫模型;(4)语音的四个方面应用:语音编码、语音识别、语音合成和语音增强;通过《语音数字信号处理》学习,使学生掌握语音信号发音和听觉原理、语音信号的数字模型; 语音的时域、频域、倒谱、线性预测的分析方法;矢量量化;隐马尔可夫模型;语音波形编码、参数编码、混合编码;语音的合成;语音识别和语音增强的原理和技术,为学生毕业后从事语音处理工作和进一步研究相关课题打下一定的基础。
《嵌入式系统及应用》教学大纲课程编号:06044008课程名称:语音数字信号处理/ Speech Digital Signal Processing学分:2学时:32 (实验:0 上机:0 课外实践:0 )适用专业:电子信息工程建议修读学期:7开课单位:电气与信息工程学院电子信息与通信工程系先修课程:《数字信号处理》、《MATLAB及应用》、《随机信号处理》一、课程性质、目的与任务《语音数字信号处理》是电子信息工程专业本科生的专业必修课程。
语音信号处理_考试参考题(修订版)(1)

语⾳信号处理_考试参考题(修订版)(1)⼀、填空题:(每空1 分,共60分)1、语⾳信号的频率范围为(300-3400kHz),⼀般情况下采样率为(8kHz )。
书上22页2、语⾳的形成是空⽓由(肺部)排⼊(喉部),经过(声带)进⼊声道,最后由()辐射出声波,这就形成了语⾳。
书上11页。
肺中的通过(稳定)的⽓流或声道中的⽓流激励(喉头⾄嘴唇的器官的各种作⽤)⽽产⽣。
当肺中的⽓流通过声门时,声门由于其间⽓体压⼒的变化⽽开闭,使得⽓流时⽽通过,时⽽被阻断,从⽽形成⼀串周期性脉冲送⼊声道,由此产⽣的语⾳是(浊⾳)。
如果声带不振动,声门完全封闭,⽽声道在某处收缩,迫使⽓流⾼速通过这⼀收缩部位⽽发⾳,由此产⽣的语⾳是(清⾳)。
3、语⾳信号从总体上是⾮平稳信号。
但是,在短时段(10~30)ms中语⾳信号⼜可以认为是平稳的,或缓变的。
书上24页4、语⾳的四要素是⾳长,⾳强,⾳⾼和⾳质,它们可从时域波形上反映出来。
其中⾳长特性:⾳长(长),说话速度必然慢;⾳长(短),说话速度必然快。
⾳强的⼤⼩是由于声源的(震动幅度)⼤⼩来决定。
5、声⾳的响度是⼀个和(振幅)有密切联系的物理量,但并不就是⾳强。
6、⼈类发⾳过程有三类不同的激励⽅式,因⽽能产⽣三类不同的声⾳,即(浊⾳)、(清⾳)和(爆破⾳)。
7、当⽓流通过声门时声带的张⼒刚好使声带发⽣较低频率的张弛振荡,形成准周期性的空⽓脉冲,这些空⽓脉冲激励声道便产⽣浊⾳如果声道中某处⾯积很⼩,⽓流⾼速冲过此处时⽽产⽣湍流,当⽓流速度与横截⾯积之⽐⼤于某个门限时(临界速度)便产⽣摩擦⾳,即(清⾳)。
8、如果声道某处完全闭合建⽴起⽓压,然后突然释放⽽产⽣的声⾳就是(爆破⾳)。
9、在⼤多数语⾳处理⽅案中,基本的假定为语⾳信号特性随时间的变化是(平稳随机)的。
这个假定导出各种(线性时不变)处理⽅法,在这⾥语⾳信号被分隔为⼀些短段再加以处理。
10、⼀个频率为F。
的正弦形信号以Fs速率抽样,正弦波的⼀周内就有(Fs/F0)个抽样。
语音信号处理答案

二、问答题(每题5分,共20 分)1、语音信号处理主要研究哪几方面的内容?语音信号处理是研究用数字信号处理技术对语言信号进行处理的一门学科,语音信号处理的理论和研究包括紧密结合的两个方面:一方面,从语言的产生和感知来对其进行研究,这一研究与语言、语言学、认知科学、心理、生理等学科密不可分;另一方面,是将语音作为一种信号来进行处理,包括传统的数字信号处理技术以及一些新的应用于语音信号的处理方法和技术。
2、语音识别的研究目标和计算机自动语音识别的任务是什么?语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。
计算机自动语音识别的任务就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。
3、语音合成模型关键技术有哪些?语音合成是实现人机语音通信,建立一个有听和讲能力的口语系统所需的两项关键技术,该系统主要由三部分组成:文本分析模块、韵律生成模块和声学模块。
1.如何取样以精确地抽取人类发信的主要特征,2.寻求什么样的网络特征以综合声道的频率响应,3.输出合成声音的质量如何保证。
4、语音压缩技术有哪些国际标准?二、名词解释(每题3分,共15分)端点检测:就从包含语音的一段信号中,准确的确定语音的起始点和终止点,区分语音信号和非语音信号。
共振峰:当准周期脉冲激励进入声道时会引起共振特性,产生一组共振频率,称为共振峰频率或简称共振峰。
语谱图:是一种三维频谱,它是表示语音频谱随时间变化的图形,其纵轴为频率,横轴为时间,任一给定的频率成分在给定时刻的强弱用相应点的灰度或色调的浓淡来表示。
码本设计:就是从大量信号样本中训练出好的码本,从实际效果出发寻找好的失真测度定义公示,用最少的搜素和计算失真的运算量。
语音增强:语音质量的改善和提高,目的去掉语音信号中的噪声和干扰,改善它的质量三、简答题(每题6分,共30分)1、简述如何利用听觉掩蔽效应。
语音信号处理实验报告

通信与信息工程学院信息处理综合实验报告班级:电子信息工程1502班指导教师:设计时间:2018/10/22-2018/11/23评语:通信与信息工程学院二〇一八年实验题目:语音信号分析与处理一、实验内容1. 设计内容利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。
2.设计任务与要求1. 基本部分(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。
(2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。
(3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。
(4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。
2. 提高部分(5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。
(6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。
(7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。
(8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。
二、实验原理1.设计原理分析本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。
首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。
语音信号处理第3版——第1讲

中。美国国防部ARPA组织了有CMU等五个单位参加 的一项大规模语音识别和理解研究计划
1970年代中,日本学者Sakoe提出的动态时间弯折
算法对小词表的研究获得了成功,从而掀起了语 音识别的研究热潮
第1章 绪论
1.2 语音识别发展概况
谁先提出动态时间弯折(DTW)算法?
是采用动态规划技术将一个复杂的全局 1960年代末期,苏联学者 Vintsyuk提出了采用动 最优化问题转化为许多局部最优化问题, 态规划方法解决两个语音的时间对准问题 一步一步地进行决策
第1章 绪论
1.1 概述
1939年,H.Dudley研制成功第一个声码器
打破了以前的“波 形原则”,提出了一 种全新的语音通信技 术,即提取参数加以 传输,在收端重新合 成语音。 其后,产生“语音 参数模型”的思想
A block schematic of Homer Dudley’s VODER
1.1 概述
为什么要学习和研究语音信号处理技术?
语音是最自然、最有效、最方便的人机(人与人)交互手段
国内外各大公司(研究机构)一直从事语音信号处理研究
语音信号处理技术用途非常广泛 卡耐基梅隆大学、剑桥大学、爱丁堡大学、华盛顿大学、 语音信号处理技术远未成熟,需进一步改进 车载语音:汽车导航、空调、车窗、影音等的语音控制 清华大学、中科大、中科院 等一直从事语音处理研究 语音信号处理技术始终与当时信息科学中最活跃的前沿学科保 呼叫中心: 交互式语音应答的补充、服务质量评估、增强安全性等 噪声环境下语音处理系统性能急剧下降 2011 年苹果公司推出 Siri (Iphone4S的语音控制功能) 移动终端: 语音秘书、语音播报、语音输入法、语音听写系统 说话人发音方式、口音变化等将导致系统性能下降 持密切的联系,并且一起发展 2010 年科大讯飞推出新一代 “语音云”平台 教育和娱乐: 语音教具、语音(普通话)评测、智能语音家电和玩具 2011 训练和测试数据差异较大时,系统性能将下降 年腾讯公司推出 QQ云语音面板 比如:机器学习、小波分析、模式识别、神经网络、人 公共安全及服务: 语音监听与跟踪、家庭服务、宾馆服务、旅行社 …… Nuance, Google, 微软 , IBM, , 盛大,华为等也投入巨资 工智能等
语音信号处理 实验 数字信号处理 傅里叶变换 DTFT

实验二语音信号处理语音信号处理综合运用了数字信号处理的理论知识,对信号进行计算及频谱分析,设计滤波器,并对含噪信号进行滤波。
一、(1)语音信号的采集:利用Windows下的录音机,录制一段话音。
然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,播放语音信号,并绘制原始语音信号;改变采样率为原来的1/2倍,1/4倍,1/20倍,1/50倍,1/100倍等,分别画出降采样前后的信号波形和频谱图,分析采样前后信号的变化。
程序:y=wavread('a.wav');>> [y,fs,bits]=wavread('a.wav');>> y1=wavread('a.wav',1000);>> y2=wavread('a.wav',[500,1500]);>> subplot(311);plot(y);title('读a的信号图');>> subplot(312);plot(y1);title('读取前1000点的采样值放在向量y中');>> subplot(313);plot(y2);title('读取从500点到1500点的采样值放在向量y中');y=wavread('a.wav');>> [y,fs,bits]=wavread('a.wav');>> y11=resample(y,1,2); %采样率变为原来的1/2倍y12=fft(y11);>> y21=resample(y,1,20);>> y22=fft(y21);>> subplot(211);plot(y11);title('采样率变为原来的1/2');subplot(212);plot(abs(y12));title('采样率变为原来的1/2');subplot(211);plot(y21);title('采样率变为原来的1/20');>> subplot(212);plot(abs(22));title('采样率变为原来的1/20的频谱');sound(y,22050,16); sound(y11,22050,16);二、重构原信号:降采样后,信号的采样率和采样点数同时变化。
语音信号处理

学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:实验四 减谱法语音增强技术研究一、实验目的本实验要求掌握减谱法语音增强的原理,会利用已学的相关语音特征,构建语音特征矢量,然后自己设计减谱法语音增强程序(也可参考相关文献),能显示干净语音和加噪语音信号及处理后的结果语音信号波形,分析实验结果,写出报告。
二、实验原理谱减法的基本原理谱相减方法是基于人的感觉特性,即语音信号的短时幅度比短时相位更容易对人的听觉系统产生影响,从而对语音短时幅度谱进行估计,适用于受加性噪声污染的语音。
由于语音是短时平稳的,所以在短时谱幅度估计中认为它是平稳随机信号,假设)(m s 、)(m n 和)(m y 分别代表语音、噪声和带噪语音,)(ωs S 、)(ωn S 和)(ωy S 分别表示其短时谱。
假设噪声)(m n 是与语音)(m s 不相关的加性噪声。
于是得到信号的加性模型:)()()(m n m s m y += (4-1)对功率谱有 )()()()(|)(||)(||)(|**222ωωωωωωωw w w w w w w N S N S N S Y +++= (4-4) 原始语音的估值为]|)([||)(||)(|222ωωωw w w N E Y S -=∧(4-5)只要在频域用(4-5)式得到纯净语音的谱估计,就可以根据(4-6)式得到增强后的语音。
[])()(ˆ)(ˆωϕωj w e s IFFT m s=错误!未找到引用源。
(4-6)根据前面分析,我们可以给出谱相减算法的整个算法流程,如图4-1所示:图4-1 谱减法的算法流程三、实验程序带噪学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩:1、噪声叠加到信号上的比较%在噪声环境下语音信号的增强%语音信号为读入的声音文件%噪声为正态随机噪声clear;input=wavread('C:\Users\Administrator\Desktop\yuyinxinhao\b1.wav');count=length(input);noise1=0.1*randn(1,count);signal=input;for i=1:countvoice1(i)=signal(i)+noise1(i);endnoise2=0.01*randn(1,count);for i=1:countvoice2(i)=signal(i)+noise2(i);endnoise3=randn(1,count);signal=input;for i=1:countvoice3(i)=signal(i)+noise3(i);endn=1:count;figure %对比纯净语音信号,噪音信号和带噪语音信号subplot(3,1,1);plot(n,signal);title('纯净信号')subplot(3,1,2);plot(n,noise1);title('噪音信号')subplot(3,1,3);plot(n,voice1);title('带噪信号')figure %对比纯净语音信号频谱,噪音信号和带噪信号频谱Fss=fft(signal);subplot(3,1,1);plot(n,abs(Fss));title('纯净信号频谱')Fss1=fft(noise1);subplot(3,1,2);plot(n,abs(Fss1));学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226 课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩:title('噪音信号频谱')Fv1=fft(voice1);subplot(3,1,3)plot(n,abs(Fv1));title('带噪信号的频谱')figure %对比纯净语音信号,噪音信号和带噪语音信号subplot(3,1,1);plot(n,signal);title('纯净信号')subplot(3,1,2);plot(n,noise2);title('噪音信号')subplot(3,1,3);plot(n,voice2);title('带噪信号')figure %对比纯净语音信号频谱,噪音信号和带噪信号频谱Fss=fft(signal);subplot(3,1,1);plot(n,abs(Fss));title('纯净信号频谱')Fss2=fft(noise2);subplot(3,1,2);plot(n,abs(Fss2));title('噪音信号频谱')Fv2=fft(voice2);subplot(3,1,3)plot(n,abs(Fv2));title('带噪信号的频谱')figure %对比纯净语音信号,噪音信号和带噪语音信号subplot(3,1,1);plot(n,signal);title('纯净信号')subplot(3,1,2);plot(n,noise3);title('噪音信号')subplot(3,1,3);plot(n,voice3);title('带噪信号')figure %对比纯净语音信号频谱,噪音信号和带噪信号频谱学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩:Fss=fft(signal);subplot(3,1,1);plot(n,abs(Fss));title('纯净信号频谱')Fss3=fft(noise3);subplot(3,1,2);plot(n,abs(Fss3));title('噪音信号频谱')Fv3=fft(voice3);subplot(3,1,3)plot(n,abs(Fv3));title('带噪信号的频谱')2、利用减谱法的基本原理给语音信号降噪噪声为0.1*randn(1,coun) 纯净信号为输入信号%在噪声环境下语音信号的增强%语音信号为读入的声音文件%噪声为正态随机噪声clear;input=wavread('C:\Users\Administrator\Desktop\yuyinxinhao\b1.wav');count=length(input);noise=1*randn(1,count);signal=input';for i=1:countvoice(i)=signal(i)+noise(i);endFv=fft(voice);anglev=angle(Fv);Fn=fft(noise);power1=(abs(Fv)).^2;power2=(abs(Fn)).^2;power3=power1-power2;power4=sqrt(power3);Fs=power4.*exp(j*anglev);sound=ifft(Fs);n=1:count;%纯净语音信号频谱Fss=fft(signal);figure %对比纯净语音信号和输出信号subplot(2,1,1)学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩:plot(n,signal);title('纯净信号')subplot(2,1,2)plot(n,sound);title('输出信号')figure %对比纯净语音信号频谱和输出语音信号频谱subplot(2,1,1)plot(n,abs(Fss));title('纯净信号频谱')subplot(2,1,2)plot(n,abs(Fs));title('输出信号频谱')max_v=max(voice); %对带噪信号抽样值点进行归一化处理re_voice=voice/max_v;%对输出信号抽样点值进行归一化处理max_s=max(sound);re_sound=sound/max_s;%读出带噪语音信号,存为'1001.wav'wavwrite(re_voice,5500,16,'1001');%读出处理后语音信号,存为'1002.wav'wavwrite(re_sound,5500,16,'1002')3、利用改进的减谱法给语音信号降噪噪声为0.1*randn(1,coun) 纯净信号为输入信号%在噪声环境下语音信号的增强%语音信号为读入的声音文件%噪声为正态随机噪声clear;input=wavread('C:\Users\Administrator\Desktop\yuyinxinhao\b1.wav');count=length(input);noise=0.1*randn(1,count);signal=input';for i=1:countvoice(i)=signal(i)+noise(i);endFv=fft(voice);anglev=angle(Fv);Fn=fft(noise);power1=(abs(Fv)).^2;power2=(abs(Fn)).^2;学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226 课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩: for i=1:countif(power1(i)>=3*power2(i))power3(i)=power1(i)-3*power2(i);elsepower3(i)=0.01*power2(i);endendpower4=sqrt(power3);Fs=power4.*exp(j*anglev);sound=ifft(Fs);n=1:count;%纯净语音信号频谱Fss=fft(signal);figure %对比纯净语音信号和输出信号subplot(2,1,1)plot(n,signal);title('纯净信号')subplot(2,1,2)plot(n,sound);title('输出信号')figure %对比纯净语音信号频谱和输出语音信号频谱subplot(2,1,1)plot(n,abs(Fss));title('纯净信号频谱')subplot(2,1,2)plot(n,abs(Fs));title('输出信号频谱')四、实验结果1、噪声叠加到信号上的比较(1)噪声为0.1*randn(1,count)学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020004000600080001000012000140001600018000-0.200.2纯净信号020004000600080001000012000140001600018000-0.500.5噪音信号020004000600080001000012000140001600018000-0.50.5带噪信号020004000600080001000012000140001600018000050100纯净信号频谱050噪音信号频谱2000400060008000100001200014000160001800050100带噪信号的频谱(2)噪声为0.01*randn(1,count)学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020004000600080001000012000140001600018000-0.200.2纯净信号020004000600080001000012000140001600018000-0.0500.05噪音信号020004000600080001000012000140001600018000-0.20.2带噪信号020004000600080001000012000140001600018000050100纯净信号频谱0200040006000800010000120001400016000180005噪音信号频谱02000400060008000100001200014000160001800050100带噪信号的频谱(3)噪声为randn(1,count)学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020004000600080001000012000140001600018000-0.200.2纯净信号020004000600080001000012000140001600018000-505噪音信号-505带噪信号2、利用减谱法的基本原理给语音信号降噪噪声为0.1*randn(1,coun) 纯净信号为输入信号20004000600080001000012000140001600018000-0.2-0.100.10.2纯净信号-0.50.5输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱50100输出信号频谱3、利用改进的减谱法给语音信号降噪噪声为0.1*randn(1,coun) 纯净信号为输入信号 (1)参数取a=3,b=0.0120004000600080001000012000140001600018000-0.2-0.100.10.2纯净信号20004000600080001000012000140001600018000-0.1-0.0500.050.1输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020004000600080001000012000140001600018000020406080纯净信号频谱0200040006000800010000120001400016000180000204060输出信号频谱(2)参数取a=10,b=0.01-0.2-0.10.10.2纯净信号-0.1-0.050.050.1输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱020406080输出信号频谱(3)参数取a=0.8,b=0.01020004000600080001000012000140001600018000-0.2-0.10.10.2纯净信号020004000600080001000012000140001600018000-0.4-0.20.20.4输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱20004000600080001000012000140001600018000020406080输出信号频谱(4)参数取a=3,b=0.0001020004000600080001000012000140001600018000-0.2-0.10.10.2纯净信号-0.1-0.050.050.1输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱020004000600080001000012000140001600018000020406080输出信号频谱(5)参数取a=3,b=0.1020004000600080001000012000140001600018000-0.2-0.10.10.2纯净信号20004000600080001000012000140001600018000-0.2-0.10.10.2输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱20004000600080001000012000140001600018000020406080输出信号频谱五、实验分析1、噪声叠加到信号上时,噪声会对信号产生较大影响,噪声加强会使信号被噪声淹没;噪声减弱,对信号的影响减小;2、用减谱法的基本原理対带噪信号进行处理后,信号质量明显提升,从而得到较纯净的语音信号;3、用改进的减谱法対带噪信号进行处理后,信号质量更好,语音信号更纯净。
语音信号处理实验指导书

语音信号处理实验指导书实验一:语音信号的采集与播放实验目的:了解语音信号的采集与播放过程,掌握采集设备的使用方法。
实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 将麦克风插入电脑的麦克风插孔。
2. 打开电脑的录音软件(如Windows自带的录音机)。
3. 在录音软件中选择麦克风作为录音设备。
4. 点击录音按钮开始录音,讲话或者唱歌几秒钟。
5. 点击住手按钮住手录音。
6. 播放刚刚录制的语音,检查录音效果。
7. 将扬声器或者耳机插入电脑的音频输出插孔。
8. 打开电脑的音频播放软件(如Windows自带的媒体播放器)。
9. 选择要播放的语音文件,点击播放按钮。
10. 检查语音播放效果。
实验二:语音信号的分帧与加窗实验目的:了解语音信号的分帧和加窗过程,掌握分帧和加窗算法的实现方法。
实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段语音。
2. 将录制的语音信号进行分帧处理。
选择合适的帧长和帧移参数。
3. 对每一帧的语音信号应用汉明窗。
4. 将处理后的语音帧进行播放,检查分帧和加窗效果。
实验三:语音信号的频谱分析实验目的:了解语音信号的频谱分析过程,掌握频谱分析算法的实现方法。
实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段语音。
2. 将录制的语音信号进行分帧处理。
选择合适的帧长和帧移参数。
3. 对每一帧的语音信号应用汉明窗。
4. 对每一帧的语音信号进行快速傅里叶变换(FFT)得到频谱。
5. 将频谱绘制成图象,观察频谱的特征。
6. 对频谱进行谱减法处理,去除噪声。
7. 将处理后的语音帧进行播放,检查频谱分析效果。
实验四:语音信号的降噪处理实验目的:了解语音信号的降噪处理过程,掌握降噪算法的实现方法。
实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段带噪声的语音。