2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷
学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
江苏省盐城市八年级(上)期末数学试卷

江苏省盐城市八年级(上)期末数学试卷 一、选择题 1.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形 2.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .5 3.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 4.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .22320m mn n -++=B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --=5.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案:方案(一):第一次提价%p ,第二次提价%q ;方案(二):第一次提价%q ,第二次提价%p ;方案(三):第一、二次提价均为2%p q +; 其中p ,q 是不相等的正数.有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价;③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价.其中正确的有( )A .②③B .①③C .①④D .②④6.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:507.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x +1,若这两个三角形全等,则x的值为()A.2 B.2或C.或D.2或或8.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA9.以下问题,不适合用普查的是()A.旅客上飞机前的安检B.为保证“神州9号”的成功发射,对其零部件进行检查C.了解某班级学生的课外读书时间D.了解一批灯泡的使用寿命10.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数二、填空题11.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是_____.12.地球的半径约为6371km,用科学记数法表示约为_____km.(精确到100km)13.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,分别与腰AB,AC交于点D,E.给出下列结论:正确的结论有:_____(把你认为正确的结论的序号都填上).①AE=BE;②AD=DE;③∠EBC=∠A;④∠BED=∠C.14.2x x可以取的最小整数为______.15.如图,在△PAB 中,PA=PB ,D 、E 、F 分别是边PA ,PB ,AB 上的点,且AD=BF ,BE=AF ,若∠DFE=40°,则∠P=____°.16.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.17.因式分解:24ax ay -=__________.18.等腰三角形的顶角为76°,则底角等于__________.19.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.20.比较大小:-2______-3.三、解答题21.如图,已知直角三角形ABC 中,ABC ∠为直角,12AB =、16BC =,三角形ACD 为等腰三角形,其中503AD DC ==,且//AB CD ,E 为AC 中点,连接ED 、BE 、BD ,则三角形BDE 的面积为___________.22.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a =_____,b =______.(2)求甲、乙两车相遇后y 与x 之间的函数关系式,并写出相应的自变量x 的取值范围.23.如图,某斜拉桥的主梁AD 垂直于桥面MN 于点D ,主梁上两根拉索AB 、AC 长分别为13米、20米.(1)若拉索AB ⊥AC ,求固定点B 、C 之间的距离;(2)若固定点B 、C 之间的距离为21米,求主梁AD 的高度.24.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.25.(1)计算:0101)|32|4+(2)求x 的值:8(x +1)3=1四、压轴题 26.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.27.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).28.已知ABC 是等腰直角三角形,∠C=90°,点M 是AC 的中点,延长BM 至点D ,使DM =BM ,连接AD .(1)如图①,求证:DAM ≌BCM ;(2)已知点N 是BC 的中点,连接AN .①如图②,求证:ACN ≌BCM ;②如图③,延长NA 至点E ,使AE =NA ,连接,求证:BD ⊥DE .29.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)30.ABC 是等边三角形,作直线AP ,点C 关于直线AP 的对称点为D ,连接AD ,直线BD 交直线AP 于点E ,连接CE .(1)如图①,求证:CE AE BE +=;(提示:在BE 上截取BF DE =,连接AF .) (2)如图②、图③,请直接写出线段CE ,AE ,BE 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若26BD AE ==,则CE =__________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.2.C解析:C【解析】试题分析:A 31,故错误;B 2<﹣1,故错误;C .﹣12<2,故正确;D.5>2,故错误;故选C.【考点】估算无理数的大小.3.A解析:A【解析】【分析】根据二次根式的性质,将所求式子化简为3329a ba ba b a-=23a ba ab aba b a⨯⨯-⨯⨯即可求解.【详解】解:∵a>0,b>0,∴3329a ba ba b a-=23a ba ab aba b a⨯⨯-⨯⨯=15233ab ab ab-=故选:A.【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.4.B解析:B【解析】【分析】作图,根据等腰三角形的性质和勾股定理可得2220m mn n+-=,整理即可求解【详解】解:如图,222m m n m,22222m n mn m,2220m mn n+-=.故选:B.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.5.B解析:B【解析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解.【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++方案(二):(1%)(1%)1%%%%q p q p q p ++=+++∴方案(一)、方案(二)提价一样∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知: 21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多∴③对,④错∴①③对故选:B.【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.6.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h ,从而可得走后一半路程的速度为60km/h ,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h ,因为匀速行驶了一半的路程后将速度提高了20km/h ,所以以后的速度为20+40=60km/h ,时间为4060×60=40分钟, 故该车到达乙地的时间是当天上午10:40,故选B .本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.7.A解析:A【解析】【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x-2与4是对应边,或3x-2与5是对应边,计算发现,3x-2=5时,2x-1≠4,故3x-2与5不是对应边.【详解】解:∵△ABC三边长分别为3,4,5,△DEF三边长分别为3,3x-2,2x-1,这两个三角形全等,①3x-2=4,解得:x=2,当x=2时,2x+1=5,两个三角形全等.②当3x-2=5,解得:x=,把x=代入2x+1≠4,∴3x-2与5不是对应边,两个三角形不全等.故选A.【点睛】此题主要考查了全等三角形的性质,分类讨论正确得出对应边是解题关键.8.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.9.D解析:D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.二、填空题11.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC-CD= -1,∴AE= -1,∴点E表示的实数是 -1.5-1【解析】∵∠ABC=90°,AB=2,BC=1,∴225,∵CD=CB=1,∴5 -AB BC1,∴5,∴点E512.4×103.【解析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.13.③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=B解析:③【解析】【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【详解】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BD=BE=BC,∴∠ACB=∠BEC,∠BDE=∠BED,∴∠BEC=∠ABC=∠ACB,∴∠EBC=∠A,无法得到①AE=BE;②AD=DE;④∠BED=∠C.故答案为:③.【点睛】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.14.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.15.100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解析:100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB ,∴∠A=∠B ,在△ADF 和△BFE 中,AD BF A B AF BE =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BFE (SAS ),∴∠ADF=∠BFE ,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF ,∴∠A=∠DFE=40°,∴∠P=180°-∠A -∠B=100°;故答案为:100.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.16.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.17.【解析】【分析】运用提公因式法求解,公因式是2a.【详解】故答案为:【点睛】考核知识点:因式分解.掌握提公因式法是关键.解析:()22a x y -【解析】【分析】运用提公因式法求解,公因式是2a.【详解】()2422ax ay a x y -=-故答案为:()22a x y -【点睛】考核知识点:因式分解.掌握提公因式法是关键.18.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.19.3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键. 20.>【解析】, .解析:>【解析】23< ,23∴->- .三、解答题21.563【解析】【分析】过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,分别求出EG 、EH 的长,利用BDE ABC BEC EDC S S S S ∆∆∆∆=--求解即可.【详解】过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,如图所示,∵△ABC 是直角三角形,AB=12,BC=16,∴222AC AB BC =+,即2222121620AC AB BC +=+=, ∵点C 为斜边AC 的中点,∴BE=CE=12AC=120102⨯= ∴CG=1116822BC =⨯=, 在Rt △EGC 中,22221086EC CG --=,∵AB ∥CD ,∠ABC=90°∴∠DCB=90°∵ EG ⊥BC ,FH ⊥DC ,∴∠EGC=∠DCB=∠EHC=90°∴四边形EGCH 为矩形,∴EH=GC=6, ∴BDE ABCBEC EDC S S S S ∆∆∆∆=--=111222BC CD BC EG EH DC -- =150115016166823223⨯⨯-⨯⨯-⨯⨯, =563. 【点睛】本题主要考查了勾股定理以及等腰三角形的性质,正确作出辅助线是解题的关键.22.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩, 解得11135270k b =⎧⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.23.(1)BC2)12米.【解析】【分析】(1)用勾股定理可求出BC 的长;(2)设BD=x 米,则BD=(21-x )米,分别在Rt ABD ∆中和Rt ACD ∆中表示出2AD ,于是可列方程22221320(21)x x -=--,解方程求出x,然后可求AD 的长.【详解】解:(1)∵AB ⊥AC∴=(2)设BD=x 米,则BD=(21-x )米,在Rt ABD ∆中,2222213AD AB BD x =-=-在Rt ACD ∆中,2222220(21)AD AC CD x =-=--,∴22221320(21)x x -=--,∴x=5,∴12AD =(米).【点睛】本题考查了勾股定理的应用,根据勾股定理列出方程是解题关键.24.(1)560;(2)快车的速度是80km/h ,慢车的速度是60km/h .(3)y=-60x+540(8≤x≤9).【解析】【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D ,E 点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴90 860 k bk b+⎧⎨+⎩==,解得:60540kb-⎧⎨⎩==.∴线段DE所表示的y与x之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E 点坐标是解题关键.25.(1)12)x=﹣12.【解析】【分析】(1)首先计算0次幂、绝对值、开方,然后从左向右依次计算,求出算式的值是多少即可;(2)根据立方根的含义和求法,求出x的值是多少即可.【详解】(1)1)|2|+=1+22=1(2)∵8(x+1)3=1,∴(x+1)3=18,∴x+1=12,解得:x =﹣12. 【点睛】 本题考查实数的混合运算和开立方的方法解方程,解决此类题目的关键是熟练掌握乘方、二次根式、绝对值等考点的运算.四、压轴题26.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点; (2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD =90°时,∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t)∴t=8,∴点E(8,21);当∠HTD=90°时,由于EH与x轴不平行,故∠HTD不可能为90°;故点E的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.27.(1)A(0,3),B(4,0);(2)D(1,-265);(3)见解析【解析】【分析】(1)根据非负数的性质求解; (2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵222110a b a b --++-=,∴220,2110a b a b --=+-=,∴2202110a b a b --=⎧⎨+-=⎩ ,∴34a b =⎧⎨=⎩,∴A (0,3),B (4,0);(2)如图1中,设直线CD 交y 轴于E .∵CD//AB ,∴S △ACB =S △ABE ,∴12AE×BO=16,∴12×AE×4=16,∴AE=8,∴E (0,-5),设直线AB 的解析式为y=kx+b ,将点A (0,3),(4,0)代入解析式中得:343k b ⎧=-⎪⎨⎪=⎩ ,∴直线AB 的解析式为y=334x -+,∵AB//CD ,∴直线CD 的解析式为y=34x c -+, 又∵点E (0,-5)在直线CD 上, ∴c=5,即直线CD 的解析式为y=354x --, 又∵点C (-3,m )在直线CD 上, ∴m=115, ∴C (-3, 115), ∵点A (0,3)平移后的对应点为C (-3,115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M ,∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.28.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M是AC中点,点N是BC中点,∴CM=12AC,CN=12BC,∵△ABC是等腰直角三角形,∴AC=BC,∴CM=CN,在△BCM和△ACN中,∵CM CNC CBC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BCM≌△ACN(SAS);②证明:取AD中点F,连接EF,则AD=2AF,∵△BCM≌△ACN,∴AN=BM,∠CBM=∠CAN,∵△DAM≌△BCM,∴∠CBM=∠ADM,AD=BC=2CN,∴AF=CN,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.29.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.30.(1)见解析;(2)图②中,CE+BE=AE ,图③中,AE+BE=CE ;(3)1.5或4.5【解析】【分析】(1)在BE上截取BF DE=,连接AF,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE= BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE= BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE =CF+EF,即可解决问题;(3)根据线段CE,AE,BE,BD之间的数量关系分别列式计算即可解决问题.【详解】(1)证明:在BE上截取BF DE=,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴∠D=∠ABD=12(180°-∠BAC-2x)=60°-x,∴∠AEB=60-x+x=60°.∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵BF DE=,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,∴CE+AE= BF+FE =BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB =AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE =60°∴∠EAF=∠BAE+∠BAF =60°∴△AFE为等边三角形,∴EF=AE,∴AE=BE+BF= BE+CE,即CE+BE=AE;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB =AD ,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC ,BE=CF ,∴△ACF ≌△ABE ,∴AE=AF ,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF =60°∴∠EAF=∠BAF+∠BAE =60°∴△AFE 为等边三角形,∴EF=AE ,∴CE =EF+CF= AE + BE ,即AE+BE=CE ;(3)在(1)的条件下,若26BD AE ==,则AE=3,∵CE+AE=BE ,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.5;在(2)的条件下,若26BD AE ==,则AE=3,因为图②中,CE+BE=AE ,而BD=BE-DE=BE-CE ,所以BD 不可能等于2AE ;图③中,若26BD AE ==,则AE=3,∵AE+BE=CE,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.5.即CE=1.5或4.5.【点睛】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。
2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷

2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母填涂在答题卡相应位置上.1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形3.(3分)下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数4.(3分)下列各组数不能作为直角三角形的边长的是()A.3,4,5 B.8,15,17 C.7,9,11 D.9,12,155.(3分)小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.7≤x≤1.8 B.1.705<x<1.715C.1.705≤x<1.715 D.1.705≤x≤1.7156.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个7.(3分)关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限8.(3分)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()A.x<B.﹣<x<1 C.x<1 D.﹣1<x<1二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请将答案直接写在答题卡相应位置上.9.(2分)的平方根是.10.(2分)在平面直角坐标系中,点P(2,﹣3)在第象限.11.(2分)某人一天饮水1890mL,用四舍五入法对1890mL精确到1000mL表示为.12.(2分)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.13.(2分)如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.14.(2分)比较大小:﹣(填“>”或“<”).15.(2分)如图,在△ABC中,AB=AC,∠A=40°,BD是△ABC的角平分线,则∠ABD=°.16.(2分)如图,AB=9cm,CA⊥AB于A,DB⊥AB于B,且AC=3m,P点从B 向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(2分)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m 的值是.18.(2分)如图,直线y=2x+2与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C的对应点C′恰好落在直线AB上,则点C'的坐标为.三、解答题:本大题共10小题,共76分,请在答题卡指定区域内作答,解答时写出必要的文字说明、推理过程或演算步骤.19.(8分)解答下列各题:(1)计算:﹣+(2017﹣π)0;(2)求x的值:(x﹣2)3﹣32=0.20.(6分)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.21.(6分)已知:y与x﹣3成正比例,且x=4时y=3.(1)求y与x之间的函数关系式;(2)当y=﹣12时,求x的值.22.(6分)已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.23.(7分)如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN ⊥CD.24.(7分)在如图10×9的网格图中,△ABC和△CDE都是等腰直角三角,其顶点都在格点上,若点A、C的坐标分别为(﹣5,﹣2)和(﹣1,0).(1)建立平面直角坐标系,写出点B、D、E的坐标;(2)求△ABC的面积.25.(8分)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.26.(8分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.27.(10分)如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x的图象于点C、D.(1)求一次函数y1=kx+b的表达式;(2)若点M是线段OD的中点,求a的值.28.(10分)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为km/h,H点坐标.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母填涂在答题卡相应位置上.1.(3分)(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.(3分)(2016秋•建湖县期末)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形【分析】根据全等三角形的判定方法逐项判断即可.【解答】解;在A中,两个三角形满足的是SSA,不能判定两个三角形全等;在B中,两个三角形满足ASA,能判定两个三角形全等;在C中,两个三角形满足SSS,能判定两个三角形全等;在D中,两个三角形满足HL,能判定两个三角形全等;∴不能判断两个三角形全等的是A,故选A.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.3.(3分)(2017春•兰陵县期末)下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数【分析】根据实数的分类、平方根和立方根的定义进行选择即可.【解答】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选C.【点评】本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.4.(3分)(2016秋•建湖县期末)下列各组数不能作为直角三角形的边长的是()A.3,4,5 B.8,15,17 C.7,9,11 D.9,12,15【分析】根据勾股定理的逆定理对四个选项中所给的数据看是否符合两个较小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,能构成直角三角形,故不符合题意;B、82+152=172,能构成直角三角形,故不符合题意;C、72+92≠112,能构成直角三角形,故不符合题意;D、92+122=152,能构成直角三角形,故不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理;如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.(3分)(2016秋•建湖县期末)小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.7≤x≤1.8 B.1.705<x<1.715C.1.705≤x<1.715 D.1.705≤x≤1.715【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:据题意可知,他实际身高可能是最矮1.705米,最高小于1.715米.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.6.(3分)(2016秋•建湖县期末)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB 于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.【点评】本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.7.(3分)(2016•玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限【分析】直接根据一次函数的性质选择不正确选项即可.【解答】解:A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;B、当x=﹣1时,y=﹣k+k=0,此选项正确;C、当k>0时,y随x的增大而增大,此选项正确;D、不能确定l经过第一、二、三象限,此选项错误;故选D.【点评】本题主要考查了一次函数的性质,解题的关键是掌握一次函数的性质,一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).此题难度不大.8.(3分)(2016秋•建湖县期末)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()A.x<B.﹣<x<1 C.x<1 D.﹣1<x<1【分析】将点A(m,)代入y=4x+4求出m的值,观察直线y=kx+b落在直线y=4x+4的下方且直线y=kx+b落在x轴上方的部分对应的x的取值即为所求.【解答】解:∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),∴4m+4=,∴m=﹣,∴直线y=kx+b与直线y=4x+4的交点A的坐标为(﹣,),直线y=kx+b与x 轴的交点坐标为B(1,0),又∵当x<1时,kx+b>0,当x>﹣时,kx+b<4x+4,∴0<kx+b<4x+4的解集为﹣<x<1.故选B.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请将答案直接写在答题卡相应位置上.9.(2分)(2016秋•建湖县期末)的平方根是±3.【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:∵=9,9的平方根是±3,∴的平方根是±3.故答案为±3.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.10.(2分)(2016秋•建湖县期末)在平面直角坐标系中,点P(2,﹣3)在第四象限.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(2,﹣3)在第四象限.故答案为:四.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(2分)(2016秋•建湖县期末)某人一天饮水1890mL,用四舍五入法对1890mL 精确到1000mL表示为2×103.【分析】先利用科学记数法表示,然后把百位上的数字8进行四舍五入即可.【解答】解:1890mL≈2×103(精确到1000mL).故答案为2×103.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.(2分)(2016•广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为(﹣2,2).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.(2分)(2016秋•建湖县期末)如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于2.【分析】过点O作OF⊥AB于F,作OG⊥CD于G,然后根据角平分线上的点到角的两边的距离相等可得OE=OF=OG,再根据两直线平行,同旁内角互补求出∠BAC+∠ACD=180°,然后求出∠EOF+∠EOG=180°,从而判断出E、O、G三点共线,然后求解即可.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E、O、G三点共线.14.(2分)(2016秋•建湖县期末)比较大小:﹣<(填“>”或“<”).【分析】先比较出﹣1与1的大小关系,再比较出与的大小关系,最后根据两个负数比较大小,绝对值大的反而小,即可得出答案.【解答】解:∵﹣1>1,∴,∴:﹣<;故答案为:<【点评】此题考查了实数的大小比较,解题的关键是根据两个负数比较大小,绝对值大的反而小.15.(2分)(2016秋•建湖县期末)如图,在△ABC中,AB=AC,∠A=40°,BD是△ABC的角平分线,则∠ABD=35°.【分析】由已知根据等腰三角形的性质易得两底角的度数,结合角平分线的性质和三角形内角和定理即可求解.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣40°)÷2=70°,又∵BD为∠ABC的平分线,∴∠ABD=35°,故答案为:35.【点评】本题考查了三角形内角和定理及等腰三角形的性质、角平分线的性质;综合运用各种知识是解答本题的关键.16.(2分)(2016秋•建湖县期末)如图,AB=9cm,CA⊥AB于A,DB⊥AB于B,且AC=3m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动3分钟后△CAP与△PQB全等.【分析】由全等三角形的性质可得到PB=AC=3,然后依据时间=路程÷速度求解即可.【解答】解:∵△CAP与△PQB全等,∴AC=PB=3.∴运动时间=3÷1=3.故答案为:3.【点评】本题主要考查的是全等三角形的性质,依据题意得PB=3是解题的关键.17.(2分)(2016秋•建湖县期末)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m的值是﹣9.【分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣1,y=5;x=2时,y=﹣1代入即可得出k、b的值,故可得出一次函数的解析式,再把x=6代入即可求出m的值.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣1时y=5;x=2时y=﹣1,∴,解得,∴一次函数的解析式为y=﹣2x+3,∴当x=6时,y=﹣2×6+3=﹣9,即m=﹣9.故答案是:﹣9.【点评】本题考查的是待定系数法求一次函数解析式.解题时,利用了一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.18.(2分)(2016秋•建湖县期末)如图,直线y=2x+2与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C 的对应点C′恰好落在直线AB上,则点C'的坐标为(﹣3,﹣6+2).【分析】根据直线y=2x+2可以求得点A和点B的坐标,从而可以求得点C到OB的距离,从而可以得到C′的横坐标,然后代入y=2x+2,即可得到点C′的坐标,本题得以解决.【解答】解:∵y=2x+2,∴当x=0时,y=2;当y=0时,x=﹣,∴点A(,0),点B(0,2),∵△OBC是等边三角形,OB=,∴点C到OB的距离是:,将x=﹣3代入y=2x+2,得y=﹣6+2,∴点C′的坐标为(﹣3,﹣6+2),故答案为:(﹣3,﹣6+2).【点评】本题考查一次函数图象上点的坐标特征、等边三角形的性质、坐标与图形变化﹣平移,解题的关键是明确题意,找出所求问题需要的条件,利用等边三角形的性质和平移的性质解答.三、解答题:本大题共10小题,共76分,请在答题卡指定区域内作答,解答时写出必要的文字说明、推理过程或演算步骤.19.(8分)(2016秋•建湖县期末)解答下列各题:(1)计算:﹣+(2017﹣π)0;(2)求x的值:(x﹣2)3﹣32=0.【分析】(1)原式利用平方根、立方根定义,以及零指数幂法则计算即可得到结果;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】解:(1)原式=++1=;(2)方程整理得:(x﹣2)3=64,开立方得:x﹣2=4,解得:x=6.【点评】此题考查了实数的运算,以及立方根,熟练掌握运算法则及立方根定义是解本题的关键.20.(6分)(2015•怀柔区二模)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.【分析】首先由AB∥DE,可以得到∠B=∠EDF,然后利用SAS证明△ABC与△DEF 全等,最后利用全等三角形的性质即可解决问题.【解答】证明:∵AB∥DE,∴∠B=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=FE.【点评】此题考查全等三角形的判定和性质,关键是根据AB∥DE得到∠B=∠EDF,再利用SAS证明全等.21.(6分)(2016秋•建湖县期末)已知:y与x﹣3成正比例,且x=4时y=3.(1)求y与x之间的函数关系式;(2)当y=﹣12时,求x的值.【分析】(1)根据正比例函数的关系式可得y=k(x﹣3),再把x=4时y=3代入即可得出k的值;(2)把y的再代入即可得出x的值.【解答】解:(1)设y与x之间的函数关系式y=k(x﹣3),把x=4时y=3代入得:k(4﹣3)=3,解得k=3,则y与x之间的函数关系式y=3(x﹣3)即y=3x﹣9;(2)当y=﹣12时,3x﹣9=﹣12,解得x=﹣1.【点评】本题考查了用待定系数法求一次函数的解析式,掌握正比例函数的解析式y=kx是解题的关键.22.(6分)(2016秋•建湖县期末)已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.【分析】(1)根据角平分线上的点到坐标轴的距离相等,课的答案;(2)根据坐标的和,可得方程.【解答】解:(1)由题意,得4x=x﹣3,解得x=﹣1∴点P在第三象限的角平分线上时,x=﹣1.(2)由题意,得4x+[﹣(x﹣3)]=9,则3x=6,解得x=2,此时点P的坐标为(8,﹣1),∴当点P在第四象限,且到两坐标轴的距离之和为9时,x=2.【点评】本题考查了点的坐标,理解题意得出方程是解题关键.23.(7分)(2016秋•建湖县期末)如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.【分析】连接CM、DM,根据直角三角形斜边上的中线等于斜边的一半可得CM=DM=AB,再根据等腰三角形三线合一的性质证明即可.【解答】证明:如图,连接CM、DM,∵∠ACB=∠ADB=90°,M为AB的中点,∴CM=AB,DM=AB,∴CM=DM=AB,∵N为CD的中点,∴MN⊥CD.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.24.(7分)(2016秋•建湖县期末)在如图10×9的网格图中,△ABC和△CDE 都是等腰直角三角,其顶点都在格点上,若点A、C的坐标分别为(﹣5,﹣2)和(﹣1,0).(1)建立平面直角坐标系,写出点B、D、E的坐标;(2)求△ABC的面积.【分析】(1)根据图形的特点建立平面直角坐标系即可;(2)根据三角形面积公式即可得到结论.【解答】解:(1)建立平面直角坐标系,如图所示,∴B(﹣3,4),D(2,﹣2),E(1,3);(2)∵BC2=22+42=20,AC2=22+42=20,∵∠ACB=90°,∵△ABC的面积=AC•BC,∵AC=BC,∴△ABC的面积=BC2=10.【点评】本题考查了三角形的面积的计算,坐标与图形的性质,勾股定理,正确的理解题意是解题的关键.25.(8分)(2016秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.【分析】过E作AC的平行线于AD延长线交于G点,可证明△DEG≌△DCA,可得EG=EF,可证明EF∥AB.【解答】解:过E作AC的平行线于AD延长线交于G点,∵EG∥AC在△DEG和△DCA中,,∴△DEG≌△DCA(ASA),∴EG=EF,∠G=∠CAD,又EF=AC故EG=AC∵AD平分∠BAC,∴∠BAD=∠CAD,∵EG=EF,∴∠G=∠EFD,∴∠EFD=∠BAD,∴EF∥AB.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证△DEG≌△DCA是解题的关键.26.(8分)(2016秋•建湖县期末)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.【分析】由四边形ABCD为矩形,AB=6cm,BC=10cm,又由折叠的性质,即可得AF=AD,然后在Rt△ABF中,利用勾股定理求得BF的长,即可得CF的长,然后设CE=xcm,在Rt△FCE中,由勾股定理即可得方程:(6﹣x)2=22+x2,解此方程即可求得CE的长【解答】解:∵△AFE是由△ADE折叠得到,∴AF=AD=10cm,FE=DE,在Rt△ABF中,BF===8cm,∴CF=2cm,设CE=xcm,则FE=DE=(6﹣x)cm,在Rt△FCE中,FE2=EC2+FC2,即(6﹣x)2=22+x2,解得x=,即CE=cm.【点评】本题考查了折叠的性质,矩形的性质以及勾股定理.此题难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意折叠中的对应关系.27.(10分)(2016秋•建湖县期末)如图,一次函数y1=kx+b的图象与x轴、y 轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x 的图象于点C、D.(1)求一次函数y1=kx+b的表达式;(2)若点M是线段OD的中点,求a的值.【分析】(1)先求出M的坐标,然后将M与A的坐标代入y1=kx+b中,即可求出k与b的值.(2)根据条件先证明△MBO≌△MCD(ASA),由此可知OB=CD,分别求出OB 与CD的长度即可求出a的值.【解答】解:(1)∵M的横坐标为2,点M在直线y=x上,∴y=2,∴M(2,2)把M(2,2)、A(6,0)代入y1=kx+b中,可得:,解得:∴函数的表达式为:y1=﹣x+3(2)∵PD⊥x轴,∴PC∥OB∴∠BOM=∠CDM,∵点M是线段CD的中点,∴MO=MD在△MBO与△MCD中∴△MBO≌△MCD(ASA)∴OB=CD当x=0时,y1=x+3=3,∴OB=2,∴DC=3,当x=a时,y1=﹣x+3=3﹣a,∴y2=x=a即D(a,a),C(a,﹣a+3)∴DC=a﹣(﹣a+3)=a﹣3=3,∴a=4,【点评】本题考查一次函数的解析式,涉及待定系数法求解析式,全等三角形的判定与性质,一元一次方程的解法,题目较为综合.28.(10分)(2016•绥化)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为20km/h,H点坐标(,20).(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?【分析】(1)根据函数图中的数据,由小芳从家到甲地的路程和时间可以求出小芳骑车的速度;(2)先求出直线AB的解析式,再根据直线AB∥CD,求出直线CD的解析式,再求出直线EF的解析式,联立直线CD和直线EF的解析式,求出交点D的坐标即可;(3)将y=0,分别代入直线CD和直线EF的解析式,分别求出当y=0时候的横坐标,再求出两横坐标的差值即可.【解答】解:(1)由函数图可以得出,小芳家距离甲地的路程为10km,花费时间为0.5h,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为:+=,故点H的坐标为(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40,设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小芳出发1.75小时后被妈妈追上,此时距家25km;(3)将y=0代入直线CD解析式有:﹣20x+40=0,解得x=2,将y=0代入直线EF的解析式有:﹣60x+110=0,解得x=,2﹣=(h)=10(分钟),故小芳比预计时间早10分钟到达乙地.【点评】本题考查了一次函数的应用,解答本题的关键在于读懂题意,根据函数图所给的信息求出合适的函数解析式并求解.。
2016-2017学年苏科版第一学期初二数学期末考试卷 及答案

2016-2017学年第一学期初二数学期末考试卷一、选择题:(本大题共10小题,每小题3分,共30分)1.(2015•常州)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是……………………………………( )2. (2015•内江)用科学记数法表示0.0000061,结果是……………………………( )A .56.110-⨯;B .66.110-⨯ ;C .50.6110-⨯ ;D .76110-⨯;3.(2015•宿迁)函数y =自变量x 的取值范围是………………………………( ) A .x >2 ; B .x <2; C .x ≥2; D .x ≤2;4.一次函数3y x =-+的图像上有两点A ()11,x y 、B ()22,x y ,若12y y <,则1x 与2x 的大小关系是( )A .12x x < ;B .12x x > ;C .12x x = ;D .无法确定;5. 如果点P (),12m m -在第四象限,那么m 的取值范围是…………………( ) A. 102m <<;B. 102m -<<;C. 0m <; D. 12m >; 6. 已知点M (3,2)与点N (),x y 在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为………………………………………………………………………( )A .(2,5);B .(5,2);C .(-5,2);D .(-5,2)或(5,2);7.(2015•达州)如图,△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A=60°,∠ABD=24°,则∠ACF 的度数为…………………………………( )A .48°B .36°C .30°D .24°8.(2015•连云港),227,0.101001无理数的个数是……( ) A .0个 B .1个 C .2个 D .3个;A. B. C. D. 第7题图第8题图第9题图9. 如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于M ,若CM=5,则22CE CF +等于………………………………………………………………………( )A .75;B .100;C .120;D .125;10.如图,点A的坐标为(),点B 在直线y x =上运动,当线段AB 最短时点B 的坐标为…………( )A.⎛ ⎝⎭; B .11,22⎛⎫-- ⎪⎝⎭; C.⎝⎭; D .(0,0);二、填空题:(本大题共8小题,每小题3分,共24分)11.直角三角形三边长分别为3,4,a ,则a = .12.(2015•凉山州)已知函数222a b y x a b +=++是正比例函数,则a b += .13.(2015•盐城)如图,在△ABC 与△ADC 中,已知AD=AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需再添加的一个条件可以是 .14. 一次函数的图象经过点(1,2),且y 随x 的增大而增大,则这个函数的关系式是 (只需写一个).15.在平面直角坐标系中,点P (2,3)与点P ′()2,2a b a b ++关于原点对称,则a b -= .16. (20152的整数部分是 .17. 在△ABC 中,∠A=40°,当∠B= 时,△ABC 是等腰三角形.18.(2015•福建)如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B ′CP ,连接B ′A ,则B ′A 长度的最小值是 .三、解答题:(本题满分76分)19.(本题满分8分)计算:2. (2)求x :064)1(273=++x ;20. (本题满分6分)已知AC ⊥BC ,BD ⊥AD ,AC 与BD交于O ,AC=BD .第18题图第10题图 第13题图求证:(1)BC=AD ; (2)△OAB 是等腰三角形.21. (本题满分6分)如图,在方格纸中(小正方形的边长为1),△ABC 的三个顶点均为格点,将△ABC 沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)画出平移后的△A ′B ′C ′,并直接写出点A ′、B ′、C ′的坐标;(2)求出在整个平移过程中,△ABC 扫过的面积.22. (本题满分7分)(1)已知a 、b 0b -=,解关于x 的方程()221a x b a ++=-.(2)实数a 、b 在数轴上的位置如图所示,化简:a b -23. (本题满分9分)如图,△ABC 中,AB=AC ,BE ⊥AC 于E ,且D 、E 分别是AB 、AC 的中点.延长BC 至点F ,使CF=CE .(1)求∠ABC 的度数;(2)求证:BE=FE ;(3)若AB=2,求△CEF 的面积.已知一次函数y=kx+b的图象经过点(-1,-4),且与函数112y x=+的图象相交于点A (2,a).(1)求一次函数y=kx+b的解析式;(2)若函数y=kx+b图象与x轴的交点是B,函数112y x=+的图象与y轴的交于点C,求四边形ABOC的面积.25. (本题满分8分)已知矩形OABC中,OA=3,AB=6,以OA、OC所在的直线为坐标轴,建立如图所示的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.(1)求证:△BCQ≌△ODQ;(2)求点P的坐标.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数43y x的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为;(3)在x轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.27.(本题满分8分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图像.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?参考答案一、选择题:1.B ;2.B ;3.C ;4.B ;5.D ;6.D ;7.A ;8.B ;9.B ;10.A ;二、填空题:11.512. 13;13.DC=BC (答案不唯一);14. 64y x =-;15.1;16.3;17.40°、70°或100°;18.1;三、解答题:19.(1)-2;(2)73x =-; 20. 证明:(1)∵AC ⊥BC ,BD ⊥AD ,∴∠ADB=∠ACB=90°,在Rt △ABC 和Rt △BAD 中,∵AB AB AC BD=⎧⎨=⎩,∴Rt △ABC ≌Rt △BAD (HL ),∴BC=AD ,(2)∵Rt △ABC ≌Rt △BAD,∴∠CAB=∠DBA ,∴OA=OB ,∴△OAB 是等腰三角形.21.(1)点A ′、B ′、C ′的坐标分别为(-1,5)、(-4,0)、(-1,0);(2)652; 22.(1)4x =;(2)b -;23. 解:(1)∵BE ⊥AC 于E ,E 是AC 的中点,∴△ABC 是等腰三角形,即AB=BC ,∵AB=AC ,∴△ABC 是等边三角形, ∴∠ABC=60°;(2)∵BE=FE ,∴∠F=∠CEF ,∵∠ACB=60°=∠F+∠CEF ,∴∠F=30°, ∵△ABC 是等边三角形,BE ⊥AC ,∴∠EBC=30°,∴∠F=∠EBC ,∴BE=EF ;(3)过E 点作EG ⊥BC ,如图:∵BE ⊥AC ,∠EBC=30°,AB=BC=2,∴CE=1=CF ,在△BEC 中,EG=CE BE BC = ,∴112ECF S =⨯= . 24.(1)22y x =-;(2)2;25. (1)证明:∵矩形OABC 和矩形ODEF 全等,∴BC=OD ,∠BCQ=∠ODQ=90°,在△BCQ 和△ODQ 中,BCQ ODQ BQC OQD BC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∠BQC=∠OQD (AAS ),∴△BCQ ≌△ODQ ;(2)∵△BCQ ≌△ODQ ,∴CQ=DQ ,BQ=OQ ,设CQ=x ,则OQ=6-x ,BQ=6-x , 在Rt △BCQ 中,根据勾股定理得:()2269x x --=, 解得:94x =,∴OQ= 915644-=,∴Q 150,4⎛⎫ ⎪⎝⎭; 设BQ :y=kx+b ,把B (-3,6)与Q 150,4⎛⎫ ⎪⎝⎭代入并解得:31544y x =-+,令y=0,得315044x -+=,解得:x=5,则P (5,0).,此时P 的坐标是25,06⎛⎫ ⎪⎝⎭; 综上可知P 的坐标为(5,0)或(-5,0)或(6,0)或25,06⎛⎫ ⎪⎝⎭. 27. 解:(1)60180y x =-+(1.5≤x ≤3);(2)乙从A 地到B 地用时为90÷40=2.25(小时)=135分钟.28. 解:(1)设该酒店2014年处理的餐厨垃圾x 吨,建筑垃圾y 吨,根据题意,得25163400100308500x y x y +=⎧⎨+=⎩,解得40150x y =⎧⎨=⎩答:该酒店2014年处理的餐厨垃圾40吨,建筑垃圾150吨;(2)设该酒店2015年处理的餐厨垃圾x 吨,建筑垃圾y 吨,需要支付这两种垃圾处理费共w 元,根据题意得,1603x y y x +=⎧⎨≤⎩,解得x ≥40. w=100x+30(160-x )=70x+4800,∴k=70>0,∴w 的值随x 的增大而增大, ∴当x=40时,w 值最小,最小值=70×40+4800=7600(元).答:2015年该酒店最少需要支付这两种垃圾处理费共7600元.。
建湖八年级期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √-1B. πC. √4D. 0.1010010001…2. 如果a和b是方程2x - 3 = 0的两个根,那么方程ax^2 + bx + 1 = 0的根的情况是()A. 两个实数根B. 两个共轭复数根C. 一个实数根和一个虚数根D. 没有实数根3. 在直角坐标系中,点P(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 下列函数中,定义域为全体实数的是()A. y = √xB. y = 1/xC. y = x^2D. y = log(x)5. 若a、b、c是等差数列的前三项,且 a + b + c = 9,a^2 + b^2 + c^2 = 27,则b的值为()A. 3B. 6C. 9D. 126. 下列命题中,正确的是()A. 两个平行四边形一定是相似的B. 两个等腰三角形一定是相似的C. 两个等边三角形一定是相似的D. 两个直角三角形一定是相似的7. 已知函数f(x) = x^3 - 3x,那么f(-1)的值为()A. -2B. 2C. 0D. 48. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°9. 若一个等差数列的前三项分别为a、b、c,且a + b + c = 18,a^2 + b^2 +c^2 = 54,则该数列的公差是()A. 1B. 2C. 3D. 410. 下列各数中,无理数是()A. √4B. πC. 0.333…D. 2.5二、填空题(每题2分,共20分)1. 如果x = 2是方程2x + 3 = 0的解,那么x = ________ 是方程2x - 3 = 0的解。
2. 若m、n、p是方程mx^2 + 3x + 2 = 0的两个根,且m + n = -3,那么p的值是 ________ 。
江苏省盐城市八年级上学期期末数学试卷 (解析版)

江苏省盐城市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒2.下列二次根式中属于最简二次根式的是( ) A .8B .36C .ab(a >0,b >0) D .7 3.若分式242x x -+的值为0,则x 的值为( )A .-2B .0C .2D .±2 4.4 的算术平方根是( )A .16B .2C .-2D .2±5.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( ) A .k <3B .k >3C .k <2D .k >26.下列式子中,属于最简二次根式的是( ) A .12B .0.5C .5 D .127.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,08.在△ABC 中,∠C =90°,∠B =60°,下列说法中,不一定正确的是( )A.BC2+AC2=AB2B.2BC=ABC.若△DEF的边长分别为1,2,3,则△DEF和△ABC全等D.若AB中点为M,连接CM,则△BCM为等边三角形9.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.10.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.15B.13C.58D.38二、填空题11.关于x的分式方程211x ax+=+的解为负数,则a的取值范围是_________.12.当a=_______时,分式2123a aa+--的值为1.13.若分式293xx--的值为0,则x的值为_______.14.如图,在△ABC中,∠ACB=90°,AC=BC=4,O是BC的中点,P是射线AO上的一个动点,则当∠BPC=90°时,AP的长为______.15.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.16.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____. 17.比较大小:-2______-3.18.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°19.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题21.已知函数y=(2m +1)x+m ﹣3.(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围; (3)若这个函数是一次函数,且图象不经过第四象限,求m 的取值范围.22.如图,∠AOB =90°,OA =12cm ,OB =8cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,并且它们的运动时间也相等.(1)请用直尺和圆规作出C 处的位置,不必叙述作图过程,保留作图痕迹; (2)求线段OC 的长.23.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终到达C 港.设甲、乙两船行驶x (h )后,与B 港的距离分别为y 1 、y 2 (km ), y 1 、y 2 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为_______km ,a = _______; (2)求图中点P 的坐标;(3)若两船的距离不超过8km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.24.如图,AC=DC ,BC=EC ,∠ACD=∠BCE .求证:∠A=∠D .25.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE . (2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.28.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.29.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式; (3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.30.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解. 【详解】解:∵AB=AC ,∴∠B=∠C , 在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ), ∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A ,则∠EDF=180°-(∠FDB+∠EDC)=90°-12∠A=62°.故选:A.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.2.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.3.C解析:C【解析】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C.4.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42=,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键. 5.A解析:A 【解析】 【分析】将点A ,点B 坐标代入解析式可求k−3=b da c--,即可求解. 【详解】∵A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点, ∴b =ka ﹣3a +2,d =kc ﹣3c +2,且a ≠c , ∴k ﹣3=b da c--. ∵m =(a ﹣c )(b ﹣d )<0, ∴k <3. 故选:A . 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c--是关键,是一道基础题.6.C解析:C 【解析】,被开方数含分母,不是最简二次根式,故本选项错误;D. 故选C.7.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,,发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.8.C解析:C 【解析】 【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案. 【详解】A 、由勾股定理可知BC 2+AC 2=AB 2,故A 正确; B 、∵∠C =90︒,∠B =60︒, ∴∠A =30︒, ∴AB =2BC ,故B 正确;C 、若△DEF 的边长分别为1,2DEF 和△ABC 不一定全等,故C 错误;D 、∵CM 是△ACB 的中线, ∴CM =BM =CB ,∴△BCM 是等边三角形,故D 正确. 故选:C . 【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及相似三角形的判定,本题属于基础题型.9.A解析:A 【解析】 【分析】根据自正比例函数的性质得到k <0,然后根据一次函数的性质得到一次函数y=x+k 的图象经过第一、三象限,且与y 轴的负半轴相交. 【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小, ∴k <0,∵一次函数y=x+k 的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).10.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题11.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析12.-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:=1,即可得到解得 :根据中 得到舍弃所以故答案为:-3.【点睛】此题主要考查了可化为一元解析:-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】 解:根据题意得:2123a a a +--=1, 即可得到 2123a a a +-=-解得 :3a =± 根据2123a a a +--中 30a -≠ 得到3a ≠ 舍弃3a =所以3a =-故答案为:-3.【点睛】此题主要考查了可化为一元二次方程的分式方程,关键是根据题意列出分式方程.13.-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:29=030x x ⎧-⎨-≠⎩, 解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.22【解析】【分析】在Rt△AOC 中利用勾股定理即可求出AO 的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP 的长度,由线段间的关系即可得出AP 的长度.【详解】解:依照题意画解析:±2【解析】【分析】在Rt △AOC 中利用勾股定理即可求出AO 的长度,再根据直角三角形中斜边上的中线等于斜边的一半即可求出OP 的长度,由线段间的关系即可得出AP 的长度.【详解】解:依照题意画出图形,如图所示.∵∠ACB=90°,AC=BC=4,O 是BC 的中点,∴CO=BO=12BC=2, ∵∠BPC=90°,O 是BC 的中点,∴OP=12BC=2, ∴AP=AO-OP=25-2,或AP=AO+OP=25+2.故答案为:25±2.【点睛】本题考查了直角三角形斜边上的中线以及勾股定理,根据直角三角形中斜边上的中线等于斜边的一半求出OP 的长度是解题的关键.15.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根 解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案.【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.16.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.17.>【解析】, .解析:>【解析】<,>2318.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.19.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.20.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.三、解答题21.(1)m=3;(2)m<-12;(3)m≥3【解析】试题分析:(1)根据待定系数法,只需把原点代入即可求解;(2)直线y=kx+b中,y随x的增大而减小说明k<0;(3)根据图象不经过第四象限,说明图象经过第一、三象限或第一、二、三象限要分情况讨论.(1)把(0,0)代入,得m-3=0,m=3;(2)根据y随x的增大而减小说明k<0,即2m+1<0,m<-;(3)若图象经过第一、三象限,得m=3.若图象经过第一、二、三象限,则2m+1>0,m-3>0,解得m>3,综上所述:m≥3.考点:本题考查的是待定系数法求一次函数解析式,一次函数的性质点评:能够熟练运用待定系数法确定待定系数的值,还要熟悉在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.能够根据k,b的符号正确判断直线所经过的象限.22.(1)详见解析;(2)103cm.【解析】【分析】(1)作AB的垂直平分线,交OA于点C,则点C即为所求;(2)设BC=xcm,根据题意用x表示出AC和OC,根据勾股定理列出方程,解方程即可.【详解】解:(1)如图所示,作AB的垂直平分线,交OA于点C,则点C即为所求;(2)由作图可得:BC=AC,设BC=xcm,则AC=xcm,OC=(12﹣x)cm,由勾股定理得,BC2=OB2+OC2,即x2=82+(12﹣x)2,解得x=263.∴OC=12﹣263=103答:线段OC的长是103cm.【点睛】本题考查的是勾股定理的应用和基本作图:线段的垂直平分线,掌握直角三角形中,两条直角边的平方和等于斜边的平方是解题的关键.23.(1)120,2;(2)(1,30);(3)1115≤x≤1915或4115≤x≤3【解析】【分析】(1)由甲船行驶的函数图象可以看出,甲船从A港出发,0.5h后到达B港,ah后到达C 港,又由于甲船行驶速度不变,则可以求出a的值;(2)分别求出0.5h后甲乙两船行驶的函数表达式,联立即可求解;(3)将该过程划分为0≤x≤0.5、0.5<x≤1、x>1三个范围进行讨论,得到能够相望时x的取值范围.【详解】解:(1)A、C两港口间距离s=30+90=120(km),又由于甲船行驶速度不变,故30÷0.5=60(km/h),则a=2(h).(2)由点(3,90)求得,y2=30x.当0.5<x≤2时,设解析式为y1=ax+c,由点(0.5,0),(2,90)则,0.50 290a ca c+=⎧⎨+=⎩解得:6030 ac=⎧⎨=-⎩∴y1=60x-30,当y1=y2时,60x-30=30x,解得,x=1.此时y1=y2=30.所以点P的坐标为(1,30).(3)))①当x≤0.5时,依题意,(-60x+30)+30x≤8.解得,x≥1115.不合题意.②当0.5<x≤1时,依题意,30x-(60x-30)≤8解得,x≥1115.所以1115≤x≤1.③当1<x≤2时,依题意,(60x-30)-30x≤8解得,x≤1915.所以1<x≤1915④当2<x≤3时,甲船已经到了而乙船正在行驶,∵90-30x≤8,解得x≥41 15,所以,当4115≤x≤3,甲、乙两船可以相互望见;综上所述,当1115≤x≤1915或4115≤x≤3时,甲、乙两船可以相互望见.【点睛】本题考查一次函数的应用以及函数方程、函数图象与实际结合的问题,解题关键是利用数形结合得出关键点坐标.24.证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE 得出∠ACB=∠DCE ,结合已知条件利用SAS 判定△ABC 和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC ≌△DEC ∴∠A=∠D考点:三角形全等的证明25.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.四、压轴题26.(1)5y x =+;(2)3)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,AM =∴由勾股定理,2222OM OA AM=-=.180AOM AOB BON∠+∠+∠=︒.90AOB∠=︒.90AOM BON∴∠+∠=︒.90AOM OAM∠+∠=︒.BON OAM∴∠=∠.在AMO∆与OBN∆中,90BON OAMAMO BNOOA OB∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS∴∆≅∆.22BN OM∴==..(3)如图所示:过点E作EG y⊥轴于G点.AEB∆为等腰直角三角形,AB EB∴=90ABO EBG∠+∠=︒.EG BG⊥,90GEB EBG∴∠+∠=︒.ABO GEB∴∠=∠.AOB EBG∴∆≅∆.5BG AO∴==,OB EG=OBF∆为等腰直角三角形,OB BF∴=BF EG∴=.BFP GEP∴∆≅∆.1522BP GP BG∴===.【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB,求OM,用勾股定理求AB,再证AMO OBN∆≅∆,构造AOB EBG∆≅∆,求BG,再证BFP GEP∆≅∆.27.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H ,对于直线y =﹣3x+3,由x =0得y =3∴P (0,3),∴OP =3由y =0得x =1,∴Q (1,0),OQ =1,∵∠QPR =45°∴∠PSQ =45°=∠QPS∴PQ =SQ∴由(1)得SH =OQ ,QH =OP∴OH =OQ+QH =OQ+OP =3+1=4,SH =OQ =1∴S (4,1),设直线PR 为y =kx+b ,则341b k b =⎧⎨+=⎩ ,解得1k 2b 3⎧=-⎪⎨⎪=⎩ ∴直线PR 为y =﹣12x+3 由y =0得,x =6∴R (6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.28.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.29.(1)56°;(2)y=454x +;(3)36°或1807°.【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y , 而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°,∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.30.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b -=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);故答案为:(0,6),(8,0);(2)由(1)知,A (0,6),C (8,0),∴OA=6,OB=8,由运动知,OQ=t ,PC=2t ,∴OP=8-2t ,∵D (4,3), ∴114222ODQ D S OQ x t t =⨯=⨯=△,1182312322ODP D S OP y t t =⨯=-⨯=-△(), ∵△ODP 与△ODQ 的面积相等,∴2t=12-3t ,∴t=2.4,∴存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO ,∴∠OAC=∠AOD.∵x 轴平分∠GOD ,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC ,∴∠FHC=∠ACE.∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC ,即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.。
2016-2017学年苏科版八年级数学上册期末考试测试卷及答案

学
2.平面直角坐标系中,点 A 的坐标为(-2,1) ,则点 A 在(
A
0 (第 1 题)
3.如图,两个三角形全等,则∠ 的度数是( A.72° B.60 °
) D.50° ) D.2
C.58°
4.如图,数轴上点 A 对应的数是 0,点 B 对应的数是 1,BC⊥AB,垂足为 B,且 BC=1,以 A 为 圆心,AC 为半径画弧,交数轴于点 D,则点 D 表示的数为( A.1.4 B. 2 C.1.5
O
②
y
x
三、解答题(本大题共 9 小题,共 64 分.请在答题卡指定区域 内作答,解答时应写出文字说明、证 ....... 明过程或演算步骤) 19.(4 分)计算: | π 3 | ( 2)2 ( 7 - 1)0 .
20.(8 分)求下面各式中的 x: (1) x 2 4 ; (2) ( x 1)3 8 .
D.
x0, y 2 .
6.如图,在△ABC 中,∠ACB=90° ,D 是 AB 中点,连接 CD.若 AB=10,则 CD 的长为( A.5 A B.6 y
y ax b
)
C.7
D.8
h C A O B t
(第 8 题)
D
O B
(3,-1) x
y x c
(第 7 题)
(3)判断格点△ABC 的形状,并说明理由.
(第 22 题)
23. (8 分)已知一次函数 y 2 x 4 ,完成下列问题: (1)求此函数图像与 x 轴、y 轴的交点坐标; (2)画出此函数的图像;观察图像,当 0 y 4 时,x 的取值范围是 ▲ ; (3)平移一次函数 y 2 x 4 的图像后经过点(-3,1) ,求平移后的函数表达式. y
苏科版2016~2017学年度八年级上期末数学试卷及答案

2016~2017学年度八年级上学期期末数学试卷一、填空题:(本大题共14题,每题2分,满分28分)1.=.2.化简:(x>0)=.3.2﹣的绝对值是.4.计算:(2+)2﹣(2﹣)2=.5.函数y=的定义域为.6.已知函数f(x)=2x﹣,那么f(﹣)=.7.直线y=3x﹣1在y轴上的截距是.8.函数y=3x m+1,当m=时是反比例函数.9.已知点P(﹣3,4)、Q (3,﹣4),则线段PQ的长为.10.边长为2cm的等边三角形的高为cm.11.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是cm2.12.到定点A的距离为9cm的点的轨迹是.13.已知等腰三角形的周长等于20,底边为x,那么它的腰长y与x的函数关系式是,x的取值范围是.14.如图,点P在函数y=﹣x的图象上运动,点A的坐标为(1,0),当线段AP最短时,点P的坐标为.二、选择题:(本大题共4题,每题3分,满分12分)15.下列方程中,有一个根为﹣1的方程是()A.x2﹣x=0 B.x2﹣7x+6=0 C.2x2﹣3x﹣5=0 D.3x2+2x﹣5=016.下列各式中是一次函数的是()A.y=2(x﹣6)2 B.y=2(x﹣6)C.y=D.2(x﹣6)=017.下列各组数中不能作为直角三角形三边长的是()A .6、8、10 B.1、1、 C.2、6、 D.7、24、2518.如图,在△ABC中,AB=AC,点D在边AB上,点E在线段CD上,且∠BEC=∠ACB,BE 的延长线与边AC相交于点F,则与∠BDC相等的角是()A.∠DBE B.∠CBE C.∠BCE D.∠A三、简答题:19.计算:(1)﹣2a2(2).20.解方程:x2+4x﹣1=0.21.如图,点P是一个反比例函数与正比例函数y=﹣2x的图象的交点,PQ垂直于x轴,垂足Q的坐标为(2,0).(1)求这个反比例函数的解析式.(2)如果点M在这个反比例函数的图象上,且△MPQ的面积为6,求点M的坐标.22.如图,△ABC中,∠B=22.5°,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=,AE⊥BC于E,求EC的长.23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.(1)∠ECD和∠EDC相等吗?(2)OC和OD相等吗?(3)OE是线段CD的垂直平分线吗?24.已知一次函数y=kx+b的图象经过点A(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与x轴相交于点B,与y轴相交于点Q,点Q恰与点P关于x轴对称.(1)求这个一次函数的表达式;(2)求△ABP的面积.四、解答题:25.已知BD、CE分别是△ABC的AC边、AB边上的高,M是BC边的中点,分别联结MD、ME、DE.(1)当∠BAC<90°时,垂足D、E分别落在边AC、AB上,如图1,求证:DM=EM.(2)若∠BAC=135°,试判断△DEM的形状,简写解答过程.(3)当∠BAC>90°时,设∠BAC的度数为x,∠DME的度数为y,求y与x之间的函数关系式.2016~2017学年度八年级上学期期末数学试卷参考答案与试题解析一、填空题:(本大题共14题,每题2分,满分28分)1.=.【考点】二次根式的性质与化简.【专题】计算题.【分析】由于=3,根据二次根式的性质进行解答,便可得所求结果.【解答】解:∵=3,∴===,故答案为.【点评】解答此题,要弄清以下问题:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a >0时,表示a的算术平方根;当a=0时,=0;当a<0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根),②性质:=|a|.2.化简:(x>0)=3x.【考点】二次根式的性质与化简.【分析】直接根据二次根式的性质即可得出结论.【解答】解:∵x>0,∴原式=3x.故答案为:3x.【点评】本题考查的是二次根式的性质与化简,熟知二次根式的化简法则是解答此题的关键.3.2﹣的绝对值是.【考点】实数的性质.【专题】计算题.【分析】先判断2﹣的正负值,再根据“正数的绝对值是它本身,负数的绝对值是其相反数”即可求解.【解答】解:2﹣的绝对值是|2﹣|=﹣2.故本题的答案﹣2.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.4.计算:(2+)2﹣(2﹣)2=8.【考点】二次根式的混合运算.【分析】直接利用完全平方公式化简求出答案.【解答】解:(2+)2﹣(2﹣)2=(4+3+4)﹣(4+3﹣4)=8.故答案为:8.【点评】此题主要考查了二次根式的混合运算,正确应用完全平方公式是解题关键.5.函数y=的定义域为x≤.【考点】函数自变量的取值范围.【分析】根据被开方数大于或等于0,可得答案.【解答】解:由y=,得1﹣3x≥0,解得x≤,故答案为:x≤.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.6.已知函数f(x)=2x﹣,那么f(﹣)=﹣.【考点】函数值.【分析】把自变量x的值代入函数关系式进行计算即可得解.【解答】解:f(﹣)=2×(﹣)﹣,=﹣2+,=﹣.故答案为:﹣.【点评】本题考查了函数值,是基础题,熟记函数值的定义以及求解方法是解题的关键.7.直线y=3x﹣1在y轴上的截距是﹣1.【考点】一次函数图象上点的坐标特征.【分析】直线与y轴的交点坐标的横坐标为0.【解答】解:∵y=3x﹣1,∴当x=0时,y=﹣1,∴直线y=3x﹣1在y轴上的截距是﹣1.故答案是:﹣1.【点评】本题考查了一次函数图象上点的坐标特征.一次次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.8.函数y=3x m+1,当m=﹣2时是反比例函数.【考点】反比例函数的定义.【分析】根据反比例函数的定义可得m+1=﹣1,再解方程即可求解.【解答】解:∵y=3x m+1是反比例函数,∴m+1=﹣1,解得m=﹣2.故答案为:﹣2.【点评】此题主要考查了反比例函数的定义,关键是掌握反比例函数的三种形式y=,k=xy,y=kx ﹣1(k为常数,k≠0).9.已知点P(﹣3,4)、Q (3,﹣4),则线段PQ的长为10.【考点】坐标与图形性质.【专题】计算题.【分析】直接利用两点间的距离公式计算即可.【解答】解:线段PQ的长==10.故答案为10.【点评】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.解决本题的关键是记住两点间的距离公式.10.边长为2cm的等边三角形的高为cm.【考点】等边三角形的性质.【分析】根据等边三角形的性质:三线合一,即可求得BD的长,又由勾股定理即可求的高.【解答】解:如图:过点A作AD⊥BC于D,∵等边三角形△ABC的边长为2cm,∴DC=DB=1cm,∵AB=2cm,∴AD==cm.故答案为.【点评】本题主要考查等边三角形的性质与勾股定理.此题比较简单,注意熟练掌握等边三角形的性质是解此题的关键.11.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是30cm2.【考点】勾股定理的应用.【专题】应用题.【分析】根据三角形花坛的三边长可知符合勾股定理的逆定理的表达式,根据勾股定理的逆定理,可知此三角形为直角三角形,再代入直角三角形的面积公式即可求解.【解答】解:∵52+122=132,∴此三角形为直角三角形,两直角边分别为5cm和12cm,∴花坛面积=×5×12=30(cm2).【点评】本题主要是根据勾股定理的逆定理推出此三角形为直角三角形,再根据直角三角形的面积解答.12.到定点A的距离为9cm的点的轨迹是以A为圆心,以9cm为半径的圆.【考点】轨迹.【分析】根据到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆,据此即可解答.【解答】解:到定点A的距离为9cm的点的轨迹是:以A为圆心,以9cm为半径的圆.故答案是:以A为圆心,以9cm为半径的圆.【点评】本题考查了点的轨迹,正确理解圆的定义是关键.13.已知等腰三角形的周长等于20,底边为x,那么它的腰长y与x的函数关系式是y=﹣x+10,x的取值范围是0<x<10.【考点】函数关系式;函数自变量的取值范围.【分析】等腰三角形的腰长=(周长﹣底边长)÷2,根据腰长大于0可得x的取值范围.【解答】解:腰长y与x的函数关系式是y==﹣x+10,由题意得:,解得:x<10则x的取值范围是0<x<10.故答案为:y=﹣x+10,0<x<10.【点评】考查了一次函数关系式;根据腰长的代数式得到底边长的取值范围是解决本题的难点.14.如图,点P在函数y=﹣x的图象上运动,点A的坐标为(1,0),当线段AP最短时,点P的坐标为().【考点】一次函数图象上点的坐标特征;垂线段最短.【专题】探究型.【分析】根据点到直线的所有线段中吹线段最短,可以找到线段AP最短时点P所在的位置,由点A 的坐标为(1,0),可以求得点P的坐标,从而本题得以解决.【解答】解:∵点P在函数y=﹣x的图象上运动,点A的坐标为(1,0),∴当线段AP最短时,AP⊥PO于点P,∠AOP=45°,作PB⊥x轴于点B,如下图所示:∵AP⊥PO于点P,∠AOP=45°,∴BP=OB=,∵点A的坐标为(1,0),∴BP=OB=,又∵点P在第四象限,∴点P的坐标是(),故答案为:().【点评】本题考查一次函数图象上点的坐标特征和垂线段最短,解题的关键是明确直线外一点到直线的所有线段中垂线段最短,利用数形结合的思想明确点P所在的象限,可以判断出点P横纵坐标的正负.二、选择题:(本大题共4题,每题3分,满分12分)15.下列方程中,有一个根为﹣1的方程是()A.x2﹣x=0 B.x2﹣7x+6=0 C.2x2﹣3x﹣5=0 D.3x2+2x﹣5=0【考点】一元二次方程的解.【分析】分别利用因式分解法解方程,进而判断得出答案.【解答】解:A、x2﹣x=0x(x﹣1)=0,解得:x1=0,x2=1,故此选项错误;B、x2﹣7x+6=0(x﹣6)(x﹣1)=0,解得:x1=6,x2=1,故此选项错误;C、2x2﹣3x﹣5=0(2x﹣5)(x+1)=0,解得:x1=﹣1,x2=2.5,故此选项正确;D、3x2+2x﹣5=0(3x+5)(x﹣1)=0,解得:x1=﹣,x2=1,故此选项错误.故选:C.【点评】此题主要考查了一元二次方程的解法,正确掌握因式分解法解方程是解题关键.16.下列各式中是一次函数的是()A.y=2(x﹣6)2 B.y=2(x﹣6)C.y=D.2(x﹣6)=0【考点】一次函数的定义.【分析】根据一次函数的定义解答即可.【解答】解:A、y=2(x﹣6)2,是二次函数,故此选项错误;B、y=2(x﹣6),是一次函数,故此选项正确;C、y=,不符合一次函数形式,故此选项错误;D、2(x﹣6)=0,是一元一次方程,故此选项错误.故选:B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.17.下列各组数中不能作为直角三角形三边长的是()A .6、8、10 B.1、1、 C.2、6、 D.7、24、25【考点】勾股定理的逆定理.【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【解答】解:A、∵62+82=102,∴能构成直角三角形,故此选项错误.B 、∵12+12=()2,∴能构成直角三角形,故此选项错误;C 、∵()2+22≠62,∴不能构成直角三角形,故此选项正确;D、∵72+242=252,∴能构成直角三角形,故此选项错误.故选C.【点评】主要考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.18.如图,在△ABC中,AB=AC,点D在边AB上,点E在线段CD上,且∠BEC=∠ACB,BE 的延长线与边AC相交于点F,则与∠BDC相等的角是()A.∠DBE B.∠CBE C.∠BCE D.∠A【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB,等量代换得到∠BEC=∠ABC.根据三角形的内角和即可得到结论.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵∠BEC=∠ACB,∴∠BEC=∠ABC.又∵∠BCE=∠DCB,∴∠BDC=180°﹣∠ABC﹣∠DCB,∠EBC=180°﹣∠BEC﹣∠ECB,∴∠BDC=∠EBC,故选B.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.三、简答题:19.计算:(1)﹣2a2(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方公式计算和分母有理化,然后合并即可.【解答】解:(1)原式=﹣2a+=﹣a;(2)原式=﹣+3﹣2+1+2(﹣1)=﹣+3﹣2+1+2﹣2=﹣+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.解方程:x2+4x﹣1=0.【考点】解一元二次方程-配方法.【分析】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,点P是一个反比例函数与正比例函数y=﹣2x的图象的交点,PQ垂直于x轴,垂足Q的坐标为(2,0).(1)求这个反比例函数的解析式.(2)如果点M在这个反比例函数的图象上,且△MPQ的面积为6,求点M的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)因为PQ垂直于x轴,垂足Q的坐标为(2,0),所以点P的横坐标为2,把其代入正比例函数y=﹣2x求出其纵坐标,再用设反比例函数的解析式为,求出k的值即可;(2)设△MPQ的高为h,因为△MPQ的面积为6,所以可求出h的值,再分:当点M在直线PQ 右侧时和当点M在直线PQ左侧时求出点M的坐标即可.【解答】解:(1)当x=2时,y=﹣2×2=﹣4,∴P(2,﹣4),设反比例函数的解析式为,则,k=﹣8,∴反比例函数的解析式为;(2)设△MPQ的高为h.∵,∴,h=3,当点M在直线PQ右侧时,M(5,);当点M在直线PQ左侧时,M(﹣1,8).【点评】此题考查的是正比例函数和反比例函数的交点问题以及用待定系数法求反比例函数的解析式,比较简单.22.如图,△ABC中,∠B=22.5°,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=,AE⊥BC于E,求EC的长.【考点】线段垂直平分线的性质.【分析】首先作出辅助线连接AD,再利用线段垂直平分线的性质计算.【解答】解:连接AD,已知DF垂直且平分AB⇒BD=AD,∠B=22.5°,∠C=60°⇒∠BAC=97.5°,根据三角形外角与外角性质可得,∠ADE=∠B+∠DAB=45°,AE⊥BC,故∠DAE=45°⇒△AED为等腰三角形,根据等腰三角形的性质可得DE=AE=6,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴AC=2CE,在Rt△ACE中,AC2=AE2+CE2,即4CE2=62+CE2,∴CE2=12,解得EC=2.【点评】本题关键是作出辅助线提示:连接AD.考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.(1)∠ECD和∠EDC相等吗?(2)OC和OD相等吗?(3)OE是线段CD的垂直平分线吗?【考点】角平分线的性质;线段垂直平分线的性质.【分析】根据角平分线的性质和线段垂直平分线的性质结合全等三角形的性质解答.【解答】解:(1)∠EDC与∠ECD相等∵OE是∠AOB的平分线,EC⊥OA,ED⊥OB,∴EC=ED,∴△CED是等腰三角形,∴∠EDC=∠ECD;(2)OC与OD相等∵EC⊥OA,ED⊥OB,∴∠ODE=∠OCE=90°在Rt△ODE和Rt△OCE中,OE=OE(公共边),DE=CE∴Rt△ODE≌Rt△OCE(HL)∴OD=OC(3)OE是线段CD的垂直平分线∵EC=ED,∴E点在线段CD的垂直平分线上∵OC=OD,∴O点在线段CD的垂直平分线上,∴OE是线段CD的垂直平分线.【点评】解答此题,要从已知条件和图形中找出相关信息,利用垂直、全等等性质解答.24.已知一次函数y=kx+b的图象经过点A(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与x轴相交于点B,与y轴相交于点Q,点Q恰与点P关于x轴对称.(1)求这个一次函数的表达式;(2)求△ABP的面积.【考点】一次函数的性质.【专题】计算题.【分析】(1)先利用y轴上点的坐标特征求出Q点坐标,再利用关于x轴对称的点的坐标特征确定P点坐标,然后利用待定系数法求直线AP的解析式;(2)先利用y=﹣x+3求出B点坐标,再求出直线y=﹣4x﹣3与x轴的交点坐标,则可把△ABP分成两个三角形,然后利用三角形面积公式计算即可.【解答】解:(1)当x=0时,y=﹣x+3=3,则Q(0,3),∵点Q恰与点P关于x轴对称,∴P(0,﹣3),把P(0,﹣3),A(﹣2,5)代入y=kx+b得,解得,所以这个一次函数解析式为y=﹣4x﹣3;(2)当y=0时,﹣x+3=0,解得x=6,则B(6,0),当y=0时,﹣4x﹣3=0,解得x=﹣,则直线y=﹣4x﹣3与x轴的交点坐标为(﹣,0),所以△ABP的面积=×(6+)×5+×(6+)×3=27.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.也考查了待定系数法求一次函数解析式.四、解答题:25.已知BD、CE分别是△ABC的AC边、AB边上的高,M是BC边的中点,分别联结MD、ME、DE.(1)当∠BAC<90°时,垂足D、E分别落在边AC、AB上,如图1,求证:DM=EM.(2)若∠BAC=135°,试判断△DEM的形状,简写解答过程.(3)当∠BAC>90°时,设∠BAC的度数为x,∠DME的度数为y,求y与x之间的函数关系式.【考点】全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)根据已知条件知,MD是Rt△BCD斜边BC上的中线,ME是Rt△BCE斜边BC上的中线,所以根据直角三角形斜边上的中线的性质进行证明即可;(2)根据等腰三角形的性质得到∠DBM=∠BDM,∠MEC=∠MCE,由三角形的外角的性质得到∠BME=2∠BCE,∠CMD=2∠DBM,根据三角形的内角和得到∠DBC+∠ECM=45°,即可得到结论;(3)根据等腰三角形的性质得到∠DBM=∠BDM,∠MEC=∠MCE,由三角形的外角的性质得到∠BME=2∠BCE,∠CMD=2∠DBM,根据三角形的内角和得到∠DBC+∠ECM=180°﹣x,根据平角的定义即可得到结论.【解答】(1)证明:∵BD、CE是△ABC的两条高,M是BC的中点,∴在Rt△BDC中,MD是斜边BC上的中线,∴MD=BC;同理,得ME=BC,∴ME=MD;(2)∵BM=CM=DM=EM,∴∠DBM=∠BDM,∠MEC=∠MCE,∴∠BME=2∠BCE,∠CMD=2∠DBM,∵∠BAC=135°,∴∠DBC+∠ECM=45°,∴∠BME+∠CMD=90°,∴∠DME=90°,∴△DEM是等腰直角三角形;(3)∵BM=CM=DM=EM,∴∠DBM=∠BDM,∠MEC=∠MCE,∴∠BME=2∠BCE,∠CMD=2∠DBM,∵∠BAC=x,∴∠DBC+∠ECM=180°﹣x,∴∠BME+∠CMD=360°﹣2x,∴∠DME=180°﹣(∠BME+∠CMD)=2x﹣180°,即y=2x﹣180°.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定,三角形的内角和,三角形外角的性质,熟记直角三角形斜边上的中线等于斜边的一半是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母填涂在答题卡相应位置上.1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形3.(3分)下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数4.(3分)下列各组数不能作为直角三角形的边长的是()A.3,4,5 B.8,15,17 C.7,9,11 D.9,12,155.(3分)小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.7≤x≤1.8 B.1.705<x<1.715C.1.705≤x<1.715 D.1.705≤x≤1.7156.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个7.(3分)关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限8.(3分)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()A.x<B.﹣<x<1 C.x<1 D.﹣1<x<1二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请将答案直接写在答题卡相应位置上.9.(2分)的平方根是.10.(2分)在平面直角坐标系中,点P(2,﹣3)在第象限.11.(2分)某人一天饮水1890mL,用四舍五入法对1890mL精确到1000mL表示为.12.(2分)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.13.(2分)如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.14.(2分)比较大小:﹣(填“>”或“<”).15.(2分)如图,在△ABC中,AB=AC,∠A=40°,BD是△ABC的角平分线,则∠ABD=°.16.(2分)如图,AB=9cm,CA⊥AB于A,DB⊥AB于B,且AC=3m,P点从B 向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(2分)已知y是x的一次函数,下表中给出了x与y的部分对应值,则m 的值是.18.(2分)如图,直线y=2x+2与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C的对应点C′恰好落在直线AB上,则点C'的坐标为.三、解答题:本大题共10小题,共76分,请在答题卡指定区域内作答,解答时写出必要的文字说明、推理过程或演算步骤.19.(8分)解答下列各题:(1)计算:﹣+(2017﹣π)0;(2)求x的值:(x﹣2)3﹣32=0.20.(6分)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.21.(6分)已知:y与x﹣3成正比例,且x=4时y=3.(1)求y与x之间的函数关系式;(2)当y=﹣12时,求x的值.22.(6分)已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.23.(7分)如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN ⊥CD.24.(7分)在如图10×9的网格图中,△ABC和△CDE都是等腰直角三角,其顶点都在格点上,若点A、C的坐标分别为(﹣5,﹣2)和(﹣1,0).(1)建立平面直角坐标系,写出点B、D、E的坐标;(2)求△ABC的面积.25.(8分)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.26.(8分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.27.(10分)如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x的图象于点C、D.(1)求一次函数y1=kx+b的表达式;(2)若点M是线段OD的中点,求a的值.28.(10分)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为km/h,H点坐标.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?2016-2017学年江苏省盐城市建湖县八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项的字母填涂在答题卡相应位置上.1.(3分)(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.2.(3分)(2016秋•建湖县期末)下列条件中,不能判断两个三角形全等的方法有()A.两边和一个角分别相等的两个三角形B.两个角及其夹边分别相等的两个三角形C.三边分别相等的两个三角形D.斜边和一条直角边分别相等的两个直角三角形【解答】解;在A中,两个三角形满足的是SSA,不能判定两个三角形全等;在B中,两个三角形满足ASA,能判定两个三角形全等;在C中,两个三角形满足SSS,能判定两个三角形全等;在D中,两个三角形满足HL,能判定两个三角形全等;∴不能判断两个三角形全等的是A,故选A.3.(3分)(2016秋•建湖县期末)下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数【解答】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选C.4.(3分)(2016秋•建湖县期末)下列各组数不能作为直角三角形的边长的是()A.3,4,5 B.8,15,17 C.7,9,11 D.9,12,15【解答】解:A、32+42=52,能构成直角三角形,故不符合题意;B、82+152=172,能构成直角三角形,故不符合题意;C、72+92≠112,能构成直角三角形,故不符合题意;D、92+122=152,能构成直角三角形,故不符合题意.故选:C.5.(3分)(2016秋•建湖县期末)小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.7≤x≤1.8 B.1.705<x<1.715C.1.705≤x<1.715 D.1.705≤x≤1.715【解答】解:据题意可知,他实际身高可能是最矮1.705米,最高小于1.715米.故选C.6.(3分)(2016秋•建湖县期末)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB 于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.7.(3分)(2016•玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限【解答】解:A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;B、当x=﹣1时,y=﹣k+k=0,此选项正确;C、当k>0时,y随x的增大而增大,此选项正确;D、不能确定l经过第一、二、三象限,此选项错误;故选D.8.(3分)(2016秋•建湖县期末)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则0<kx+b<4x+4的解集为()A.x<B.﹣<x<1 C.x<1 D.﹣1<x<1【解答】解:∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),∴4m+4=,∴m=﹣,∴直线y=kx+b与直线y=4x+4的交点A的坐标为(﹣,),直线y=kx+b与x 轴的交点坐标为B(1,0),又∵当x<1时,kx+b>0,当x>﹣时,kx+b<4x+4,∴0<kx+b<4x+4的解集为﹣<x<1.故选B.二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请将答案直接写在答题卡相应位置上.9.(2分)(2016秋•建湖县期末)的平方根是±3.【解答】解:∵=9,9的平方根是±3,∴的平方根是±3.故答案为±3.10.(2分)(2016秋•建湖县期末)在平面直角坐标系中,点P(2,﹣3)在第四象限.【解答】解:点P(2,﹣3)在第四象限.故答案为:四.11.(2分)(2016秋•建湖县期末)某人一天饮水1890mL,用四舍五入法对1890mL 精确到1000mL表示为2×103.【解答】解:1890mL≈2×103(精确到1000mL).故答案为2×103.12.(2分)(2016•广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为(﹣2,2).【解答】解:∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).13.(2分)(2016秋•建湖县期末)如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于2.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.14.(2分)(2016秋•建湖县期末)比较大小:﹣<(填“>”或“<”).【解答】解:∵﹣1>1,∴,∴:﹣<;故答案为:<15.(2分)(2016秋•建湖县期末)如图,在△ABC中,AB=AC,∠A=40°,BD是△ABC的角平分线,则∠ABD=35°.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣40°)÷2=70°,又∵BD为∠ABC的平分线,∴∠ABD=35°,故答案为:35.16.(2分)(2016秋•建湖县期末)如图,AB=9cm,CA⊥AB于A,DB⊥AB于B,且AC=3m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动3分钟后△CAP与△PQB全等.【解答】解:∵△CAP与△PQB,∴AC=PB=3.∴运动时间=3÷1=3.故答案为:3.17.(2分)(2016秋•建湖县期末)已知y是x的一次函数,下表中给出了x与y 的部分对应值,则m的值是﹣9.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣1时y=5;x=2时y=﹣1,∴,解得,∴一次函数的解析式为y=﹣2x+3,∴当x=6时,y=﹣2×6+3=﹣9,即m=﹣9.故答案是:﹣9.18.(2分)(2016秋•建湖县期末)如图,直线y=2x+2与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C 的对应点C′恰好落在直线AB上,则点C'的坐标为(﹣3,﹣6+2).【解答】解:∵y=2x+2,∴当x=0时,y=2;当y=0时,x=﹣,∴点A(,0),点B(0,2),∵△OBC是等边三角形,OB=,∴点C到OB的距离是:,将x=﹣3代入y=2x+2,得y=﹣6+2,∴点C′的坐标为(﹣3,﹣6+2),故答案为:(﹣3,﹣6+2).三、解答题:本大题共10小题,共76分,请在答题卡指定区域内作答,解答时写出必要的文字说明、推理过程或演算步骤.19.(8分)(2016秋•建湖县期末)解答下列各题:(1)计算:﹣+(2017﹣π)0;(2)求x的值:(x﹣2)3﹣32=0.【解答】解:(1)原式=++1=;(2)方程整理得:(x﹣2)3=64,开立方得:x﹣2=4,解得:x=6.20.(6分)(2015•怀柔区二模)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.【解答】证明:∵AB∥DE,∴∠B=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=FE.21.(6分)(2016秋•建湖县期末)已知:y与x﹣3成正比例,且x=4时y=3.(1)求y与x之间的函数关系式;(2)当y=﹣12时,求x的值.【解答】解:(1)设y与x之间的函数关系式y=k(x﹣3),把x=4时y=3代入得:k(4﹣3)=3,解得k=3,则y与x之间的函数关系式y=3(x﹣3)即y=3x﹣9;(2)当y=﹣12时,3x﹣9=﹣12,解得x=﹣1.22.(6分)(2016秋•建湖县期末)已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.【解答】解:(1)由题意,得4x=x﹣3,解得x=﹣1,此时点P坐标为(﹣4,﹣4);(2)游题意,得4x+[﹣(x﹣3)]=9,则3x=6,解得x=2,此时点P的坐标为(8,﹣1).23.(7分)(2016秋•建湖县期末)如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.【解答】证明:如图,连接CM、DM,∵∠ACB=∠ADB=90°,M为AB的中点,∴CM=AB,DM=AB,∴CM=DM=AB,∵N为CD的中点,∴MN⊥CD.24.(7分)(2016秋•建湖县期末)在如图10×9的网格图中,△ABC和△CDE 都是等腰直角三角,其顶点都在格点上,若点A、C的坐标分别为(﹣5,﹣2)和(﹣1,0).(1)建立平面直角坐标系,写出点B、D、E的坐标;(2)求△ABC的面积.【解答】解:(1)建立平面直角坐标系,如图所示,∴B(﹣3,4),D(2,﹣2),E(1,3);(2)∵BC2=22+42=20,AC2=22+42=20,∵∠ACB=90°,∵△ABC的面积=AC•BC,∵AC=BC,∴△ABC的面积=BC2=10.25.(8分)(2016秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.【解答】解:过E作AC的平行线于AD延长线交于G点,∵EG∥AC在△DEG和△DCA中,,∴△DEG≌△DCA(ASA),∴EG=EF,∠G=∠CAD,又EF=AC故EG=AC∵AD平分∠BAC,∴∠BAD=∠CAD,∵EG=EF,∴∠G=∠EFD,∴∠EFD=∠BAD,∴EF∥AB.26.(8分)(2016秋•建湖县期末)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.【解答】解:∵△AFE是由△ADE折叠得到,∴AF=AD=10cm,FE=DE,在Rt△ABF中,BF===8cm,∴CF=2cm,设CE=xcm,则FE=DE=(6﹣x)cm,在Rt△FCE中,FE2=EC2+FC2,即(6﹣x)2=22+x2,解得x=,即CE=cm.27.(10分)(2016秋•建湖县期末)如图,一次函数y1=kx+b的图象与x轴、y 轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x 的图象于点C、D.(1)求一次函数y1=kx+b的表达式;(2)若点M是线段OD的中点,求a的值.【解答】解:(1)∵M的横坐标为2,点M在直线y=x上,∴y=2,∴M(2,2)把M(2,2)、A(6,0)代入y1=kx+b中,可得:,解得:∴函数的表达式为:y1=﹣x+3(2)∵PD⊥x轴,∴PC∥OB∴∠BOM=∠CDM,∵点M是线段CD的中点,∴MO=MD在△MBO与△MCD中∴△MBO≌△MCD(ASA)∴OB=CD当x=0时,y1=x+3=3,∴OB=2,∴DC=3,当x=a时,y1=﹣x+3=3﹣a,∴y2=x=a即D(a,a),C(a,﹣a+3)∴DC=a﹣(﹣a+3)=a﹣3=3,∴a=4,28.(10分)(2016•绥化)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为20km/h,H点坐标(,20).(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?【解答】解:(1)由函数图可以得出,小芳家距离甲地的路程为10km,花费时间为0.5h,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为:+=,故点H的坐标为(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40,设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小芳出发1.75小时后被妈妈追上,此时距家25km;(3)将y=0代入直线CD解析式有:﹣20x+40=0,解得x=2,将y=0代入直线EF的解析式有:﹣60x+110=0,解得x=,2﹣=(h)=10(分钟),故小芳比预计时间早10分钟到达乙地.参与本试卷答题和审题的老师有:ZJX;Ldt;张其铎;王学峰;守拙;733599;HLing;弯弯的小河;星期八;gsls;HJJ;zhjh;lantin;梁宝华;zgm666;sks;1987483819;2300680618;499807835;779241471;神龙杉;caicl(排名不分先后)hu2017年4月5日。