用十字交叉法解决浓度问题
十字交叉法解浓度问题

十字交叉法解浓度问题十字交叉法是解决溶液浓度问题的一种简单有效的方法,通常用于计算不同浓度的液体或溶液的混合比例。
该方法基于比例关系,将给定的溶液容量、浓度和所需混合后的溶液浓度进行杂交,以找到所需的混合比例。
下面将介绍十字交叉法解浓度问题的具体步骤。
步骤一:确定所需的混合溶液浓度和容量首先需要确定目标混合溶液的浓度和容量。
这可以根据具体的实验要求或应用场景进行选择。
例如,如果需要制备100mL的20%浓度的溶液,那么这些信息需要在问题中明确给出。
步骤二:将浓度和容量写成比例式根据比例关系,将目标混合溶液的浓度和容量写成比例式,如下所示:目标溶液浓度/100 = X(所需体积)/与该浓度液体混合的体积例如,对于要制备100mL的20%溶液,可以写成:20/100 = X / (100 - X)其中,X代表所需体积,100-X代表与该浓度液体混合的体积。
步骤三:根据已知条件解出所需的体积将已知条件代入比例式中,解出所需的体积。
以制备100mL的20%溶液为例,可进行以下计算:20/100 = X / (100 - X)化简后得到X = 20mL通过这个比例式,可以得出制备20%浓度的溶液,需要取20mL的纯化液加入80mL的稀释液中。
步骤四:计算所需的纯化液体积根据已知条件和所需的体积,可以计算出所需的纯化液体积。
对于上面的例子,需要取20mL的纯化液体,所以所需的纯化液体积即为20mL。
步骤五:计算所需的稀释液体积最后,开始计算所需的稀释液体积。
根据上面的例子,所需的总体积为100mL,其中20mL是纯化液体,所以所需的稀释液体积为80mL。
通过上述五个步骤,就可以利用十字交叉法解决浓度问题。
需要注意的是,在计算过程中,必须确保所使用的所有单位都是相同的,并且需要对计算结果进行检查,确保其正确无误。
总结十字交叉法是解决浓度问题的一种简单而有效的方法,它可以用于计算不同浓度的液体或溶液的混合比例。
用十字交叉法解决浓度问题

C115份混%用的-量糖C:水浓6用00量÷:3=22M0000×(稀g1)=200(g)
30%的糖水用量:200×2=400(g)
【比一比】1.75%的盐水32克,需加入水多少克,可以把它稀释成浓度为40%的盐水? 2.75%的盐水32克,需加入盐多少克,可以把它变成浓度为80%的盐水?
解: 水的浓度是0%,盐的浓度是100%。
60只脚,求笼子里有几只兔子几只鸡?
解: 十字交叉法
鸡:2 3
兔子:4
1
1
=
1
1
鸡的数量:20÷2=10只 兔子的数量:20÷2=10只
十字交叉法的其他应用
4.【较复杂的利润问题】某商店花1000元进了一批商品,按进价25%的利润
来售价,结果只销售了商品总量的30%,过年的时候商店决定打折销售,这样
45%的糖水:45÷9×5=25kg 22.5%的糖水:45-25=20kg 30% 的糖水:20÷4×1=5kg 20 %的糖水:20-5=15kg
十字交叉法的其他应用
1.【浓度问题】:不同浓度的溶液 混合 2.【数学统计问题】:通过平均分 求人数
十字交叉法的其他应用
3.【鸡兔同笼问题】一个笼子里有鸡和兔子若干,已知有20个脑袋,
1. 75%
40% 8
2. 75%
20% 4
40%
=
80%
=
0%
35% 7
假设75%盐水质量为8份,那么水的质量为7份
每1份的质量:32÷8=4克 水的质量:4×7=28克
100%
15% 3
假设75%盐水质量为4份,那么盐的质量为3份
每1份的质量:32÷4=8克
水的质量:3×8=24克
数算之浓度问题及十字交叉法

、一、十字交叉法十字交叉法是数算里面的一个重要方法,很多比例问题,都可以用十字交叉法来很快地解决,而在资料分析中,也能够派上很大用场,所以应该认真掌握它。
(一)原理介绍通过一个例题来说明原理。
例:某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。
求该班男生和女生的比例。
方法一:男生一人,女生一人,总分160分,平均分80分。
男生和女生的比例是1:1。
方法二:假设男生有A,女生有B。
(A*75+B85)/(A+B)=80整理后A=B,因此男生和女生的比例是1:1。
方法三:男生:75 580女生:85 5男生:女生=1:1。
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/(A-B)因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
(二)例题与解析1.某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5 B.1:3 C.1:4 D.1:5答案:C 分析:男教练:90% 2%82%男运动员:80% 8%男教练:男运动员=2%:8%=1:42.某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1 B.3∶2 C. 2∶3 D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:580 30600女职工工资:630 20男职工:女职工=30:20=3:23.某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。
六年级下册数学拓展:浓度问题2:十字交叉法

例题3:
一种35%的新农药,如稀释到1.75%时,治虫最有效。用多少千克 浓度为35%的农药加多少千克水,才能配成1.75%的农药800千克?
十字交叉法:
例题3:
一种35%的新农药,如稀释到1.75%时,治虫最有效。用多少 千克浓度为35%的农药加多少千克水,才能配成1.75%的农药 800千克?
X=400
600-400=200克
十字交叉法可用于溶液浓度的计算,例如溶液的稀释, 浓缩或混合等计算题。使用此法,使解题过程简便、 快速、正确。
同一物质的甲乙两溶液的浓度分别为a%、b%( a%>b% ),现用这 两种溶液配制成c%的溶液。问这两种溶液的质量比是多少?
同一物质的甲乙两溶液的浓度分别为a%、b%( a%>b% ),现用这 两种溶液配制成c%的溶液。问这两种溶液的质量比是多少?
同一物质的甲乙两溶液的浓度分别为a%、b%( a%>b% ),现用这 两种溶液配制成c%的溶液。问这两种溶液的质量比是多少?
同一物质的溶液,配置前后溶质的质量相等。 设甲乙两种溶液各是m1,m2克,混合后溶液质量是( m1+m2 )克。 有下面的关系式: m1×a%+m2×b%= ( m1+m2 )×c%
同一物质的甲乙两溶液的浓度分别为a%、b%( a%>b% ),现用这 两种溶液配制成c%的溶液。问这两种溶液的质量比是多少?
同一物质的溶液,配置前后溶质的质量相等。
设甲乙两种溶液各是m1,m2克,混合后溶液质量是( m1+m2 )克。 有下面的关系式:
m1×a%+m2×b%= ( m1+m2 )×c% m1×a%+m2×b%= m1 ×c% +m2 ×c% m1×a%-m1 ×c% =m2 ×c%-m2×b% m1×(a%-c% )=m2 ×(c%-b% ) mm12=ca%%−−bc%% m1和m2就是两种溶液的质量比
数学运算之浓度问题及十字交叉法

一、十字交叉法十字交叉法是数算里面的一个重要方法,很多比例问题,都可以用十字交叉法来很快地解决,而在资料分析中,也能够派上很大用场,所以应该认真掌握它。
(一)原理介绍通过一个例题来说明原理。
例:某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。
求该班男生和女生的比例。
方法一:男生一人,女生一人,总分160分,平均分80分。
男生和女生的比例是1:1。
方法二:假设男生有A,女生有B。
(A*75+B85)/(A+B)=80整理后A=B,因此男生和女生的比例是1:1。
方法三:男生:75 580女生:85 5男生:女生=1:1。
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/(A-B)因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
(二)例题与解析1.某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5 B.1:3 C.1:4 D.1:5答案:C分析:男教练:90% 2%82%男运动员:80% 8%男教练:男运动员=2%:8%=1:42.某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1 B.3∶2 C. 2∶3 D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:580 30600女职工工资:630 20男职工:女职工=30:20=3:23.某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。
数算之浓度问题及十字交叉法

、一、十字交叉法十字交叉法是数算里面的一个重要方法,很多比例问题,都可以用十字交叉法来很快地解决,而在资料分析中,也能够派上很大用场,所以应该认真掌握它。
(一)原理介绍通过一个例题来说明原理。
例:某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。
求该班男生和女生的比例。
方法一:男生一人,女生一人,总分160分,平均分80分。
男生和女生的比例是1:1。
方法二:假设男生有A,女生有B。
(A*75+B85)/(A+B)=80整理后A=B,因此男生和女生的比例是1:1。
方法三:男生:75 580女生:85 5男生:女生=1:1。
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/(A-B)因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
(二)例题与解析1.某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5 B.1:3 C.1:4 D.1:5答案:C 分析:男教练:90% 2%82%男运动员:80% 8%男教练:男运动员=2%:8%=1:42.某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1 B.3∶2 C. 2∶3 D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:580 30600女职工工资:630 20男职工:女职工=30:20=3:23.某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。
浓度问题(十字交叉法

浓度问题(十字交叉法)1,基本公式:溶液=溶质+溶剂 浓度=溶质/溶液一杯盐水,其中有盐5克,有水45克,那么该盐水的浓度是多少?(2003国考)一种挥发性药水,原来有一整瓶,第二天挥发后变为原来的21;第三天变为第二天的32;第四天变为第三天的43,请问第几天时药水还剩下301瓶( ) A .5天B .12天C .30天D .100天(2005湖南)在10克盐与40克水的盐水中,取出40克盐水,其中盐与水分别为( )克A .8,32B .10,30C .8,30D .10,32(2005上海)在20度时,100克水最多能溶解36克食盐。
从中取出食盐水50克,取出的溶液的浓度是多少( )A .36.0%B .18.0%C .26.5%D .72.0%浓度70%的酒精溶液100克与浓度20%的酒精溶液400克混合后的酒精溶液浓度是多少( )A .30%B .32%C .40%D .45%(2008北京)甲杯有浓度为17%的溶液400克,乙杯有浓度为23%的溶液600克,现在从甲,乙两杯中取出相同总量的溶液,把甲杯中取出的倒入乙杯中,把乙杯中取出的倒入甲杯中,使甲,乙两杯溶液的浓度相同,问现在两杯溶液的浓度是多少( )A .20%B .20.6%C .21.2%D .21.4%(2009安徽)当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?( )A .45B .50C .55D .60(2007湖南)一个容器内有若干克盐水。
往容器内加入一些水,溶液的浓度变为3%,再加入同样多水,溶液的浓度变为2%,问第三次再加入同样多水后,溶液的浓度变为( )A .1.8%B .1.5%C .1%D .0.5%(2009国考)一种溶液,蒸发一定的水后,浓度为10%,再蒸发同样的水,浓度为12%,第三次蒸发同样多的水后,浓度变为多少( )C .16%D .15%一杯溶液浓度为5%,蒸发V 升水之后浓度变为6%,请问再蒸发2V 升的水之后浓度变为多少?( )A .7.5%B .8%C .9.6%D .10%(2008四川)木材原来的水分含量为28%,由于挥发,现在的水分含量为10%,则现在这些木材的重量是原来的( )A .50%B .60%C .70%D .80%(2008山东)两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比为3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?( )A .31:9B .7:2C .31:40D .20:11(2009湖南)有两只相同的大桶和一只空杯子,甲桶装牛奶,乙桶装糖水,先从甲桶内取出一杯牛奶倒入乙桶,再从乙桶取出一杯糖水和牛奶的混合倒入甲桶,问,此时甲桶内的糖水多还是乙桶内的牛奶多?( )A .无法判定B .甲桶糖水多C .乙桶牛奶多D .一样多2,多次混合问题Ⅰ型问题设盐水瓶中盐水的质量为M ,每次操作中先倒出0M 克盐水,再倒入0M 克清水,重复n 次。
浓度十字交叉法详解

浓度十字交叉法详解如下:
十字交叉法可用于计算溶液浓度,例如溶液的稀释、浓缩或混合等计算题。
十字交叉图示法和三角正弦图示法的实质一样,只不过一个是伸出去,另一个是缩回,应用范围和局限都应该一样,都可以用来解决以下的有关高低求中的问题。
同位素(一般求原子数比或原子含量,也可求质量比或质量含量),混合气体(一般求体积比和体积百分含量,或物质的量之比和物质的量百分含量,也可求质量比或质量含量)。
十字交叉法十字交叉法是数算里面的一个重要方法,很多比例问题,都可以用十字交叉法来很快地解决。