计量经济学实验教学案例实验五 自相关性
计量经济学计量经济学教学案例

计量经济学教学案例案例一 简单线性回归模型一、主题与背景用真实数据进行简单线性回归分析,应用Eviews6.0分析软件进行操作,与课本内容相对应,分析模型的截距、斜率以及可决系数,引导学生熟悉Eviews6.0的基本操作,能够解读分析报告,并尝试进行被解释变量的预测,体会变量测度单位的改变和函数形式变化给OLS 估计结果和统计特征的影响。
二、情景描述对于由CEO 构成的总体,令y 代表年薪(salary),单位为千美元。
令x 表示某个CEO 所在公司在过去三年的平均股本回报率(roe ,股本回报率定义为净收入占普通股价的百分比)。
为研究该公司业绩指标和CEO 薪水之间的关系,可以定义以下模型:Salary=0β+1βroe + u . 斜率参数1β衡量当股本回报率增长一个单位(一个百分点)时CEO 年薪的变化量,由于更高的股本回报率预示更高的CEO 年薪,所以,1β>0。
三、教学过程设计(一)数据说明数据集CEOSAL1.RAW 包含1990年209位CEO 的相关信息,该数据来自《商业周刊》(5/6/91),该样本中CEO 年薪的平均值为$1,281,120,最低值和最高值分别为$223,000和$14,822,000,1988、1989和1990年的平均股本回报率是17.18%。
(二)操作建议1:在 eviews6.0命令输入窗口定义变量:data salary roe2、用 edit+/- 编辑数据3、描述统计分析过程:view---descriptive stats---common sample4、画散点图:Scat roe salary5、在eviews6.0命令输入窗口运行简单线性回归 Ls salary c roe6、用resids 观测残差7、产生新序列:S eries lsalary =log(salary)8、改变函数形式:Ls lsalary c lsales9、改变变量测度单位:Ls salary*1000 c roe四、教学研究(一)案例结论1、回归结果估计出的回归线为:salˆary = 963.191 + 18.501 roe(1)截距和斜率保留了3位小数,回归结果显示,如果股本回报率为0,年薪的预测值为截距963.191千美元,可以把年薪的预测变化看做股本回报率变化的函数:∆salˆary = 18.501 (∆roe),这意味着当股本回报率增加1个百分点,即∆roe =1,则年薪的预测变化就是18.5千美元,在线性方程中,估计的变化与初始年薪无关。
计量经济学实验教学案例实验五_自相关性

实验五 自相关性【实验目的】掌握自相关性的检验与处理方法。
【实验容】利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。
【实验步骤】一、回归模型的筛选 ⒈相关图分析 SCAT X Y相关图表明,GDP 指数与居民储蓄存款二者的曲线相关关系较为明显。
现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析。
⒉估计模型,利用LS 命令分别建立以下模型 ⑴线性模型: LS Y C Xx y5075.9284.14984ˆ+-= =t (-6.706) (13.862)2R =0.9100 F =192.145 S.E =5030.809 ⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNXx yln 9588.20753.8ˆln +-= =t (-31.604) (64.189)2R =0.9954 F =4120.223 S.E =0.1221 ⑶对数模型:LS Y C LNXx yln 82.236058.118140ˆ+-= =t (-6.501) (7.200)2R =0.7318 F =51.8455 S.E =8685.043 ⑷指数模型:LS LNY C Xx y010005.03185.5ˆln += =t (23.716) (14.939)2R =0.9215 F =223.166 S.E =0.5049 ⑸二次多项式模型:GENR X2=X^2 LS Y C X X221966.05485.4456.2944ˆx x y+-= =t (3.747) (-8.235) (25.886)2R =0.9976 F =3814.274 S.E =835.979 ⒊选择模型比较以上模型,可见各模型回归系数的符号及数值较为合理。
各解释变量及常数项都通过了t 检验,模型都较为显著。
除了对数模型的拟合优度较低外,其余模型都具有高拟合优度,因此可以首先剔除对数模型。
第五章 自相关性

统计数据比较完整,无缺失项。适用于样本容量 n 15
的样本情况
德宾—沃森检验:基本原理和步骤(一)
提出假设
H 0 : 0 ,即不存在(一阶)自相关性
H1 : 0 ,即存在(一阶)自相关性
构造检验统计量:
n
(ei e i1 ) 2
DW i2 n ei2
i 1
但建模时设立了如下模型: Yt= 0+1Xt+vt
因此,由于vt= 2Xt2+t, ,包含了产出的平方对随 机项的系统性影响,随机项也呈现序列相关性。
3、数据的“编造”
在实际经济问题中,有些数据是通过已知数据 生成的。
因此,新生成的数据与原数据间就有了内在的 联系,表现出序列相关性。
例如:季度数据来自月度数据的简单平均,这种平 均的计算减弱了每月数据的波动性,从而使随机干扰 项出现序列相关。
二乘法进行参数估计,得出回归估计式,再对估计式进行统计检验
(T检验和 t 检验)。
如果检验的结果是每一种估计式都是不显著的,就表明 ei
与 ei1 、 ei2 是不相关的,随机误差项 u i不存在序列相关
如果通过检验发现某一个估计式是显著的(若有多个估计式显
著就选择最为显著者),就表明 ei 与 ei1 、 ei2 是相关
p
p
进行回归
ei p vi
并计算出辅助回归模型的判定系数 R2
判断准则
有对一于个显著 i水的平值显著,地若不n等R 2于大零于,临即界存值在自2 相p关,性则。拒其绝中原,假p设在H实0 ,际即应认用为中至,少一
般是从低阶的 p=1 开始,直到 p=10 左右,若未能得到显著的检验结果,可以
认为不存在自相关性
计量经济学(2010)(第五章 自相关)

年份
xi
3.3 3.3
y
i
i
0.0543 0.2543
1990 1991
6.2 7.8
1998 1999
2.5 2.7
1992
1993 1994 1995 1996
5.8
5.7 5.0 4.0 3.2
1.4
1.4 1.5 1.9 2.6
-0.3423
-0.3704 -0.4674 -0.3488 0.1262
残 差 图 1
.2 .0 -.2 -.4 -.6 1990 1992 1994 1996
1998 2000 2002 2004
( t 1 , t ) 图形
.6 .4
残 差 图 2
.2
RESID
.0 -.2 -.4 -.6 -.5 -.4 -.3 -.2 -.1 .0 .1 .2 .3 .4 .5 RESID(-1)
思考题与练习题
书上 P109 : 1,2,3 ,同时完成以下补充题:
补充题:在研究劳动力在价值增值中所占份额(即劳动力份额 Y ) 的时间 t 趋势变化中,根据1949~1964年间美国的数据, 得到如下回归结果: 模型A: t=
t21
ˆ ) 2(1 )
(4)根据DW检验临界值 (a) 当
dL , dU ,进行推断:
,则
0 d dL
u
t
存在正自相关;
(b) 当
(c) 当
dU d 4 dU
,则
,则
ut
不存在自相关。
存在负自相关。
4 dL d 4
u
t
DW检验应用说明
1、D-W检验仅适用于一阶线性自相关,对高阶自相关或 非线性自相关均不适用;也不适用于自回归模型。
计量经济学实验操作指导(完整版)

计量经济学试验(完整版)-—李子奈ﻬ目录实验一一元线性回归ﻩ错误!未定义书签。
一实验目得..................................... 错误!未定义书签。
二实验要求.................................... 错误!未定义书签。
三实验原理ﻩ错误!未定义书签。
四预备知识ﻩ错误!未定义书签。
五实验内容ﻩ错误!未定义书签。
六实验步骤..................................... 错误!未定义书签。
1、建立工作文件并录入数据................... 错误!未定义书签。
2、数据得描述性统计与图形统计: .............. 错误!未定义书签。
3、设定模型,用最小二乘法估计参数:ﻩ错误!未定义书签。
4、模型检验: ............................... 错误!未定义书签。
5、应用:回归预测:ﻩ错误!未定义书签。
实验二可化为线性得非线性回归模型估计、受约束回归检验及参数稳定性检验............................... 错误!未定义书签。
一实验目得:ﻩ错误!未定义书签。
二实验要求..................................... 错误!未定义书签。
三实验原理..................................... 错误!未定义书签。
四预备知识.................................... 错误!未定义书签。
五实验内容ﻩ错误!未定义书签。
六实验步骤ﻩ错误!未定义书签。
实验三多元线性回归...................... 错误!未定义书签。
一实验目得..................................... 错误!未定义书签。
三实验原理ﻩ错误!未定义书签。
四预备知识.................................... 错误!未定义书签。
自相关性的检验和处理实验报告

ˆ 1
3.7831 13.9366 1 0.72855
由此,我们得到最终的收入-消费模型为
Yt 13.9366 0.9484 X t
二、根据北京市连续 19 年城镇居民家庭人均收入与人均支出的数据进行相关分析 1、建立居民收入-消费函数 以人均实际收入为 X,人均实际支出为 Y,创建工作文件,输入数据,命令如下: Create a 1 19 Data x y 建立居民收入-消费模型,输入命令 ls y c x,回归结果如下:
ˆ 0.72855 ,对原模型进行广义差分,得到差 ˆ 0.72855et 1 ,由回归方程可知 回归方程为 e
分方程: Yt 0.72855Yt 1 1 (1 0.72855) 2 ( X t 0.72855 X t 1 ) t 对 上 式 广 义 差 分 方 程 进 行 回 归 , 在 Eviews 命 令 栏 中 输 入 命 令 : ls Y -0.72855*Y(-1) c X-0.72855*X(-1),回归结果如下: 由回归结果可得回归方程为:
关进行相关检验。 (二)检验收入—消费模型的自相关情况 1、德宾-沃森检验(DW 检验)法 因为 n=36, k=1, 在 5%的显著水平下查表得 DL 1.411 , DU 1.525 , 而 0<0.5234=DW< D L , 因此此模型存在一阶正自相关。 2、偏相关系数检验法 由于 DW 法只能检验一阶自相关性,我们用偏相关系数检验法来检验是否存在高阶自相关性。 在模型回归结果中选择操作:View/Residual Test/Correlogram-Q-statistics ,默认滞后期为 16,得到偏 相关系数结果如下:
由偏相关系数分布图可知,该模型存在明显一阶自相关性,不存在显著高阶自相关性。 3、BG 检验法 在偏相关系数检验之后,我们运用 BG 检验对前面的检验结果进行进一步验证,选择操作 View/Residual Test/Serial Correlation LM Test ,选择滞后期为 5,得到结果如下:
计量经济学自相关实验报告

山东轻工业学院实验报告成绩课程名称:计量经济学指导教师:刘海鹰实验日期: 2012年4月23日院(系):商学院专业班级金融10- 1 实验地点:机电楼B座5楼学生姓名:学号: 201008021029 同组人无实验项目名称:线性回归模型自相关的检验及修正一、实验目的和要求通过Eviews软件估计线性回归模型并计算残差,检验误差项是否存在自相关及自相关的修正,用广义最小二乘法估计回归参数。
二、实验原理图示法检验、DW检验、LM检验、科克伦-奥克特迭代法、广义差分法、最小二乘法。
三、主要仪器设备、试剂或材料计算机,EViews软件四、实验方法与步骤1、启动Eviews5软件,建立新的workfile. 命令:create a 1978 2000 (以下的所有命令均需单击回车键);2、在命令窗口输入命令:DATA CO I P,开始输入数据。
;3、输入数据后,命令:GENR Y=CO/P和GENR X=I/P ;4、用OLS估计方程。
在命令窗口输入命令:LS Y C X (Eviews输出结果如图一)。
一)图示法检验1、命令:GENR E=RESID LINE E SCAT E SCAT E E(-1) 结果为图二至图四。
2、在图一窗口下,单击resids功能键,得到残差图,如图五。
二)LM检验1、在图一窗口下,点击功能键VIEW,选RESIDUAL TEST/SRRIAL CORRELATION LM TEST…,2、在随后弹出的滞后期对话框中给出最大滞后期1。
点击OK键,即可得到LM自相关检验的结果,如图六。
三)自相关的修正,即广义差分法和科克伦-奥克特迭代法1、命令:LS E E(-1) 得到结果图七;2、命令:GENR GDY=Y-0.70*Y(-1),GENR GDX=X-0.70X(-1),LS GDY C GDX,广义差分方程输出结果如图八。
五、 实验数据记录、处理及结果分析图一用普通最小二乘法求估计的回归方程结果如下ˆ111.440.7118t tY X =+(6.5) (42.1) R 2 =0.9883 s.e=32.8 DW=0.60 T=23回归方程拟合得效果比较好,但是DW 值比较低。
计量经济学教学5自相关

该模型为广义差分模型,不存在序列相关 问题。可进行OLS估计。 注意:
广义差分法就是广义最小二乘法(GLS)的 一种,但是此法却损失了部分样本观测值。 如:一阶自相关的情况下,广义差分是估计
Yt Yt 1 0 (1 ) 1 ( X1t X1t 1) k ( X kt X kt 1) t
2. 回归检验法
~ ~ e e 以 t 为被解释变量, 以各种可能的相关量, 诸如以t 1 、 ~ ~2 e e t 2 、 t 等为解释变量,建立各种方程:
~ e ~ e t t 1 t
~ e ~ e ~ e t 1 t 1 2 t 2 t
……
如果存在某一种函数形式,使得方程显著成 立,则说明原模型存在自相关。
Yt 1 1 2 X t 1 ut 1 (2) (1) (2) : 若已知:Yt Yt 1 (1 ) 1 2 ( X t X t 1 ) (ut ut 1 ) 对(3)运用OLS估计,得到 (1 ) 1和 2的估计值,进而算出 1, 2
回归检验法的优点是:(1)能够确定序列 相关的形式,(2)适用于任何类型自相关问题 的检验。
3. 杜宾—瓦尔森(Durbin-Watson)检验法 D-W 检 验 是 杜 宾 ( J.Durbin ) 和 瓦 尔 森 (G.S. Watson)于1951年提出的一种检验序列自相 关的方法。该方法的假定条件是:
2
t
这里,
~e ~ e t t 1
t 2 n
~2 e t
t 1
n
~e ~ e t t 1
t 2
n
~2 e t
t 2
n
为一阶自回归模型 i=i-1+i 的参数估计。 如果存在完全一阶正相关,即=1,则 D.W. 0 完全一阶负相关,即= -1, 则 D.W. 4 完全不相关, 即=0,则 D.W.2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 自相关性
【实验目的】
掌握自相关性的检验与处理方法。
【实验内容】
利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。
【实验步骤】
一、回归模型的筛选 ⒈相关图分析 SCAT X Y
相关图表明,GDP 指数与居民储蓄存款二者的曲线相关关系较为明显。
现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析。
⒉估计模型,利用LS 命令分别建立以下模型 ⑴线性模型: LS Y C X
x y 5075.9284.14984ˆ+-=
=t (-6.706) (13.862)
2R =0.9100 F =192.145 S.E =5030.809
⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNX
x y
ln 9588.20753.8ˆln +-= =t (-31.604) (64.189)
2R =0.9954 F =4120.223 S.E =0.1221
⑶对数模型:LS Y C LNX
x y ln 82.236058.118140ˆ+-=
=t (-6.501) (7.200)
2R =0.7318 F =51.8455 S.E =8685.043
⑷指数模型:LS LNY C X
x y 010005.03185.5ˆln +=
=t (23.716) (14.939)
2R =0.9215 F =223.166 S.E =0.5049
⑸二次多项式模型:GENR X2=X^2 LS Y C X X2
21966.05485.4456.2944ˆx x y +-=
=t (3.747) (-8.235) (25.886)
2R =0.9976 F =3814.274 S.E =835.979
⒊选择模型
比较以上模型,可见各模型回归系数的符号及数值较为合理。
各解释变量及常数项都通过了t 检验,模型都较为显著。
除了对数模型的拟合优度较低外,其余模型都具有高拟合优度,因此可以首先剔除对数模型。
比较各模型的残差分布表。
线性模型的残差在较长时期内呈连续递减趋势而后又转为连续递增趋势,指数模型则大体相反,残差先呈连续递增趋势而后又转为连续递减趋势,因此,可以初步判断这两种函数形式设置是不当的。
而且,这两个模型的拟合优度也较双对数模型和二次多项式模型低,所以又可舍弃线性模型和指数模型。
双对数模型和二次多项式模型都具有很高的拟合优度,因而初步选定回归模型为这两个模型。
二、自相关性检验 ⒈DW 检验; ⑴双对数模型
因为n =21,k =1,取显著性水平α=0.05时,查表得L d =1.22,U d =1.42,而0<0.7062=DW<L d ,所以存在(正)自相关。
⑵二次多项式模型
L d =1.22,U d =1.42,而L d <1.2479=DW<U d ,所以通过DW 检验并不能判断是否存在自相关。
⒉偏相关系数检验
在方程窗口中点击View/Residual Test/Correlogram-Q-statistics ,并输入滞后期为10,则会得到残差t e 与1021,,---t t t e e e 的各期相关系数和偏相关系数,如图5-11、5-12所示。
图5-1 双对数模型的偏相关系数检验
图5-2 二次多项式模型的偏相关系数检验
从5-11中可以看出,双对数模型的第1期、第2期偏相关系数的直方块超过了虚线部分,存在着一阶和二阶自相关。
图5-2则表明二次多项式模型仅存在二阶自相关。
⒊BG 检验
在方程窗口中点击View/Residual Test/Series Correlation LM Test ,并选择滞后期为2,则会得到如图5-13所示的信息。
图5-13 双对数模型的BG 检验
图中,2nR =11.31531,临界概率P=0.0034,因此辅助回归模型是显著的,即存在自相关性。
又因为1-t e ,2-t e 的回归系数均显著地不为0,说明双对数模型存在一阶和二阶自相关性。
二次多项式BG 检验
BG 检验与偏相关系数检验结果不同
三、自相关性的调整:加入AR 项 ⒈对双对数模型进行调整;
在LS 命令中加上AR(1)和AR(2),使用迭代估计法估计模型。
键入命令: LS LNY C LNX AR (1) AR (2) 则估计结果如图5-16所示。
图5-16 加入AR 项的双对数模型估计结果
图5-16表明,估计过程经过4次迭代后收敛;1ρ,
2ρ的估计值分别为0.9459
和-0.5914,并且t 检验显著,说明双对数模型确实存在一阶和二阶自相关性。
调整后模型的DW =1.6445,n =19,k =1,取显著性水平α=0.05时,查表得L d =1.18,U d =1.40,而U d <1.6445=DW<4-U d ,说明模型不存在一阶自相关性;再进行偏相关系数检验(图5-17)和BG 检验(图5-18),也表明不存在高阶自相关性,因此,中国城乡居民储蓄存款的双对数模型为:
x y
ln 9193.28445.7ˆln +-= =t (-25.263) (52.683)
2R =0.9982 F =2709.985 S.E =0.0744 DW =1.6445
图5-17 双对数模型调整后的偏相关系数检验结果
图5-18 双对数模型调整后的BG检验结果
⒉对二次多项式模型进行调整;
键入命令:
LS Y C X X2 AR(2)
则估计结果如图5-19所示。
加上ar1 2调整后不存在自相关性,但仅有AR(2)项调整后用偏相关系数检验仍然存在2阶和6阶自相关,且BG检验结果与偏相关系数检验结果不同,且BG检验滞后期不同,结果不同。
⒊从双对数模型和二次多项式模型中选择调整结果较好的模型。
四、重新设定双对数模型中的解释变量:
模型1:加入上期储蓄LNY(-1);
模型2:解释变量取成:上期储蓄LNY(-1)、本期X的增长DLOG(X)。
⒈检验自相关性;
⑴模型1
键入命令:
LS LNY C LNX LNY(-1)
则模型1的估计结果如图5-21所示。
图5-21 模型1的估计结果
图5-21表明了DW=1.358,n =20,k =2,查表得L d =1.100,U d =1.537,而L d <1.358=DW<U d ,属于无法判定区域。
采用偏相关系数检验的结果如图5-22所示,图中偏相关系数方块均未超过虚线,模型1不存在自相关性。
图5-22 模型1的偏相关系数检验结果
⑵模型2 键入命令:
GENR DLNX=D(LNX)
LS LNY C LNY(-1) DLNX 则模型2的估计结果如图5-23所示。
图5-23 模型2的估计结果
图5-23表明了DW=1.388,n =20,k =2,查表得L d =1.100,U d =1.537,而L d <1.388=DW<U d ,属于无法判定区域。
采用偏相关系数检验的结果如图5-24所示,图中偏相关系数方块均未超过虚线,模型2不存在自相关性。
图5-24 模型2的偏相关系数检验结果
⒉解释模型的经济含义。
⑴模型1
模型1的表达式为:
()1ln 8794.0ln 3200.05240.0ˆln -++-=y x y
表示我国城乡居民储蓄存款余额的相对变动不仅与GDP 指数相关,而且受上期居民存款余额的影响。
当GDP 指数相对增加1%时,城乡居民存款余额相对增加0.32%,当上期居民存款余额相对增加1%时,城乡居民存款余额相对增加0.8794%。
⑵模型2
模型2的表达式为:
()x D y y
ln 1128.01ln 9865.03754.0ˆln +-+= 表示上期居民存款余额相对增加1%时,城乡居民存款余额相对增加
0.9865%,当GDP指数的发展速度相对增加1%时,城乡居民存款余额相对增加0.1128%。