计量经济学实验5 异方差

合集下载

计量经济学 5.1-3 异方差的概念后果和检验

计量经济学 5.1-3 异方差的概念后果和检验

第5章 异方差
§5.1 异方差的概念
§5.2 异方差产生的后果
§5.3 异方差的检验
§5.4 异方差的处理方法
§5.5 异方差的实例分析
§5.1 异方差的概念
一、异方差的概念
对于模型
Yi 0 1 X ii 2 X 2i k X ki ii
如果出现
ii ) i2 ≠常数 Var (
~ i ) 0ls ˆi yi ( y e
ˆ
2 i
几种异方差的检验方法: 1、图示法
(1)用X-Y的散点图进行判断 看是否存在明显的散点扩大、缩小或复杂型 趋势(即不在一个固定的带型域中)
2 2 ~ e ˆ (2)X- i i 的散点图进行判断
看是否形成一斜率为零的直线
2、戈德菲尔德-匡特(Goldfeld-Quandt)检验 G-Q检验以F检验为基础,适用于样本容量较大、 异方差递增或递减的情况。
最后是假设检验,得出结论 原假设 H0:
0 1 2 3 4 5 0
2 2 在同方差假定下nR 服从自由度为5的 分布。
2 给定显著水平α,查表得 (5) 。
若 nR2 2 (5) , 则拒绝原假设,表明随机误差项 i 存在异方差。
需要说明的是: 辅助回归仍是检验随机误差项的方差与解释 变量可能的组合的显著性,因此,在辅助回归 方程中还可引入解释变量的更高次方。 如果存在异方差性,则表明随机误差项的方 差确与解释变量的某种组合有显著的相关性, 这时往往显示出有较高的可决系数R2,并且某 一参数的t检验值较大。 当然,在多元回归中,由于辅助回归方程中 可能有太多解释变量,从而使自由度减少,有 时可去掉交叉项。

《计量经济学》第五章精选题及答案

《计量经济学》第五章精选题及答案

第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。

2.产生异方差的经济背景是什么?检验异方差的方法思路是什么? 3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。

4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。

三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+= e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。

研究的目的是确定国防支出对经济中其他支出的影响。

(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。

(4)变换后的回归方程是否一定要通过原点?为什么?(5)能否将两个回归方程中的R²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。

计量经济学第五章

计量经济学第五章
• 首先估计出一般方程 • View/Coefficient Tests/Redundant
Variables-Likelihood Ratio • 出现对话框时,写入删除变量名--OK • 对比删除前后的AIC与SC信息值,信息
值小的结论是应采纳的。
9
用Eviews的误设定检验3
• 第一,估计出简单(单纯)方程 • 第二,在命令窗口上写入genr v_hat=resid 或者 Procs/Generate Series中 v_hat=resid 发现 v_hat • 第三,估计出新的回归方程
无约束模型(U)
有约束模型(K) (general to simple)
计算统计量F
F=(RSSK-RSSu)/J RSSu/(n-k-1)
~F(J, n-k)
J 为表示约束条件数, K 为表示自变量数 或者 应估计的参数数, n 为表示样本数(obs)
4
2. LM检验(Lagrange Multiplier
多重共线性多出现在横截面资料上。
16
三、异方差性的检验及对策
Var(ℇi)≠Var(ℇj) (i≠j)时, ℇi中存在异方差性(Herteroskedasticity)。 即随机项中包含着对因变量的影响因素。 异方差性多发生在横截面资料上。
17
异方差性的检验
1.图示检验法 如模型为Yi=0+1X1i+2X2i+…+ℇi 时,
7
用Eviews的误设定检验1
• 首先估计出简单(单纯)方程 • View/Coefficient Tests/Omitted
Variables-Likelihood Ratio • 出现对话框时,写入新变量名 OK • 检验结果出现在上端,如果P值很小时, 拒

计量经济学题库第5章异方差

计量经济学题库第5章异方差

第5章异 方 差习 题一、单项选择题1. 回归模型中具有异方差性时,仍用OLS 估计模型,则以下说法正确的是( )A. 参数估计值是无偏非有效的B. 参数估计量仍具有最小方差性C. 常用F 检验失效D. 参数估计量是有偏的 2.更容易产生异方差的数据为 ( )A. 时序数据B. 修匀数据C. 横截面数据D. 年度数据 3.在具体运用加权最小二乘法时, 如果变换的结果是则Var(u)是下列形式中的哪一种?( )A. B. C. D.4. 在异方差性情况下,常用的估计方法是( )A .一阶差分法 B. 广义差分法 C .工具变量法 D. 加权最小二乘法 5. 在异方差的情况下,参数估计值的方差不能正确估计的原因是( )A. B.C. D. 6. 设,则对原模型变换的正确形式为( )7. 下列说法不正确的是( )A.异方差是一种随机误差现象B.异方差产生的原因有设定误差C.检验异方差的方法有F 检验法D.修正异方差的方法有加权最小二乘法8. 如果回归模型违背了同方差假定,最小二乘估计是( )A .无偏的,非有效的 B. 有偏的,非有效的011yx ux x x x ββ=++2x σ22xσσ2log x σ22()i E u σ≠()0()i j E u u i j ≠≠()0i i E x u ≠()0i E u ≠)()(,2221i i i i i i x f u Var u x y σσββ==++=01212222212...()()()().()()()()i i i i i i i i i i i i i i i i i A y x u B y x u C f x f x f x f x D y f x f x x f x u f x βββββββ=++=+=++=++C .无偏的,有效的 D. 有偏的,有效的 9. 在检验异方差的方法中,不正确的是( )A. Goldfeld-Quandt 方法B. ARCH 检验法C. White 检验法D. DW 检验法10. 在异方差的情况下,参数估计值仍是无偏的,其原因是( )A.零均值假定成立B.序列无自相关假定成立C.无多重共线性假定成立D.解释变量与随机误差项不相关假定成立11. 在修正异方差的方法中,不正确的是( )A.加权最小二乘法B.对原模型变换的方法C.对模型的对数变换法D.两阶段最小二乘法 12. 下列说法正确的是( )A.异方差是样本现象B.异方差的变化与解释变量的变化有关C.异方差是总体现象D.时间序列更易产生异方差二、多项选择题1. 如果模型中存在异方差现象,则会引起如下后果( )A. 参数估计值有偏B. 参数估计值的方差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是无偏的2. Goldfeld-Quandt 检验法的应用条件是( )A. 将观测值按解释变量的大小顺序排列B. 样本容量尽可能大C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉 E .除了异方差外,其它假定条件均满足三、计算题1.根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立了如下回归模型x y6843.1521.2187ˆ+-=se=(340.0103)(0.0622)下面取时间段1978——1985和1991——1998,分别建立两个模型(括号内为t 值), 模型1:模型2:计算F 统计量,即,对给定的,查F 分布表,得临界值。

庞浩 计量经济学5第五章 异方差性

庞浩 计量经济学5第五章  异方差性

同方差
递增型异方差
递减型异方差
复杂型异方差
18
2.借助X-e2散点图进行判断 观察散点的纵坐标是否随解释变量Xi的变化而 变化。
~2 e2e i ei e2 ~2
X 同方差 递增异方差
X
e2
~2 e i
~2 e 2 e i
X 递减异方差 复杂型异方差
X
19
二、戈德菲尔德—夸特 (Goldfeld-Quanadt)检验
3
说明1
矩阵表示: Y X u 随机扰动项向量 其方差—协 u1 u 方差矩阵不 2 u 再是: un n1 而是:
2 2 Var Cov ( ui ) 2 nn
ei X i v i
ei
1 vi Xi
ei X i v i 1 ei vi Xi
③利用上述回归的R2、t统计量、F统计量等判断,R2 好、t统计量和F统计量显著,即可判定存在异方差。 28
说明: 1.也可以用 e i 与可能产生异方差的多个解释变 量进行回归模拟; 2.戈里瑟检验的优点在于不仅检验了异方差是否 存在,同时也给出了异方差存在时的具体表现 形式,为克服异方差提供了方便。 3.试验模型选得不好,也可能导致检验不出是否 存在异方差性。
12 2 2 Var Cov ( ui ) 2 n nn
4
说明2
随机扰动项 ui具有异方差性,可理解释为被解释变量 的条件分散程度随解释变量的变化而变化,如下图所 示:var( ui ) i2 2 f ( X i)(i 1,2,, n)
10
第二节 异方差性的后果

计量经济学:异方差性

计量经济学:异方差性

计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。

虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。

本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。

第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。

这里的方差2σ度量的是随机误差项围绕其均值的分散程度。

由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。

设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。

由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。

所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。

通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。

计量经济学第五章 异方差

计量经济学第五章 异方差

X 20000
5.3异方差的侦查
利用残差图——绘制残差平方与X散点图
(一般把异方差看成是由于解释变量的变化而引起的)
5.1异方差的概念
三、异方差产生的原因 模型设定误差:省略了重要的解释变量
例:真实模型 Yi 1 2 X 2i 3 X 3i i 采用模型 Yi 1 2 X 2i i
如果X3随着X2的不同而对Y产生不同的影响,则 该影响体现在扰动项中。
测量误差: 一方面,测量误差常常在一定时间内逐渐增加,如X 越大,测量误差就会趋于增大 另一方面,测量误差随时间变化趋于减少,如抽样技 术的改进使得测量误差减少。
)


2 i
5.1异方差的概念
6 Y
4
300 Y
200
2
100
0 0
X
0
X
10
20
30
0
5000
10000
15000
20000
250
Y
二、常见的异方差类型: 200
递增型异方差:
150
100
递减型异方差:
50
条件异方差(略):
0 0
X
10
20
30
时间序列数据和截面数据中都有可能存在异方差。
经济时间序列中的异方差常为递增型异方差。
ˆ 2 ei2 (Yi ˆX i )2 (( ˆ) X i i )2
n 1
n 1
n 1
5.2异方差的后果
E (vaˆr(ˆ ))

E(
ˆ 2

X
2 i
)

E(

(( ˆ)X
(n 1)

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告学院:班级姓名:学号:一、经济学理论概述1、需求是指消费者家庭在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量;需求是购买欲望与购买能力的统一;2、需求定理是说明商品本身价格与其需求量之间关系的理论;其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加;3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动;需求量的变动表现为同一条需求曲线上的移动;二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析;1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高;2、方程总体线性的显着性检验——F检验1方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断;2给定显着性水平α,查表得到临界值Fαk,n-k-1,根据样本求出F统计量的数值后,可通过F>Fαk,n-k-1 或F≤Fαk,n-k-1来拒绝或接受原假设H0,以判定原方程总体上的线性关系是否显着成立;3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用;5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计;三、验证步骤1、确定变量1被解释变量“货币流通量”在模型中用“Y”表示;2解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“X”表示;2③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“ ”;2、建立计量经济学模型根据各相关变量之间的关系,假定:Y=0β+1βX 1+2βX 2+μ3、数据描述和处理中国货币流通量、贷款额和居民消费价格指数历史数据年度 货币流量Y 亿元居民消费价格指数P1990年=100贷款额X 亿元 1978 212 1850 1979 1980 1981 1982 1983 54 1984 1985 1986 1987 1988 2134 1989 2344 97 1990 100 1991 1992 4336 110 1993 1994 39976 1995 1996 8802 1997 1998 1999 2000 2001 2002 17278 2003 19746 2004 2005 2006 2007资料来源:中国统计年鉴2008、中国统计资料50年汇编 4、多元线性计量经济学模型的初步估计与分析用Eviews 软件检测分析:Dependent Variable: Y Method: Least Squares Date: 12/30/11 Time: 14:03 Sample: 1978 2007 Included observations: 30Variable CoefficientStd. Error t-StatisticProb.X1 X2 CR-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterionSum squared resid 7049108. S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic普通最小二乘法估计结果如下:Y ∧= -+++μ-=R2=R 20.996769 F=回归结果表明,在1978——2007年间,Y 变化的%可由其他两 个变量的变化来解释;根据表上F 统计量对应的P 值可以看出,每个 P 值都小于5%,拒绝原假设,表明模型的线性关系在95%的置信水平下显着成立;5、异方差检验从普通最小二乘回归得到的残差平方项与X1的散点图看,图二上的点总体上呈单调递增趋势,存在异方差性;再进一步地统计检验,采用怀特white检验;记2~ie为对原始模型进行普通最小二乘回归得到的残差平方项,将其与X1、X2及其平方项与交叉项进行辅助回归,得:Heteroskedasticity Test: WhiteF-statistic P rob. F5,24ObsR-squared P rob. Chi-Square5Scaled explained SS P rob. Chi-Square5Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/30/11 Time: 14:19Sample: 1978 2007Included observations: 30Variable Coefficient Std. Error t-Statistic Prob.C-1221567.X2X2^2X2X1X1X1^2R-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterion Sum squared resid +12 S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic“X12”表示“X 12”;“X22”表示“X 22”;“X 3”表示“X 1×X 2”2~ie =+++=R2怀特统计量nR 2=30×=,该值大于5%显着水平下、自由度为5的2χ分布的相应临界值05.02χ=,因此,拒绝同方差的原假设,存在异方差性;6、序列相关检验建立残差项与~i e 与~1-i e 图一以及时间t 图二的关系图,图一显示随机误差项存在一阶正序列相关性;图一 图二再用回归检验法对该模型进行序列相关性检验,以~ie 为被解释变量,以1~-i e 、2~-i e 为解释变量,建立如下方程:~i e =ρ1~-i e +i ε ………………①~i e =1ρ1~-i e +2ρ~2-i e +i ε………………② 对上面的模型,用普通最小二乘法进行参数估计,得: ①:Breusch-Godfrey Serial Correlation LM Test:F-statistic P rob. F1,26 ObsR-squaredP rob. Chi-Square1Test Equation:Dependent Variable: RESID Method: Least Squares Date: 12/30/11 Time: 14:33 Sample: 1978 2007 Included observations: 30Presample missing value lagged residuals set to zero.Variable CoefficientStd. Error t-StatisticProb.X2 X1 C RESID-1R-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterionSum squared resid5180974. S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic~i e =1~-i e +=R2=R 20.232707 F=由分析结果可以看出,该模型拟合优度不高;在5%的显着性水平下t >2αt 28,所以变量通过显着性检验;~i e 与1~-i e 相关,存在序列相关性; ②式:Breusch-Godfrey Serial Correlation LM Test:F-statistic P rob. F2,25 ObsR-squaredP rob. Chi-Square2Test Equation:Dependent Variable: RESID Method: Least Squares Date: 12/30/11 Time: 14:39 Sample: 1978 2007 Included observations: 30Presample missing value lagged residuals set to zero.VariableCoefficientStd. Error t-StatisticProb.X2 X1 C RESID-1 RESID-2R-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterionSum squared resid 3418872. S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic~i e =1~-i e ~2-i e =R2=R 20.491329 F=由分析结果可以看出,该模型的拟合优度不高;在5%的显着性水平下1t >2αt 27,2t >2αt 27,变量1~-i e ,~2-i e 通过显着性检验,所以~i e 与1~-i e 相关,存在序列相关性,而~i e 与~2-i e 相关,存在序列相关性; 7、多重共线性检验由于r=接近1;因此1X 与2X 间存在较高的相关性; 再用逐步回归法寻找最优方程;首先找出最简单的回归形式,分别作y 与x1、x2间的回归,得:1Y ∧=+R 2= .= 2Y ∧=-+ -R 2= .=可见,货币流量受贷款额的影响较大,因此选1作为初始的回归模型;再将X 2导入初始的回归模型,得:C X1 X2. Y=fX1t 值Y=fX1,X2t 值Y ∧= -+++μ-=R2=R 20.996769 F=初始模型导入X2后,模型的拟合优度提高,且参数的符号合理,变量也通过了t 检验;因此最优方程是Y=fX1,X2,拟合结果如下:Y=-+++μ8、计量经济学模型的最终确定经过一系列的检验和分析,最终的模型为:lnY=0β+1βX1+2βX2+μ模型的变量显着性成立,且存在异方差性、存在较高的多重共线性;9、检验结果分析从以上的分析和检验中可得出,贷款额每增加一个单位,货币流通量就增加个单位;居民消费价格指数每增加一个单位,货币流通量增加个单位;进而得出,居民消费价格指数的增加对货币流通量的作用大于贷款额增加对货币流通量的作用;四、结论1由于各种原因,得出的模型仍然存在有诸多问题,比如存在序列共线性,并未对其进行修正,留待以后进行进一步的研究;2从计量经济学角度来看,根据已知的贷款额和居民消费价格指数而建立的货币流通量的模型,其通过了变量的显着性检验、且存在异方差性,也具备较高的多重共线性;3从经济学角度来看,货币流通量受居民消费价格指数的影响大于贷款额的影响,也就是贷款额的增加对货币流通量的提高影响并不是很大,而居民消费价格指数的增加将会提高货币流通量,从而刺激生产的扩大,最终导致国家福利的增加;但若货币流通量过大或是货币流通速度过大,将导致供过于求即通货膨胀,货币贬值、物价上涨,将不利于经济的可持续发展;正如温家宝总理指出:“通货膨胀和腐败的结合将动摇国家的政权稳定;”由此可见,货币流通量的增加对国民经济来讲是一把双刃剑;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加权最小二乘估计
古典线性回归模型的一个重要假设是总体回归方程的随机 扰动项 ui 同方差,即他们具有相同的方差 2。如果随机扰动项 的方差随观测值不同而异,即ui 的方差为i2,就是异方差。用 符号表示异方差为E(ui2) = i2 。 异方差性在许多应用中都存在,但主要出现在截面数据分 析中。例如我们调查不同规模公司的利润,会发现大公司的利 润变化幅度要比小公司的利润变化幅度大,即大公司利润的方 差比小公司利润的方差大。利润方差的大小取决于公司的规模、 产业特点、研究开发支出多少等因素。又如在分析家庭支出模 式时,我们会发现高收入家庭通常比低收入家庭对某些商品的 支出有更大的方差。
EViews 的加权最小二乘估计方法为,首先把权数序 列用均值除,然后与对应的每个观测值相乘,权数序列 已被标准化故对参数结果没有影响同时使加权残差比未 加权残差更具可比性。然而,标准化意味着 EViews 的加
权最小二乘在残差序列相关时不适用。
使用加权最小二乘法估计方程,首先到主菜单中选 Quick/ Estimate Equation … , 然后选择LS-Least Squares (NLS and ARMA)。在对话框中输入方程说明和样本,然 后按Options钮,出现如下对话框:
表1 中国1998年各地区城镇居民平均每人全年家庭可支配收入及交通和通讯支出
单位:元
变量 可支配收入 交通和通讯支出 变量 可支配收入 交通和通讯支出
地区 甘肃 山西 宁夏 吉林 河南 陕西 青海 江西 黑龙江 内蒙古 贵州 辽宁 安徽 湖北 海南
IN 4009.61 4098.73 4112.41 4206.64 4219.42 4220.24 4240.13 4251.42 4268.50 4353.02 4565.39 4617.24 4770.47 4826.36 4852.87
检验回归中剔除。例如:一个虚拟变量的平方是它自己, 所以 EViews 剔除其平方项,避免形成完全共线性。选 择 View/Residual test/White Heteroskedasticity 进 行 White异方差检验。
White检验有两个选项:交叉项和无交叉项。有交
叉项是White检验的原始形式,它包括所有交叉乘积项。 但如果回归右边有许多变量,交叉项的个数会很多,所
IN 5000.79 5084.64 5127.08 5380.08 5412.24 5434.26 5466.57 6017.85 6042.78 6485.63 7110.54 7836.76 8471.98 8773.10 8839.68
CUM 212.30 270.09 212.46 255.53 252.37 255.79 337.83 255.65 266.48 346.75 258.56 388.79 369.54 384.49 640.56
例: 我们研究人均家庭交通及通讯支出 (CUM) 和可支配收 入(IN )的关系,考虑如下方程: CUM=0 + 1IN + ui 利用普通最小二乘法,得到如下回归模型: CUM= -56.917+ 0.05807*IN (1.57) (8.96) R2=0.74 D.W.=2.00
从图形上可以看出,平均而言,城镇居民家庭交通和通 讯支出随可支配收入的增加而增加。但是,值得注意的是:
CUM 159.60 137.11 231.51 172.65 193.65 191.76 197.04 176.39 185.78 206.91 227.21 201.87 237.16 214.37 265.98
地区 新疆 河北 四川 山东 广西 湖南 重庆 江苏 云南 福建 天津 浙江 北京 上海 广东
最小二乘估计虽然在存在异方差性时是一致的,但是通
常计算的标准差不再有效。如果发现存在异方差性,利 用加权最小二乘法可以获得更有效的估计。
检验统计量是通过利用解释变量所有可能的交叉乘积对残
差进行回归来计算的。例如:假设估计如下方程
yi 1 2 xi 3 zi ui
式中b是估计系数,û i 是残差。检验统计量基于辅助回归:
具体步骤是:
1 .选择普通最小二乘法估计原模型,得到随机误差 项的近似估计量 û t; 2.建立 1/| û t | 的数据序列; 3.选择加权最小二乘法,以 1/| û t |序列作为权,进
行估计得到参数估计量。实际上是以 1/| û t |乘原模型的两
边,得到一个新模型,采用普通最小二乘法估计新模型。
实验五 异方差
一、实验目的
掌握异方差的检验方法;掌握加权 最小二乘法对异方差的处理并根据经济 理论对可能产生的异方差的函数形式进 行适当分析。
二、实验内容
建立工作文件、输入数据 对模型进行异方差检验 根据选取的权重利用 WLS 对异方差进 行处理
三、预备知识
线性回归模型的基本假设
ˆi yi xibWLS u
估计后,未加权残差存放在RESID序列中。
如果残差方差假设正确,则加权残差不应具有异方差性。
如果方差假设正确的话,未加权残差应具有异方差性,残差标 准差的倒数在每个时刻t与w成比例。
i=1,2,…,N
即随机误差项的方差是与观测时点t无关的常数;
3.不同时点的随机误差项互不相关(序列不相关),即
Cov(ui , ui s ) 0
s ≠ 0, i = 1 , 2 , … , N
4.随机误差项与解释变量之间互不相关。即
Cov( x ji , u i ) 0
j=1,2,…,k, i=1,2,…,N
yt 0 1 x1i 2 x2i k xki ui
i=1,2,…,N 在普通最小二乘法中,为保证参数估计量具有良好的性质, 通常对模型提出若干基本假设: 1.解释变量之间互不相关; 2.随机误差项具有0均值和同方差。即
E (ui ) 0
Var (u i ) 2
以不必把它们全包括在内。无交叉项选项仅使用解释变
量平方进行检验回归。
例:人均家庭交通及通讯支出(CUM)和可支配收入(IN ) 的回归方程的 White 异方差检验的结果:
该结果F 统计量和 Obs*R2 统计量的P值均很小,表明 拒绝原假设,即残差存在异方差性。
利用加权最小二乘法消除异方差
1.方差已知的情形 假设有已知形式的异方差性,并且有序列w,其值与误差标 准差的倒数成比例。这时可以采用权数序列为w 的加权最小二乘 估计来修正异方差性。对加权自变量和因变量最小化残差平方和 得到估计结果 :
2 2 2 ˆ ui 0 1 xi 2 zi 3 xi 4 zi 5 xi zi i
EViews显示两个检验统计量:F统计量和 Obs*R2 统计量。
White检验的原假设:不存在异方差性(也就是除 0以外的所
有系数都为0成立) 。
当存在冗余交错作用, EViews 会自动的把它们从
2 2 即用 û i 来表示随机误差项的方差。用 X - û i 的散点图进行判断 看是否形成一斜率为零的直线。
ˆ var( ui ) E (u ) u
2 i
2 i
~2 e i
~2 e i
X 同方差 递增异方差
X
~2 e i
~2 e i
X 递减异方差 复杂型异方差
X
2. White异方差性检验 White (1980) 提出了对最小二乘回归中残差的异方 差性的检验。包括有交叉项和无交叉项两种检验。普通
四、实验原理与操作
异方差性检验
1. 图示检验法 (1) 用X-Y的散点图进行判断 观察是否存在明显的散点扩大、缩小或复杂型趋势(即 不在一个固定的带型域中)
2的散点图进行判断 (2)X - û i 首先采用OLS方法估计模型,以求得随机误差项的估计量 (注意,该估计量是不严格的),我们称之为“近似估计量”,用 2 表示。于是有 û i
S ( β ) w ( yi xi β )
2 i i
2
其中 是k 1维向量。在矩阵概念下,令权数序列 w 在权数矩阵 W的对角线上,其他地方是零,即W 矩阵是对角矩阵,y 和X是 因变量和自变量矩阵。则加权最小二乘估计量为:
bW LS ( X W WX ) 1 X W Wy
5.随机误差项服从0均值、同方差的正态分布。即
ui ~
N (0, )
2
i=1,2,…,N
当随机误差项满足假定1 ~ 4时,将回归模型”称为 “标准回归模型”,当随机误差项满足假定1 ~ 5时,将回 归模型称为“标准正态回归Байду номын сангаас型”。如果实际模型满足不 了这些假定,普通最小二乘法就不再适用,而要发展其他 方法来估计模型。
随着可支配收入的增加,交通和通讯支出的变动幅度也增大
了,可能存在异方差。如果我们把回归方程中得到的残差对 各个观测值作图,则可以清楚地看到这一点。
异方差的存在并不破坏普通最小二乘法的无偏性,但是
估计量却不是有效的,即使对大样本也是如此,因为缺乏有 效性,所以通常的假设检验值不可靠。因此怀疑存在异方差 或者已经检测到异方差的存在,则采取补救措施就很重要。
单击Weighted LS/TSLS选项在Weighted 项后填写权数序列 名,单击OK。例子:
例:
EViews会打开结果窗口显示标准系数结果(如上图),包括 加权统计量和未加权统计量。加权统计结果是用加权数据计算得 到的:
~ w ( y xb ) u i i i i WLS
未加权结果是基于原始数据计算的残差得到的:
估计协方差矩阵为:
2 1 ˆ ΣWLS s ( X W WX )
2.方差未知的情形
由于一般不知道异方差的形式,人们通常采用的经验 方法是,并不对原模型进行异方差检验,而是直接选择加
相关文档
最新文档