计量经济学 异方差性 共46页

合集下载

《计量经济学》第五章 异方差性

《计量经济学》第五章 异方差性

25
(一)残差图形分析
设一元线性回归模型为: Yi β1 β2 X i ui
运用OLS法估计,得样本回归模型为: ˆ ˆ ˆ Yi = β1 + β2 X i
由上两式得残差:
ˆ ei Yi - Yi
绘制出 ei2 对 X i的散点图 ◆如果 ei 2 不随 X i 而变化,则表明不存在异方差; ◆如果 ei 2 随 X i 而变化,则表明存在异方差。
●图示检验法 ● 帕克检验 ● 格莱泽检验 ● Goldfeld-Quanadt检验 ● White检验
24
在经济研究中,对应于一个具体的 X 值, 多数情况都只有一个样本 值。所以 Y 没有任何办法能从仅仅一个 Y 观测值去获 得 i 2 。因此在大多数的计量经济调查研 究中,异方差不过是一种直觉,深思熟虑 的猜测,先前经验或纯粹猜想。
(ቤተ መጻሕፍቲ ባይዱ)检验的特点
不仅能对异方差的存在进行判断,而且还能对异
方差随某个解释变量变化的函数形式
该检验要求变量的观测值为大样本。
进行诊断。
28
(三)检验的步骤
1.建立模型并求 ei 根据样本数据建立回归模型,并求残差序列
ˆ ei = Yi - Yi
2.寻找 ei 与 X 的最佳函数形式
用残差绝对值 ei 对 X i 进行回归,用各种函数
13
一、对参数估计统计特性的影响
(一)参数估计的无偏性仍然成立 参数估计的无偏性仅依赖于基本假定中的零均值 假定(即 E(ui ) 0 )。所以异方差的存在对无偏性 的成立没有影响。 (二)参数估计的方差不再是最小的 同方差假定是OLS估计方差最小的前提条件,所 以随机误差项是异方差时,将不能再保证最小二 乘估计的方差最小。

庞浩 计量经济学5第五章 异方差性

庞浩 计量经济学5第五章  异方差性

同方差
递增型异方差
递减型异方差
复杂型异方差
18
2.借助X-e2散点图进行判断 观察散点的纵坐标是否随解释变量Xi的变化而 变化。
~2 e2e i ei e2 ~2
X 同方差 递增异方差
X
e2
~2 e i
~2 e 2 e i
X 递减异方差 复杂型异方差
X
19
二、戈德菲尔德—夸特 (Goldfeld-Quanadt)检验
3
说明1
矩阵表示: Y X u 随机扰动项向量 其方差—协 u1 u 方差矩阵不 2 u 再是: un n1 而是:
2 2 Var Cov ( ui ) 2 nn
ei X i v i
ei
1 vi Xi
ei X i v i 1 ei vi Xi
③利用上述回归的R2、t统计量、F统计量等判断,R2 好、t统计量和F统计量显著,即可判定存在异方差。 28
说明: 1.也可以用 e i 与可能产生异方差的多个解释变 量进行回归模拟; 2.戈里瑟检验的优点在于不仅检验了异方差是否 存在,同时也给出了异方差存在时的具体表现 形式,为克服异方差提供了方便。 3.试验模型选得不好,也可能导致检验不出是否 存在异方差性。
12 2 2 Var Cov ( ui ) 2 n nn
4
说明2
随机扰动项 ui具有异方差性,可理解释为被解释变量 的条件分散程度随解释变量的变化而变化,如下图所 示:var( ui ) i2 2 f ( X i)(i 1,2,, n)
10
第二节 异方差性的后果

计量经济学-第11章 异方差性

计量经济学-第11章 异方差性

White的一般异方差性检验
基本思想:
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
看uˆi2与X
2i
,
X
3i
,
X
2 2i
,
X
2 3i
,
X
2i
X
3i
是否存在
回归关系.
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
(11.2.2) 返回 (11.2.3) 返回
在经典模型的各种假定,包括同方差性假定在 内,全部成立的情形下,OLS估计量是BLUE
其他假定不变,同方差性假定不成立时,OLS 估计量不再是BLUE
OLS估计量仍然是线性的和无偏的,但是,不
再是“最优的”或“有效的”,即2 ,3

,, n
E (u i2
)


2 i
见P388 Fig. 11.2
(11.1.2)
异方差的理由
按照边错边改学习模型(error—learning models), 人们的行为误差随时间而减少。见Fig. 11.3
随着收入的增长,人们在支出和储蓄中有更大的灵
活性。在做储蓄对收入的回归中,
2 i
与收入俱增
其中vi是变换后的干扰项,vi

ui Xi
。可以证明:
2
E(vi2 )

E

ui Xi


1
X
2 i
E(ui2 )
2 利用(11.6.5)
假定2.:
误差方差正比于X

i
E(ui2 ) 2 X i

计量经济学第九章异方差

计量经济学第九章异方差
2 2
四、异方差的补救措施
(一)加权最小二乘法 1.当 2i已知时: 考虑双变量PRF,
Y i B 1 B 2 X i ui (7)
var(ui ) i2
其中,Y为被解释变量,X为解释变量。假设误差方差 对模型(7)考虑如下变换:
i
Yi B 1(
是已知的。
i
1
) B2 (
ln ei2 B1 B2 ln X i vi
2
(3)
(4)检验零假设 B 0 ,即不存在异方差。如果 ln X i 和 ln ei2 之 间是统计显著的,则拒绝零假设:不存在异方差。

例子:利用方程(2)来说明帕克检验。把从该回归方程中得到的残差 用于模型(3),得到如下结果:
ln ei2 3.412 0.938 ln salesi se (4.972)
三、异方差的诊断
与多重共线性的情况一样,并没有诊断异方差的确定办法,只能借助一 些诊断工具判断异方差的存在。主要有:
1.根据问题的性质 2.残差的图形检验
(1)残差图可以是关于观察值与残差的散点图,也可以是残 ˆ 的散点图。这些图可以帮 差与解释变量,残差与估计值 Y i 助我们判断同方差假设或者是CLRM其他假设是否满足。 例子可参见美国行业利润,销售量和R&D支出。 由该例中关于观察值与残差的散点图可以得出结论,该模 型存在异方差。 2 e (2)此外,还可以利用残差的平方 i 与观察值或解释变量或 ei2 估计值的散点图来判断是否存在异方差。一般来说, 与变量 X 之间的散点图主要有如下样式。(见下一页) 图a到图c中,图a中残差平方与X之间没有可识别的系统模 式,所以不存在异方差;而图b到图e中两者都呈现出系统 关系,所以都可能存在异方差。

计量经济学课件:第五章-异方差性汇总

计量经济学课件:第五章-异方差性汇总

第五章异方差性本章教学要求:根据类型,异方差性是违背古典假定情况下线性回归模型建立的另一问题。

通过本章的学习应达到,掌握异方差的基本概念包括经济学解释,异方差的出现对模型的不良影响,诊断异方差的方法和修正异方差的方法。

经过学习能够处理模型中出现的异方差问题。

第一节异方差性的概念一、例子例1,研究我国制造业利润函数,选取销售收入作为解释变量,数据为1998年的食品年制造业、饮料制造业等28个截面数据(即n=28)。

数据如下表,其中y表示制造业利润函数,x表示销售收入(单位为亿元)。

Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较小,有的点分散幅度较大。

因此,这种分散幅度的大小不一致,可以认为是由于销售收入的影响,使得制造业利润偏离均值的程度发生了变化,而这种偏离均值的程度大小不同是一种什么现象?如何定义?如果非线性,则属于哪类非线性,从图形所反映的特征看并不明显。

下面给出制造业利润对销售收入的回归估计。

模型的书写格式为2ˆ12.03350.1044(0.6165)(12.3666)0.8547,..84191.34,152.9322213.4639,146.4905Y YX R S E FY s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在一种系统性的表现。

例2,改革开放以来,各地区的医疗机构都有了较快发展,不仅政府建立了一批医疗机构,还建立了不少民营医疗机构。

各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,而医疗服务需求与人口数量有关。

为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。

根据四川省2000年21个地市州医疗机构数与人口数资料对模型估计的结果如下:i iX Y 3735.50548.563ˆ+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表示卫生医疗机构数(个),X 表示人口数量(万人)。

第七章 异方差性

第七章 异方差性
ҧ
=1

መ1 =



σ=1( − )ҧ
2
[σ=1 − ҧ ]
White(1980)给出了异方差性的调整方法:
σ=1( − )ҧ

ො መ1 =
2
[σ=1 − ҧ ]
其中ො 是y对所有自变量做回归所得到的OLS残差。
=1
加权最小二乘估计
已知异方差形式
• 实践中,很少知道ℎ()的形式。但有一种情况,WLS所需要的
权数会自然来自潜在的计量模型。
• 例:研究工人参加养老金计划参与情况
, = 0 + 1 , + 2 , + 3 + ,
– 其中,i表示第i个企业,e表示第e个工人,共有 个工人。
log 2 = 0 + 1 1 + 2 2 + ⋯ + +
– 其中, = , = 0
加权最小二乘估计
已知异方差形式
• 假定 = 2 ℎ
– ℎ 是解释变量的某种函数(已知其形式),
并决定着异方差性, ℎ > 0。
• 对于总体中的随机样本,有 2 =
= 2 ℎ = 2 ℎ
– 例:储蓄函数 = 0 + 1 +

2
~ 0, ℎ ֜
~ 0, 2 ֜

Τ ℎ
= 0 Τ ℎ + 1 1 Τ ℎ +2 2 Τ ℎ + ⋯ + Τ ℎ + Τ ℎ




也就是 ∗ = 0 ∗ + 1 1 ∗ + 2 2 ∗ + ⋯ + ∗ + ∗ ,其中,0 ∗ =0 Τ ℎ

计量经济学讲义——线性回归模型的异方差问题1

计量经济学讲义——线性回归模型的异方差问题1
ndiv = 248 .8055 + 0 .206553 * Atprofits se = ( 31 .89255 )( 0 .049390 ) t = ( 7 .801368 )( 4 .182100 ) p = ( 0 . 00000 )( 0 .00060 ), R 2 = 0 .507103
Gleiser检验与Park检验存在同样的弱点。
(9.3) (9.4) (9.5)
9.4 异方差的诊断-方法4:怀特(White)检验法
Yi = B1 + B 2 X 2 i + B3 X 3 i + u i
2、做如下辅助回归: (9.6) (9.7)
1、首先用普通最小二乘法估计方程(9.6),获得残差ei
E(Y|X)=α+β*X Y
+u +u -u -u -u +u
0
同方差(homoscedasticity)
X 0
E(Y|X)=α+β*X
异方差(heteroscedasticity)
X
一元线性回归分析-回归的假定条件
假定5 无自相关假定,即两个误差项之间不相关。 Cov(ui,uj) = 0。
ui
9.2 异方差的性质
例9.1 美国创新研究:销售对研究与开发的影响 ^ R&D = 266.2575 + 0.030878*Sales se=(1002.963) (0.008347) t =(0.265471) (3.699508) p =(0.7940) R2 = 0.461032 从回归结果可以看出: (1)随着销售额的增加,R&D也逐渐增加,即销售 额每增加一百万美元,研发相应的增加3.1 万美元。 (2)随着销售额的增加,R&D支出围绕样本回归线 的波动也逐渐变大,表现出异方差性。 (0.0019)

计量经济学--异方差性讲解

计量经济学--异方差性讲解

图1:我国税收和GDP
图2:1998年我国制造工业和利润
X-GDP Y-税收
X-销售收入 Y-销售利润
两个散点图有共同的特征,随着自变量增加,因变量也 增加,但是图2中,当X比较小时,数据点相对集中,随 着X增大,数据点变得相对分散。而图1中数据分布却没 有出现这一特征。
异方差的性质
➢经典线形回归模型的一个重要假定是同方差性:
PRF的干扰项 u i 是同方差的(homoscedastic)
即: E(ui2) 2
i 1, 2, , n (3.3.1)
➢异方差性是指,ui 的条件方差(= Yi 的条件方差)
随着X的变化而变化,用符号表示为:
E (ui2
)
2 i
(3.3.2)
Var(Yi ) Var(ui )
异方差产生的主要原因
——这就是GLS方法,得到的是GLS估计量
•模型函数形式存在设定误差 •模型中遗漏了一些重要的解释变量 •随机因素本身的影响
异方差较之 同方差更为
常见
7
异方差的具体理由
➢按照边错边改学习模型(error—learning models),人 们的行为误差随时间而减少。
➢随着收入的增长,人们在支出和储蓄中有更大的灵活
性。在做储蓄对收入的回归中, i2与收入俱增
此时如果仍采用
计算斜率参数的方差,将会
产生估计偏误,偏误的大小取决与因子值的大小。
17
3.t检验的可靠性降低
由于异方差的存在,无法正确估计参数的方差和标 志误差,因此也影响到t检验的效果
4.模型的预测误差增大
模型的预测区间和随机误差项的方差有着紧密联 系,随着随机误差项方差的增大,模型的预测区 间也随之增大,模型的预测误差也会相应增加。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HSK-异方差稳健标准差 HSK-异方差稳健t, F, LM统计量
3
什么是异方差
同方差假定意味着条件于解释变量,不可观测误 差的方差为常数
如果u 的方差随x变化,那么误差是异方差的。 例子:估计教育回报并且能力不可观测,认为能
力的方差随教育水平变化。
4
异方差图示
f(y|x)
wage
对异方差稳健F统计量
在异方差下,常规F统计量不再服从F分布。 HSK-稳健F统计量也称为Wald统计量
18
稳健的LM统计量
在有限制模型下进行OLS,保存残差ŭ 将每一个排除变量对全部未排除变量进行回归
(q个回归)并将每一组残差ř1, ř2, …, řq保存 将1向量对ř1 ŭ, ř2 ŭ, …, řq ŭ进行无截矩回归。 LM定义为n – SSR1其中 SSR1 为最后一次回归的
多元回归分析
y = b0 + b1x1 + b2x2 + . . . bkxk + u
6. 异方差(Heteroskedasticity,HSK)
1
本章提要
OLS中异方差的影响 OLS估计后“对异方差稳健”的统计推断 检验异方差 加权最小二乘估计
2
本课提要
什么是异方差 异方差的影响 OLS估计后的“对异方差稳健”统计推断
8
异方差存在时的方差
一个简单情况是bˆ1
b1
xi xi
xui x2
,所以对于给定的x,
Var bˆ1 xSiSTxx22i2,其中SSTx xi x2.
当同方差成立时Var(bˆ1)退化为2/SSTx。
White指出,xSiSTxx22uˆi2是Var(bˆj)的一个
无论Var(u|x) = Var(y|x)是否依赖于x,它们 都可以一致地估计总体R平方。
6
为何关心异方差?
如果存在异方差,那么估计值的标准差是有偏的。 如果标准差有偏,我们就不能应用通常的t统计
量或F统计量来进行统计推断。
7
怎么办?
计量经济学家已经知道如何调整标准差,t,F,
LM量,使得它们当未知形式的异方差存在时仍 然有效。 White(1980)指出,在存在异方差时,方差 V ar( bˆ j ) 也是可以估计的。
的结论可能有很大差异。
15
为何要考虑常规标准差?
如果稳健标准差无论异方差存在与否都是适用的, 为什么我们还需要常规标准差?
我们应当注意到,稳健标准差的适用性依赖于大 样本。
16
稳健标准差
如果是小样本同方差情形,那么常规的t统计量 精确地服从t 分布,但是这并不适用于稳健标准 差,因此,在这种情况下使用稳健标准差就可能 导致推断错误。
12例子:稳健标准差Fra bibliotek常规标准差 1 Log Wage Equation with Heteroskedasticity-Robust Standard errors
logˆ(wage) 0.321 0.213marrmale 0.198marrfem 0.110 sin gfem
V a r ( bˆ j ) 开平方被称为
对异方差稳健的标准差,或 White标准差,或 Huber标准差,或 Eicker 标准差
11
稳健标准差
稳健标准差可以用来进行推断。 有时可以将估计的方差乘以n/(n – k – 1)来修正自
由度 当n → ∞时,没有区别。
(0.059)
(0.147)
(0.141)
[0.059]
[0.118]
[0.110]
n366,R2 0.4006,R2 0.3905.
第 一 行 括 号 中 是 常 规 标 准 差 , 第 二 行 为 稳 健 标 准 差
14
例子:稳健标准差与常规标准差
我们学到了什么?
稳健标准差可能比常规标准差大,也可能小。 但是实证中常常发现稳健标准差要大些。 如果这两种标准差的差异很大,那么统计推断
cumgap1.470.0011s4at0.0085h7sperc 0.0025t0othrs
(0.23) (0.0001)8 (0.0012)4 (0.0007)3
[0.22] [0.0001]9 [0.0014]0 [0.0007]3
0.303femal 0.128black0.059white
..
primar secondary college y
. E(y|x) = b0 + b1x
Education level 5
当存在异方差时…
OLS无偏且一致 R平方和调整后的R平方仍可以很好地度
量拟合优度。
它们是对总体R平方1 – [Var(u)/Var(y)]的估 计,其中的方差是总体中的“非条件”方差。
0.0291tenure 0.00053tenure2
(0.0068)
(0.00023)
[0.0069]
[0.00024]
n 526, R2 0.461
第 一 行 括 号 中 是 常 规 标 准 差 , 第 二 行 为 稳 健 标 准 差
13
2 Heteroskedasticity-Robust F Statistic
在大样本情形下,特别是应用截面数据的时候, 我们推荐报告稳健标准差(或同时报告常规的标 准差)。
17
OLS估计后的HSK-稳健推断
记rse为对异方差稳健的标准差
trse=(估计值-假设值)/(异方差稳健的标准差)
b b ( 1 )% C .I. [ˆj cr s e ,ˆj cr s e ]
(0.100) (0.055)
(0.558)
(0.056)
[0.109] [0.057]
[0.058]
[0.057]
0.0789educ 0.268 exp er 0.00054 exp er 2
(0.0067) (0.0055)
(0.00011)
[0.0074] [0.0051]
[0.00011]
合适的估计量,其中uˆi 是OLS残差 .
9
异方差存在时的方差
对于多元回归,当异方差存在时,Var(bˆj) 的一个合适的
估计量是Var(bˆj) SSrˆRi2ju2jˆi2,其中rˆij是将xj对其它解释变
量回归时第i个观察值对应的残差,SSRj是辅助方程中的 残差平方和。
10
异方差存在时的方差
相关文档
最新文档