最新41第四章经典单方程计量经济学模型异方差性汇总

合集下载

计量经济学基础-异方差

计量经济学基础-异方差
D(ˆ ) 2( XT X )1,
但是如果出现了异方差而一味采用惯常的检验程序,将导致检验及 区间估计的偏误。
3、模型的预测失效
第三节、异方差性的检验
一个重要的问题是:怎样知道在一个具体的情况中是否有异方 差?实际中并不存在侦破异方差性的严明法则,只有少数的经验规 则。我们介绍几种:
1、图解法 如果对异方差性的性质没有任何先验或经验信息,实际上,可 先在无异方差性的假定下作回归分析,以解释变量为横坐标,以残 差平方为纵坐标得出二维散点图,从图中判断二者的相关性。这是 非正式的方法,不够精确。
本章结束
坐标,可作出残差图(如图所示)。该残差图的形状象一个喇叭, 由此可以看出,销售收入小的商店,其残差一般也较小;而销售
收入大的商店,其残差一般也较大;残差有随着商店规模增大而
增大的倾向。这表明,不同规模的商店,其利润总额的方差是不
相同的,从而模型中随机误差的方差不是常数,这里存在着异方
差现象。
在实际问题中出现异方差性的例子很多.对回归模型 中异方差现象的研究,是经济计量学中的一个重要内容。 为什么会产生这种异方差性呢? 一方面是因为随机项包括 了观察测量误差和模型中被省略的一些因素对被解释变量 (因变量)的影响,另一方面来自不同抽样单元的因变量 观察值之间可能差别很大。因此、异方差性多出现在横断 面样本之中。至于时间序列,则由于因变量观察值来自不 同时期的同一样本单元.通常因变量的不同观察值之间的 差别不是很大。所以异方差性一般不明显。
( X T X )1 X T E( T ) X ( X T X )1
2 ( X T X )1( X T X ) X ( X T X )1 2 ( X T X )1
因而使用OLS 法,得到的估计量是无偏的,但不是有效的。

4.1 多重共线性(计量经济学)

4.1 多重共线性(计量经济学)
第四章 经典单方程计量经济学模型:
放宽基本假定的模型
说明
• 经典多元线性模型在满足若干基本假定的条件下, 应用普通最小二乘法得到了无偏、有效且一致的 参数估计量。
• 在实际的计量经济学问题中,完全满足这些基本 假定的情况并不多见。不满足基本假定的情况, 称为基本假定违背。
• 对截面数据模型来说,违背基本假定的情形主要 包括:
•逐步回归法(Stepwise forward Regression)
– 以Y为被解释变量,逐个引入解释变量,构成回归 模型,进行模型估计。
– 根据拟合优度的变化决定新引入的变量是否独立。 • 如果拟合优度变化显著,则说明新引入的变量是 一个独立解释变量;
• 如果拟合优度变化很不显著,则说明新引入的变 量与其它变量之间存在共线性关系。
§4.1 多重共线性 Multicollinearity
一、多重共线性 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例
一、多重共线性的概念
1、多重共线性
Yi 0 1Xi1 2 Xi2 k Xik i i 1, 2, , n
实际上:正态性假设的违背
• 李子奈(2011):计量经济学模型方法论 – 当存在模型关系误差时,如果解释变量是随机的,随 机误差项的正态性将得不到保证。 – 当模型遗漏了显著的变量,如果遗漏的变量是非正态 的随机变量,随机误差项将不具有正态性。 – 如果待估计的模型是原模型经过函数变换得到的,随 机误差项将不再服从正态分布。 – 当模型存在被解释变量的观测误差,如果观测误差相 对于随机误差项的标准差特别大、样本长度又特别小, 随机误差项的正态性假设会导致显著性水平产生一定 程度的扭曲。 – 当模型存在解释变量观测误差时,一般情况下,随机 误差项的正态性假设都是不能成立的;只有在回归函 数是线性的,且观测误差分布是正态的特殊情形下, 随机误差项的正态性才成立。

异方差性及其检验

异方差性及其检验

异方差性及其检验I 概念对于多元线性回归模型同方差性假设为 如果出现即对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,不具有等同的分散程度,则认为出现了异方差(Heteroskedasticity ) II 类型同方差性假定是指,回归模型中不可观察的随机误差项i u 以解释变量X 为条件的方差是一个常数,因此每个i u 的条件方差不随X 的变化而变化,即有2()i i f X σ=≠常数在异方差的情况下,总体中的随机误差项i u 的方差 2i σ不再是常数,通常它随解释变量值的变化而变化,即异方差一般可归结为三种类型:01122 1,2,,i i i k ki i Y X X X i n ββββμ=+++++=2(), 1,2,...,i Var i n μσ==2(), 1,2,...,i i Var i nμσ==2()i i f X σ=异方差类型图:III来源(1)截面数据(不同样本点除解释变量外其他影响差异大)(2)时间序列(规模差异)(3)分组数据、异常值等(4)模型函数形式设置不正确和数据变形不正确(5)边错边改学习模型IV影响计量经济学模型一旦出现异方差,如果仍然用普通最小二乘法估计模型参数,会产生一系列不良后果。

(1)参数估计量非有效(2)OLS估计的随机干扰项的方差不再是无偏的(3)基于OLS估计的各种统计检验非有效(4)模型的预测失效V检验异方差性,即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差,那么检验异方差性,也就是检验随机干扰项的方差与解释变量观测值之间的相关性。

一般检验方法如下:(1)图示检验法(2)帕克(Park)检验与戈里瑟(Gleiser)检验(3)G-Q(Goldfeld-Quandt)检验(4)F检验(5)拉格朗日乘子检验(6)怀特检验(具体步骤随后介绍)VI修正方法加权最小二乘法定义:加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS法估计其参数。

计量经济学 异方差性.PPT文档70页

计量经济学 异方差性.PPT文档70页
性.
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

计量经济学 异方差性 共46页

计量经济学 异方差性 共46页
HSK-异方差稳健标准差 HSK-异方差稳健t, F, LM统计量
3
什么是异方差
同方差假定意味着条件于解释变量,不可观测误 差的方差为常数
如果u 的方差随x变化,那么误差是异方差的。 例子:估计教育回报并且能力不可观测,认为能
力的方差随教育水平变化。
4
异方差图示
f(y|x)
wage
对异方差稳健F统计量
在异方差下,常规F统计量不再服从F分布。 HSK-稳健F统计量也称为Wald统计量
18
稳健的LM统计量
在有限制模型下进行OLS,保存残差ŭ 将每一个排除变量对全部未排除变量进行回归
(q个回归)并将每一组残差ř1, ř2, …, řq保存 将1向量对ř1 ŭ, ř2 ŭ, …, řq ŭ进行无截矩回归。 LM定义为n – SSR1其中 SSR1 为最后一次回归的
多元回归分析
y = b0 + b1x1 + b2x2 + . . . bkxk + u
6. 异方差(Heteroskedasticity,HSK)
1
本章提要
OLS中异方差的影响 OLS估计后“对异方差稳健”的统计推断 检验异方差 加权最小二乘估计
2
本课提要
什么是异方差 异方差的影响 OLS估计后的“对异方差稳健”统计推断
8
异方差存在时的方差
一个简单情况是bˆ1
b1
xi xi
xui x2
,所以对于给定的x,
Var bˆ1 xSiSTxx22i2,其中SSTx xi x2.
当同方差成立时Var(bˆ1)退化为2/SSTx。
White指出,xSiSTxx22uˆi2是Var(bˆj)的一个

计量经济学--异方差性讲解

计量经济学--异方差性讲解

图1:我国税收和GDP
图2:1998年我国制造工业和利润
X-GDP Y-税收
X-销售收入 Y-销售利润
两个散点图有共同的特征,随着自变量增加,因变量也 增加,但是图2中,当X比较小时,数据点相对集中,随 着X增大,数据点变得相对分散。而图1中数据分布却没 有出现这一特征。
异方差的性质
➢经典线形回归模型的一个重要假定是同方差性:
PRF的干扰项 u i 是同方差的(homoscedastic)
即: E(ui2) 2
i 1, 2, , n (3.3.1)
➢异方差性是指,ui 的条件方差(= Yi 的条件方差)
随着X的变化而变化,用符号表示为:
E (ui2
)
2 i
(3.3.2)
Var(Yi ) Var(ui )
异方差产生的主要原因
——这就是GLS方法,得到的是GLS估计量
•模型函数形式存在设定误差 •模型中遗漏了一些重要的解释变量 •随机因素本身的影响
异方差较之 同方差更为
常见
7
异方差的具体理由
➢按照边错边改学习模型(error—learning models),人 们的行为误差随时间而减少。
➢随着收入的增长,人们在支出和储蓄中有更大的灵活
性。在做储蓄对收入的回归中, i2与收入俱增
此时如果仍采用
计算斜率参数的方差,将会
产生估计偏误,偏误的大小取决与因子值的大小。
17
3.t检验的可靠性降低
由于异方差的存在,无法正确估计参数的方差和标 志误差,因此也影响到t检验的效果
4.模型的预测误差增大
模型的预测区间和随机误差项的方差有着紧密联 系,随着随机误差项方差的增大,模型的预测区 间也随之增大,模型的预测误差也会相应增加。

计量经济学:异方差性

计量经济学:异方差性

计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。

虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。

本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。

第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。

这里的方差2σ度量的是随机误差项围绕其均值的分散程度。

由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。

设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。

由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。

所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。

通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。

第四章 经典单方程计量经济学模型:放宽基本假定的模型

第四章  经典单方程计量经济学模型:放宽基本假定的模型

第四章 经典单方程计量经济学模型:放宽基本假定的模型前两章计量经济学模型的回归基于若干基本假设,应用普通最小二乘法得到了线性、无偏、有效的参数估计量。

但实际的计量经济学问题中,完全满足这些基本假定的情况不多。

称不满足基本假定的情况为基本假定违背。

以一元为例,重述基本假定:① i X 为确定性变量,非随机的(i X 确定,且j X 间互不相关;若多元回归时相关,称为多重共线性:()1rk X k <+; 若存在一个或多个解释变量是随机变量,称为随机解释变量问题);② 随机干扰项具有0均值,同方差:20,i i D E μμμσ==(2i i D μσ=即所谓异方差)③ cov(,)0,i j i j μμ=∀≠,随机干扰项互相独立,无序列相关(()cov ,0i j μμ≠,序列相关)。

④ ()cov ,0,1,2,...,,1,2,...,ji i X j k i n μ===,解释变量与随机误差项间不相关,这样将j i X ,i μ对Y 的影响分开。

⑤ ()20,,1,2,...,iN i n μμσ=,由中心极限定理保证。

而①―④需要作出计量经济学意义的检验。

基于此,基本假定违背主要包括以下几种情况:1)随机干扰项序列存在异方差性(同方差);2)随机干扰项序列存在序列相关性(序列不相关);3)解释变量之间存在多重共线性(不相关);4)解释变量是随机变量,且与随机干扰项相关(解释变量确定,与随机干扰项不相关);5)模型设定有偏误(模型设定正确);6)解释变量的方差随着样本容量的增加而不断增加(方差趋于常值)。

在对计量经济学模型进行回归分析时,必须要进行计量经济学检验:检验是否存在一种或多种违背基本假定的情况。

若有违背情况,应用普通最小二乘法估计模型就不能得到无偏的、有效的参数估计量,OLS法失效,这就需要发展新的方法估计模型。

本章主要讨论前四种,后两种将在第五四章、第九章讨论。

4.1 异方差性(93页)一、异方差性(主要以一元为例,多元类似)1.异方差性概念(Heteroskedasticity):同方差性是指每个i 围绕其零平均值的方差,并不随解释变量X 的变化而变化,不论解释变量观测值是大还是小,每个i μ的方差保持相同,即 2i const σ=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
41第四章经典单方程计量经济 学模型异方差性
§4.1 异方差性
一、异方差的概念 二、异方差的类型 三、实际经济问题中的异方差性 四、异方差性的后果 五、异方差性的检验 六、异方差的修正 七、案例
引子:更为接近真实的结论是什么?
根据四川省2000年21个地市州医疗机构数与 人口数资料,分析医疗机构与人口数量的关 系,建立卫生医疗机构数与人口数的回归模 型。对模型估计的结果如下:
图形表示:
二、异方差的类型
同方差性假定:i2 = 常数 f(Xi) 异方差时: i2 = f(Xi)
异方差一般可归结为三种类型: (1)单调递增型: i2随X的增大而增大 (2)单调递减型: i2随X的增大而减小 (3)复 杂 型: i2与X的变化呈复杂形式
三、实际经济问题中的异方差性
例4.1.1:截面资料下研究居民家庭的储蓄行为
一般情况下,居民收入服从正态分布:中等收入 组人数多,两端收入组人数少。而人数多的组平均 数的误差小,人数少的组平均数的误差大。
所以样本观测值的观测误差随着解释变量观测值 的不同而不同,往往引起异方差性。
例4.1.3,以某一行业的企业为样本建立企业生产 函数模型
Yi=Ai1 Ki2 Li3ei
被解释变量:产出量Y 解释变量:资本K、劳动L、技术A, 那么:每个企业所处的外部环境对产出量的影响被 包含在随机误差项中。 每个企业所处的外部环境对产出量的影响程度不 同,造成了随机误差项的异方差性。 这时,随机误差项的方差并不随某一个解释变量 观测值的变化而呈规律性变化,呈现复杂型。
对于模型
Y i 0 1 X i i 2 X 2 i k X k ii
如果出现
Var(i)i2
即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为出现了异方差性 (Heteroskedasticity)。
方差是度量被解释变量Y的观测值围绕回归线的分散程 度,因此同方差性指的是所有观测值的分散程度相同。
e~i2
e~i2
X 同方差
e~i2
X 递增异方差
e~i2
X 递减异方差
X 复杂型异方差
2、帕克(Park)检验与戈里瑟(Gleiser)检验
基本思想: 偿试建立方程:
e~i2f(Xji)i 或 |e~i |f(Xji)i
选择关于变量X的不同的函数形式,对方程进 行估计并进行显著性检验,如果存在某一种函 数形式,使得方程显著成立,则说明原模型存 在异方差性。
(3)经过R2、F、t检验找出最优的回归方 程形式,或无异方差
Park检验的的思想
• Park认为随机扰动项μi的形式为: 2i = 2 xi b1μv
• 两边取对数:
ln2i =ln 2+b1ln xi +Vi 令 ln2 =b0
V a r(i)E (i2) e ~ i2
e ~ i yi (y i)0ls
几种异方差的检验方法:
1、图示法
(1)用X-Y的散点图进行判断 看是否存在明显的散点扩大、缩小或复杂型
趋势(即不在一个固定的带型域中)
( 2 ) X - e ~ i 2 的 散 点 图 进 行 判 断
看是否形成一斜率为零的直线
变量的显著性检验中,构造了t统计量
其他检验也是如此。
3、模型的预测失效
一方面,由于上述后果,使得模型不具有 良好的统计性质;
所以,当模型出现异方差性时,参数OLS 估计值的变异程度增大,从而造成对Y的预测 误差变大,降低预测精度,预测功能失效。
五、异方差性的检验
• 检验思路:
由于异方差性就是相对于不同的解释变量 观测值,随机误差项具有不同的方差。那么:
表明该模型的估计效果不错,可以认为人口数量每增加1万 人,平均说来医疗机构将增加5.3735个。
然而,这里得出的结论可能是不可靠的,平均说 来每增加1万人口可能并不需要增加这样多的医疗机 构,所得结论并不符合真实情况。
有什么充分的理由说明这一回归结果不可靠呢?更 为接近真实的结论又是什么呢?
一、异方差的概念
Y ˆi 563.05485.3735X i
(291.5778) (0.644284)
t =(-1.931062) (8.340265) R20.785456 R20.774146 F69.56003
式中Y表示卫生医疗机构数(个),X表示人 口数量(万人)。
模型显示的结果和问题:
●人口数量对应参数的标准误差较小 ● t 统计量远大于临界值 ●可决系数和修正的可决系数结果较好 ● F检验结果明显显著
检验异方差性,也就是检验随机误差项的 方差与解释变量观测值之间的相关性及其相 关的“形式”。
问题在于用什么来表示随机误差项的方差 一般的处理方法:
首 先 采 用OLS法 估 计 模 型 , 以 求 得 随 机 误 差 项 的 估 计 量 ( 注 意 , 该 估 计 量 是 不 严 格 的 ) , 我 们 称 之 为 “ 近 似 估 计 量 ” , 用 e~i 表 示 。 于 是 有
如: 帕克检验常用的函数形式:
f(Xji) 2X jiei 或 ln e ~ i2 )( ln2ln X jii
若在统计上是显著的,表明存在异方差性。
Glejser检验的步骤
(1)用原始数据估计模型,计算残差直接 读取resid
(2)用残差绝对值与X进行回归:
| e|=b0+b1Xh+v v满足基本假定,幂次通常需要选择多种 值试算,如h=1,2,-1,1/2等
Yi=0+1Xi+i
Yi:第i个家庭的储蓄额 Xi:第i个家庭的可支配收入
高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较小
i的方差呈现单调递增型变化
例4.1.2,以绝对收入假设为理论假设、以截面 数据为样本建立居民消费函数:
Ci=0+1Yi+I
将居民按照收入等距离分成n组,取组平均数为样 本观测值。
四、异方差性的后果
计量经济学模型一旦出现异方差性,如果仍采 用OLS估计模型参数,会产生下列不良后果:
1、参数估计量非有效
OLS估计量仍然具有无偏性,但不具有有效性 因为在有效性证明中利用了
E(’)=2I
而且,在大样本情况下,尽管参数估计量具有 一致性,但仍然不具有渐近有效性。
2、变量的著性检验失去意义
相关文档
最新文档