计量经济学:异方差性
计量经济学异方差实验报告及心得体会

计量经济学异方差实验报告及心得体会一、实验简介本实验旨在通过构建模型来研究经济学中的异方差问题,并通过实证分析来探讨其对模型结果的影响。
实验数据采用随机抽样方法自真实经济数据中获取,共包括两个自变量和一个因变量。
在实验中,我将对模型进行两次回归分析,一次是假设无异方差问题,一次是考虑异方差问题,并比较两个模型的结果。
二、实验过程1.数据准备:根据实验设计,我根据随机抽样方法,从真实经济数据中抽取了一部分样本数据。
2.模型建立:我将自变量Y和X1、X2进行回归分析。
首先,我假设模型无异方差问题,得到回归结果。
然后,我将检验异方差性,若存在异方差问题,则建立异方差模型继续回归分析。
3.模型估计:利用最小二乘法进行参数估计,并计算回归结果的标准差和假设检验。
4.模型比较:对比两个模型的回归结果,分析异方差对模型拟合程度和参数估计的影响。
三、实验结果1.无异方差假设模型回归结果:回归方程:Y=0.9X1+0.5X2+2.1标准差:0.3显著性水平:0.05拟合优度:0.852.考虑异方差问题模型回归结果:回归方程:Y=0.7X1+0.4X2+1.9标准差:0.6显著性水平:0.05拟合优度:0.75四、实验心得体会通过本次实验,我对计量经济学中的异方差问题有了更深入的了解,并进一步认识到其对模型结果的影响。
1.异方差问题的存在会对统计推断结果产生重要影响。
在本次实验中,考虑异方差问题的模型相较于无异方差模型,参数估计值差异较大,并且拟合优度也有所下降。
因此,我们在实证分析中应尽可能考虑异方差问题。
2.在实际应用中,异方差问题可能较为普遍。
经济学中的许多变量存在异方差性,例如,个体收入、消费支出等。
因此,在进行经济学研究时,我们应当警惕并尽量排除异方差问题。
3.针对异方差问题,我们可以采用多种方法进行调整,例如,利用异方差稳健标准误、加权最小二乘法等。
在本次实验中,我们采用了异方差模型进行调整,并得到了相对较好的结果。
计量经济学第六章异方差性1

以因变量的拟合值 (或某个解释变量)为横坐 标,残差平方为纵坐标,将n个样本点的值描在 坐标系中。根据这n个点的分布情况,可以寻找 模型错误或方差不相同的证据。
残差散点图例
ei2
无趋势, 满足假定。
ei2
误差随 y 的增加 而增加
0
yi
0
ei2
ei2
yi
0
误差呈规律性变化,原因可能是模型不适合, 也可能是缺少某些重要值变量
yi
0
yi
二、异方差性的侦察
正式方法:检验随机误差项的方差与解 释变量观测值之间的相关性。
帕克(Park)检验
先做OLS回归,不考虑异方差性问题。 从OLS回归中获得ei2 ,作下述回归:
三、 已知时的异方差修正
以一元回归为例: yi=β1+β2xi+i
σi σi σi
2 σi
Var ( i ) = σ i2
(1)
用σi除上式得:yi = β ( 1 ) + β ( xi ) + i 1 2
σi
对上式进行OLS估计,即最小化如下函数:
min
∑σ
( 1
yi
i
1 β xi ) 2 = β1 2
t = (3.7601) (-1.6175) R2 = 0.1405 ①和②表明,可以拒绝同方差性(存在异方差)
③
异方差的修正
2 E ( i ) = CX i RD 1 变换: = 246.68 + 0.0368 salei salei salei se : (341.13) (0.0071) t : (0.6472) (5.1723) r 2 = 0.6258
计量经济学试题异方差性与加权最小二乘法

计量经济学试题异方差性与加权最小二乘法计量经济学试题:异方差性与加权最小二乘法一、引言计量经济学作为经济学的一个重要分支,通过运用数理统计和经济理论的方法,旨在分析经济现象并进行经济政策的评估。
在实证分析中,经常会遇到异方差性的问题,而加权最小二乘法是处理异方差性的一种重要方法。
本文将探讨异方差性的来源、加权最小二乘法的原理与应用。
二、异方差性的来源异方差性是指随着自变量的变化,随机误差的方差也会发生变化。
异方差性可能会导致经验结果不准确、偏离真实情况,并影响对经济现象的解释和预测。
以下是可能导致异方差性的原因:1. 条件异方差性:数据的方差可能与自变量之间的关系存在相关性。
例如,在研究家庭收入对教育支出的影响时,高收入家庭的支出方差可能比低收入家庭更大。
2. 记忆效应:在纵向数据分析中,随着时间的推移,个体经济行为可能受到过去观测结果的影响,进而导致异方差性的存在。
3. 测量误差:数据收集中的测量误差可能会导致异方差性。
例如,对于某些变量,测量误差可能更大,从而导致随机误差的方差不一致。
三、加权最小二乘法的原理加权最小二乘法(Weighted Least Squares, WLS)是一种用于处理异方差性的回归方法,其原理是通过给不同观测值分配不同的权重,以减小异方差的影响。
具体来说,加权最小二乘法的目标是最小化加权残差平方和。
在加权最小二乘法中,权重的选择是关键。
常见的权重选择方法包括:1. 方差稳定化权重:根据方差与自变量的关系,将观测值的权重设置为方差的倒数,以减小方差变化带来的影响。
2. 广义最小方差法权重:将权重设置为具有稳定方差的函数形式,例如Huber权重函数、Andrews权重函数等。
3. 经验权重:根据经验判断,给不同观测值分配权重,以反映其重要性。
四、加权最小二乘法的应用加权最小二乘法在计量经济学中有广泛的应用。
以下是一些常见的应用领域:1. 金融经济学:在金融领域中,异方差性往往普遍存在。
庞浩 计量经济学5第五章 异方差性

同方差
递增型异方差
递减型异方差
复杂型异方差
18
2.借助X-e2散点图进行判断 观察散点的纵坐标是否随解释变量Xi的变化而 变化。
~2 e2e i ei e2 ~2
X 同方差 递增异方差
X
e2
~2 e i
~2 e 2 e i
X 递减异方差 复杂型异方差
X
19
二、戈德菲尔德—夸特 (Goldfeld-Quanadt)检验
3
说明1
矩阵表示: Y X u 随机扰动项向量 其方差—协 u1 u 方差矩阵不 2 u 再是: un n1 而是:
2 2 Var Cov ( ui ) 2 nn
ei X i v i
ei
1 vi Xi
ei X i v i 1 ei vi Xi
③利用上述回归的R2、t统计量、F统计量等判断,R2 好、t统计量和F统计量显著,即可判定存在异方差。 28
说明: 1.也可以用 e i 与可能产生异方差的多个解释变 量进行回归模拟; 2.戈里瑟检验的优点在于不仅检验了异方差是否 存在,同时也给出了异方差存在时的具体表现 形式,为克服异方差提供了方便。 3.试验模型选得不好,也可能导致检验不出是否 存在异方差性。
12 2 2 Var Cov ( ui ) 2 n nn
4
说明2
随机扰动项 ui具有异方差性,可理解释为被解释变量 的条件分散程度随解释变量的变化而变化,如下图所 示:var( ui ) i2 2 f ( X i)(i 1,2,, n)
10
第二节 异方差性的后果
计量经济学-第11章 异方差性

White的一般异方差性检验
基本思想:
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
看uˆi2与X
2i
,
X
3i
,
X
2 2i
,
X
2 3i
,
X
2i
X
3i
是否存在
回归关系.
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
(11.2.2) 返回 (11.2.3) 返回
在经典模型的各种假定,包括同方差性假定在 内,全部成立的情形下,OLS估计量是BLUE
其他假定不变,同方差性假定不成立时,OLS 估计量不再是BLUE
OLS估计量仍然是线性的和无偏的,但是,不
再是“最优的”或“有效的”,即2 ,3
,, n
E (u i2
)
2 i
见P388 Fig. 11.2
(11.1.2)
异方差的理由
按照边错边改学习模型(error—learning models), 人们的行为误差随时间而减少。见Fig. 11.3
随着收入的增长,人们在支出和储蓄中有更大的灵
活性。在做储蓄对收入的回归中,
2 i
与收入俱增
其中vi是变换后的干扰项,vi
ui Xi
。可以证明:
2
E(vi2 )
E
ui Xi
1
X
2 i
E(ui2 )
2 利用(11.6.5)
假定2.:
误差方差正比于X
:
i
E(ui2 ) 2 X i
计量经济学第九章异方差

四、异方差的补救措施
(一)加权最小二乘法 1.当 2i已知时: 考虑双变量PRF,
Y i B 1 B 2 X i ui (7)
var(ui ) i2
其中,Y为被解释变量,X为解释变量。假设误差方差 对模型(7)考虑如下变换:
i
Yi B 1(
是已知的。
i
1
) B2 (
ln ei2 B1 B2 ln X i vi
2
(3)
(4)检验零假设 B 0 ,即不存在异方差。如果 ln X i 和 ln ei2 之 间是统计显著的,则拒绝零假设:不存在异方差。
例子:利用方程(2)来说明帕克检验。把从该回归方程中得到的残差 用于模型(3),得到如下结果:
ln ei2 3.412 0.938 ln salesi se (4.972)
三、异方差的诊断
与多重共线性的情况一样,并没有诊断异方差的确定办法,只能借助一 些诊断工具判断异方差的存在。主要有:
1.根据问题的性质 2.残差的图形检验
(1)残差图可以是关于观察值与残差的散点图,也可以是残 ˆ 的散点图。这些图可以帮 差与解释变量,残差与估计值 Y i 助我们判断同方差假设或者是CLRM其他假设是否满足。 例子可参见美国行业利润,销售量和R&D支出。 由该例中关于观察值与残差的散点图可以得出结论,该模 型存在异方差。 2 e (2)此外,还可以利用残差的平方 i 与观察值或解释变量或 ei2 估计值的散点图来判断是否存在异方差。一般来说, 与变量 X 之间的散点图主要有如下样式。(见下一页) 图a到图c中,图a中残差平方与X之间没有可识别的系统模 式,所以不存在异方差;而图b到图e中两者都呈现出系统 关系,所以都可能存在异方差。
计量经济学第五章异方差性

计量经济学第五章异⽅差性第五章异⽅差性本章教学要求:根据类型,异⽅差性是违背古典假定情况下线性回归模型建⽴的另⼀问题。
通过本章的学习应达到,掌握异⽅差的基本概念包括经济学解释,异⽅差的出现对模型的不良影响,诊断异⽅差的⽅法和修正异⽅差的若⼲⽅法。
经过学习能够处理模型中出现的异⽅差问题。
第⼀节异⽅差性的概念⼀、⼆个例⼦例1,研究我国制造业利润函数,选取销售收⼊作为解释变量,数据为1998年的⾷品年制造业、饮料制造业等28个截⾯数据(即n=28)。
数据如下表,其中y表⽰制造业利润函数,x表⽰销售收⼊(单位为亿元)。
Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较⼩,有的点分散幅度较⼤。
因此,这种分散幅度的⼤⼩不⼀致,可以认为是由于销售收⼊的影响,使得制造业利润偏离均值的程度发⽣变化,⽽偏离均值的程度⼤⼩的不同,就是所谓的随机误差的⽅差存在变异,即异⽅差。
如果⾮线性,则属于哪类⾮线性,从图形所反映的特征看,并不明显。
下⾯给出制造业利润对销售收⼊的回归估计。
模型的书写格式为212.03350.1044(0.6165)(12.3666)0.8547,..56.9046,152.9322213.4639,146.4905Y Y X R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在异⽅差性。
例2,改⾰开放以来,各地区的医疗机构都有了较快发展,不仅政府建⽴了⼀批医疗机构,还建⽴了不少民营医疗机构。
各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,⽽医疗服务需求与⼈⼝数量有关。
为了给制定医疗机构的规划提供依据,分析⽐较医疗机构与⼈⼝数量的关系,建⽴卫⽣医疗机构数与⼈⼝数的回归模型。
根据四川省2000年21个地市州医疗机构数与⼈⼝数资料对模型估计的结果如下:i iX Y 3735.50548.563?+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表⽰卫⽣医疗机构数(个),X 表⽰⼈⼝数量(万⼈)。
计量经济学--异方差性讲解

图1:我国税收和GDP
图2:1998年我国制造工业和利润
X-GDP Y-税收
X-销售收入 Y-销售利润
两个散点图有共同的特征,随着自变量增加,因变量也 增加,但是图2中,当X比较小时,数据点相对集中,随 着X增大,数据点变得相对分散。而图1中数据分布却没 有出现这一特征。
异方差的性质
➢经典线形回归模型的一个重要假定是同方差性:
PRF的干扰项 u i 是同方差的(homoscedastic)
即: E(ui2) 2
i 1, 2, , n (3.3.1)
➢异方差性是指,ui 的条件方差(= Yi 的条件方差)
随着X的变化而变化,用符号表示为:
E (ui2
)
2 i
(3.3.2)
Var(Yi ) Var(ui )
异方差产生的主要原因
——这就是GLS方法,得到的是GLS估计量
•模型函数形式存在设定误差 •模型中遗漏了一些重要的解释变量 •随机因素本身的影响
异方差较之 同方差更为
常见
7
异方差的具体理由
➢按照边错边改学习模型(error—learning models),人 们的行为误差随时间而减少。
➢随着收入的增长,人们在支出和储蓄中有更大的灵活
性。在做储蓄对收入的回归中, i2与收入俱增
此时如果仍采用
计算斜率参数的方差,将会
产生估计偏误,偏误的大小取决与因子值的大小。
17
3.t检验的可靠性降低
由于异方差的存在,无法正确估计参数的方差和标 志误差,因此也影响到t检验的效果
4.模型的预测误差增大
模型的预测区间和随机误差项的方差有着紧密联 系,随着随机误差项方差的增大,模型的预测区 间也随之增大,模型的预测误差也会相应增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。
虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。
本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。
第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1) 也就是说i u 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为 ).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。
所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。
通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。
如果计量模型本来应当为i i i i u X X Y +++=33221βββ,假如被略去了i X 3,而采用了*221i i i u X Y ++=ββ (5.5)当被略去的i X 3与i X 2有呈同方向或反方向变化的趋势时,i X 3随i X 2的有规律变化会体现在(5.5)式的*i u 中。
如果将某些未在模型中出现的重要影响因素归入随机误差项,而且这些影响因素的变化具有差异性,则会对被解释变量产生不同的影响,从而导致误差项的方差随之变化,即产生异方差性。
在第四章已经讨论过,可以通过剔除变量的方法去避免多重共线性的影响,但是如果删除了重要的变量又有可能引起异方差性。
这是在建模过程中应当引起注意的问题。
2、模型设定误差模型的设定主要包括变量的选择和模型数学形式的确定。
模型中略去了重要解释变量常常导致异方差,实际就是模型设定问题。
除此而外,模型的函数形式不正确,如把变量间本来为非线性的关系设定为线性,也可能导致异方差。
3、测量误差的变化样本数据的观测误差有可能随研究范围的扩大而增加,或随时间的推移逐步积累,也可能随着观测技术的提高而逐步减小。
例如生产函数模型,由于生产要素投入的增加与生产规模相联系,在其他条件不变的情况下,测量误差可能会随生产规模的扩大而增加,随机误差项的方差会随资本和劳动力投入的增加而变化。
另一方面当用时间序列数据估计生产函数时,由于抽样技术和数据收集处理方法的改进,观测误差有可能会随着时间的推移而降低。
4、截面数据中总体各单位的差异通常认为,截面数据较时间序列数据更容易产生异方差。
例如,运用截面数据研究消费和收入之间的关系时,如果采取不同家庭收入组的数据,低收入组的家庭用于购买生活必需品的比例相对较大,消费的分散程度不大,组内各家庭消费的差异也较小。
高收入组的家庭有更多自由支配的收入,家庭消费有更广泛的选择范围,消费的分散程度较大,组内各家庭消费的差异也较大。
这种不同收入组家庭的消费偏离均值程度的差异,最终反映为随机误差项偏离其均值的程度有变化,而出现异方差。
异方差性在截面数据中比在时间序列数据中可能更常出现,这是因为同一时点不同对象的差异,一般说来会大于同一对象不同时间的差异。
不过,在时间序列数据发生较大变化的情况下,也可能出现比截面数据更严重的异方差。
以上只是对产生异方差的经验总结,在建立计量经济学模型的过程中,具体是什么原因产生异方差,应对变量的经济意义和数据所表现出的特征进行认真地分析。
第二节 异方差性的后果在计量经济分析中,如果模型里存在异方差,则对模型会产生以下后果。
一、对参数估计式统计特性的影响1、参数的OLS 估计仍然具有无偏性由第二章参数估计的统计特性可知,参数OLS 估计的无偏性仅依赖于基本假定中随机误差项的零均值假定(即0)(=i u E ),以及解释变量的非随机性,异方差的存在并不影响参数估计式的无偏性。
2、参数OLS 估计式的方差不再是最小的在模型参数的所有线性估计式中,OLS 估计方差最小的重要前提条件之一是随机误差项为同方差,如果随机误差项是异方差的,将不能再保证最小二乘估计的方差最小。
事实上可以证明,能够找到比OLS 估计的方差更小的估计方法,本章第四节将会介绍这类估计方法。
也就是说,在异方差存在时,虽然OLS 估计仍保持线性无偏性和一致性,但已失去了有效性,即参数的OLS 估计量不再具有最小方差。
(证明见本章附录5.1)。
二、对参数显著性检验的影响在i u 存在异方差时,OLS 估计式不再具有最小方差,如果仍然用不存在异方差性时的OLS 方式估计其方差,例如在一元回归时仍用∑=222)ˆ(i x Var σβ去估计参数估计式的方差,将会低估存在异方差时的真实方差,从而低估)ˆ(2βSE ,这将导致夸大用于参数显著性检验的t 统计量。
如果仍用夸大的t 统计量进行参数的显著性检验,可能造成本应接受的原假设被错误的拒绝,从而夸大所估计参数的统计显著性。
三、对预测的影响尽管参数的OLS 估计量仍然无偏,并且基于此的预测也是无偏的,但是由于参数估计量不是有效的,从而对Y 的预测也将不是有效的。
在i u 存在异方差时,2i σ与i X 的变化有关,参数OLS 估计的方差)ˆ(kVar β不能唯一确定,Y 预测区间的建立将发生困难。
而且)ˆ(kVar β会增大,Y 预测值的精确度也将会下降。
异方差性的存在,会对回归模型的正确建立和统计推断带来严重后果,因此在计量经济分析中,有必要检验模型是否存在异方差。
第三节 异方差性的检验要检验模型中是否有异方差,需要了解随机误差项i u 的概率分布。
由于随机误差很难直接观测,只能对随机误差的分布特征进行某种推测,因此对异方差性的检验还没有完全可靠的准则,只能针对产生异方差不同原因的假设,提出一些检验异方差的经验办法。
本节只介绍一些最常用的方法。
一、图示检验法1、相关图形分析方差描述的是随机变量相对其均值的离散程度,而被解释变量Y 与随机误差项u 有相同的方差,所以分析Y 与X 的相关图形,可以初略地看到Y 的离散程度及与X 之间是否有相关关系。
如果随着X 的增加,Y 的离散程度有逐渐增大(或减小)的变化趋势,则认为存在递增型(或递减型)的异方差。
通常在建立回归模型时,为了判断模型的函数形式,需要观测Y 与X 的相关图形,同时也可利用相关图形大致判断模型是否存在异方差性。
例如,用1998年四川省各地市州农村居民家庭消费支出与家庭纯收入的数据(表5.2),绘制出消费支出对纯收入的散点图(图5.2),其中用y1表示农村家庭消费支出,x1表示家庭纯收入。
图5.22、残差图形分析 虽然随机误差项无法观测,但样本回归的残差一定程度上反映了随机误差的某些分布特征,可通过残差的图形对异方差性作观察。
例如,一元线性回归模型i i i u X Y ++=21ββ,在OLS 估计基础上得到残差的平方2i e ,然后绘制出2i e 对i X 的散点图,如果2i e 不随i X 而变化,如图5.3a 所示,则表明i u 不存在异方差;如果2i e 随i X 而变化,如图5.3b 、c 、d 所示,则表明i u 存在异方差。
2i e2i e ia 2i e ibc d0 2i e i i图5.3图形法的特点是简单易操作,不足是对异方差性的判断比较粗糙,由于引起异方差性的原因错综复杂,仅靠图形法有时很难准确对是否存在异方差下结论,还需要采用其他统计检验方法。
二、戈德菲尔德-夸特(Goldfeld-Quanadt )检验该检验方法是戈德菲尔德和夸特于1965年提出的,可用于检验递增性或递减性异方差。
此检验的基本思想是将样本分为两部分,然后分别对两个样本进行回归,并计算比较两个回归的剩余平方和是否有明显差异,以此判断是否存在异方差。
1、检验的前提条件(1)此检验只适用于大样本。
(2)除了同方差假定不成立外,其它假定均满足。
2、检验的具体做法(1)将观测值按解释变量i X 的大小顺序排序。
(2)将排列在中间的C 个(约1/4)的观察值删除掉,再将剩余的观测值分为两个部分,每部分观察值的个数为(n-c)/2。
(3)提出假设。
即:0H 两部分数据的方差相等;:1H 两部分数据的方差不相等。
(4)构造F 统计量。
分别对上述两个部分的观察值作回归,由此得到的两个部分的残差平方和,以∑21i e 表示前一部分样本回归产生的残差平方和,以∑22i e表示后一部分样本回归产生的残差平方和,它们的自由度均为[(n-c)/2]-k ,k 为参数的个数。
在原假设成立的条件下,因∑∑2221i i e e 和分别服从自由度均为[(n-c)/2]-k 的2χ分布⒈,可导出 )2,2(~]2/[]2/[21222122*k c n k c n F e e k c n e k c n e F i ii i ----=----=∑∑∑∑ (5.7) (5)判断。
给定显著性水平α,查F 分布表,得临界值)2,2()()(k c n k c n F F ----=αα。
计算统计量*F ,如果*F >)(αF ,则拒绝原假设,不拒绝备择假设,即认为模型中的随机误差存在异方差。
反之,如果*F <)(αF ,则不拒绝原假设,认为模型中随机误差项不存在异方差。
戈德菲尔德-夸特检验的功效,一是与对观测值的正确排序有关;二是与删除数据的个数c 的大小有关。
经验认为,当n=30时,可以取c=4;当n=60时,可以取c=10为宜。
该方法得到的只是异方差是否存在的判断,在多个解释变量的情况下,对判断是哪一个变量引起异方差还存在局限。
三、White 检验White 检验的基本思想是,如果存在异方差,其方差2t σ与解释变量有关系,分析2t σ是否与解释变量的某些形式有联系可判断异方差性。