高中数学的向量知识
高中数学向量知识点总结大全

一、向量的基本概念向量:既有大小又有方向的量叫做向量。
物理学中又叫做矢量,如力、速度、加速度、位移就是向量。
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。
向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)。
向量的表示方法:几何表示法、字母表示法。
模的概念:向量的大小(长度)称为向量的模。
记作:|ab|。
零向量:长度(模)为0的向量叫做零向量,记作0。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量或共线向量。
若向量a,b平行,记作a∥b。
规定0与任一向量平行。
相等向量:长度相等且方向相同的向量叫做相等向量。
向量a,b相等记作a=b。
零向量都相等。
任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段起点、终点位置无关。
二、向量的运算向量的加法:两个向量相加的结果是以这两个向量为邻边的平行四边形的对角线(注意起点和方向)。
也可以先作出其中一个向量,然后将另一个向量的起点平移到第一个向量的终点上,最后以第一个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种加法称为三角形法则。
向量的减法:两个向量相减的结果是将第一个向量的起点平移到第二个向量的终点上,然后以第二个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种减法称为三角形法则的逆运算。
向量的数乘:实数与向量的乘积是一个新的向量,其模等于原向量的模乘以实数的绝对值,其方向与原向量的方向相同或相反(取决于实数的正负)。
向量的点乘:两个向量的点乘结果是一个实数,等于这两个向量的模的乘积再乘以它们之间的夹角的余弦值。
如果两个向量的夹角为90度,则它们的点乘结果为0;如果两个向量的夹角为0度或180度,则它们的点乘结果分别为它们模的乘积的正值和负值。
向量的叉乘:两个三维向量的叉乘结果是一个新的三维向量,其模等于这两个向量的模的乘积再乘以它们之间的夹角的正弦值,其方向垂直于这两个向量所构成的平面,符合右手定则。
高中数学向量知识点数学向量知识点总结

高中数学向量知识点数学向量知识点总结
高中数学中的向量知识点主要有以下内容:
1. 向量的定义和表示:向量由大小和方向组成,表示为有向线段或者二维或三维坐标系中的点。
2. 向量的运算:包括向量的加法、减法和数乘。
向量的加法满足交换律和结合律,数乘满足结合律和分配律。
3. 向量的数量表示法:向量可以用分量表示,即在坐标系中用横坐标和纵坐标表示。
4. 向量的线性相关和线性无关:若存在不全为0的实数k1、k2,对于向量v1、v2,使得k1v1 + k2v2 = 0,则v1和v2线性相关;否则,v1和v2线性无关。
5. 向量的模长:向量的模长表示向量的大小,记作|v|。
对于二维向量(a, b),其模长为√(a^2 + b^2);对于三维向量(a, b, c),其模长为√(a^2 + b^2 + c^2)。
6. 向量的点积和叉积:向量的点积表示两个向量之间的夹角关系,记作u·v=|u||v|cos θ;向量的叉积表示两个向量之间的平行四边形的面积,记作u×v=|u||v|sinθ。
7. 向量的投影:向量a在向量b上的投影表示a在b方向上的分量,记作projb a。
8. 向量的垂直和平行:如果两个向量的点积为0,则这两个向量互相垂直;如果两个向量的叉积为0,则这两个向量互相平行。
9. 平面向量的基本变换:包括平移、旋转、拉伸和镜像等。
10. 向量在三角形和四边形中的应用:如用向量表示三角形的面积、求解四边形的中点坐标等。
这些是高中数学中向量的主要知识点,掌握这些知识点可以帮助理解和解决与向量相关的问题。
高中数学向量知识点总结

高中数学向量知识点总结高中数学中的向量是重要的数学概念之一,其涉及的知识点较多,包括向量的定义、运算、坐标表示、数量积、向量积等等。
接下来,我将总结高中数学中与向量相关的知识点,并详细介绍每个知识点的内容。
1. 向量的定义向量是有大小和方向的量,用箭头来表示。
常用大写字母表示向量,如AB表示从点A指向点B的向量。
向量还可以用平面上的有序数对(x, y)表示。
2. 向量运算向量的加法定义为将两个向量的对应分量相加,即对于向量A(x₁, y₁)和向量B(x₂, y₂),它们的和为A + B = (x₁ + x₂,y₁ + y₂)。
向量的减法定义为将两个向量的对应分量相减,即A - B = (x₁ - x₂, y₁ - y₂)。
3. 坐标表示向量还可以通过坐标表示。
给定平面直角坐标系Oxy和点A(x₁, y₁),可以用从原点O指向点A的向量来表示点A。
这个向量的坐标表示为OA = (x₁, y₁)。
两个向量相等的条件是它们的对应分量相等。
4. 数量积数量积是一种向量运算,也叫点乘。
给定向量A(x₁, y₁)和向量B(x₂, y₂),它们的数量积定义为A·B = x₁x₂ + y₁y₂。
数量积有几个重要的性质,包括交换律、分配律和结合律。
5. 向量积向量积是一种向量运算,也叫叉乘。
给定向量A(x₁, y₁, z₁)和向量B(x₂, y₂, z₂),它们的向量积定义为A×B = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。
向量积有几个重要的性质,包括反交换律、结合律和分配律。
6. 向量共线及线性相关性如果两个向量之间存在一个实数k,使得一个向量是另一个向量的k倍,则这两个向量称为共线向量。
两个向量共线时,它们的方向相同或相反。
如果存在实数k₁、k₂...kn,使得n个向量的线性组合等于零向量,并且至少存在一个k不等于零,则这些向量称为线性相关向量。
7. 平面向量的线性运算对于平面上的向量A、B和实数k₁、k₂,它们的线性组合定义为k₁A + k₂B。
向量的全部知识点高一

向量的全部知识点高一向量是高等数学中的一个重要概念,它在解决几何、物理和工程问题中起着重要的作用。
本文将系统地介绍高中一年级学生需要了解的向量的全部知识点。
一、向量的定义和表示在数学中,向量是由大小和方向组成的量,它可以用有向线段来表示。
向量通常用小写字母加上箭头来表示,比如a→代表一个向量a。
向量的大小被称为向量的模,用|a→|来表示。
二、向量的加法向量的加法是指将两个向量相加得到一个新的向量。
向量的加法满足交换律和结合律。
具体而言,设a→和b→是两个向量,则它们的和记作a→+b→,其中,新向量的起点是a→的起点,终点是b→的终点。
三、向量的数乘向量的数乘是指将一个向量与一个数相乘得到一个新的向量。
具体来说,设a→是一个向量,k是一个实数,则k乘以a→的结果记作ka→。
当k>0时,放大向量的长度,当k<0时,翻转向量的方向。
四、向量的数量积向量的数量积是另一种向量的运算,也被称为点积或内积。
设a→和b→是两个向量,它们的数量积定义为:a→·b→=|a→||b→|cosθ,其中,θ是a→和b→之间的夹角,|a→|和|b→|分别是它们的模。
数量积的结果是一个实数。
五、向量的性质向量有许多重要的性质,包括零向量、单位向量、平行向量和共线向量。
其中,零向量是长度为0的向量,任何向量与零向量的数量积都为0。
单位向量是模为1的向量,它的方向与原向量相同。
平行向量是指方向相同或相反的向量,共线向量是指在同一直线上的向量。
六、向量的投影向量的投影是指将一个向量在另一个向量上的投影长度,用于研究向量之间的夹角和相互垂直的关系。
向量b的投影在向量a 上的长度等于向量b与向量a的数量积除以向量a的模。
七、向量的共面与共点三个向量共面是指它们所在的直线或平面上的点满足共面的条件。
三个向量共点是指它们的起点或终点重合。
判断向量共面可以利用向量叉乘的结果,如果向量叉乘为零向量,则三个向量共面;判断向量共点可以通过解线性方程组来实现。
高中数学向量知识点总结

高中数学向量知识点总结一、基础概念向量是由大小和方向两个方面表示的量,可以用有向线段表示。
向量的模(长度)是一个标量,用||a||表示,其中a为向量。
模为0的向量称为零向量。
向量的方向由其符号决定,同方向向量与相反方向向量称为“对向向量”。
二、向量的加法向量加法:向量加上另一个向量就是在另一个向量的末端从起点开始画一个同样大小的向量。
可加性:若a、b、c为向量,那么a+b=c,即a+b=c-b。
交换律:一个向量加上另一个向量等于另一个向量加上第一个向量。
结合律:(a+b)+c=a+(b+c)三、向量的减法向量减法:一个向量减上另一个向量等于另一个向量的相反数加上第一个向量。
四、向量的数量积向量的数量积:向量 a 与标量 k 的积乘积表示为ka 。
向量 a 与向量 b 的数量积表示为a·b 。
夹角公式:a·b=|a||b|cosθ。
五、向量的叉积向量的叉积可以得到一个新的向量,叉积符号为叉乘号-×。
向量的叉积表示为a×b,结果垂直于a和b所在的平面,方向通过右手定则判断。
六、平面向量平面向量:一个平面向量的模表示这个向量所代表的有向线段的长度,而朝向的方向则由向量的起点指向终点。
标准单位向量i、j 满足|i|=|j|=1,同时是相互垂直的。
平面向量加减的公式与三维向量相同。
七、空间向量空间向量:空间向量是三维向量,定义为一个向量的起点和终点可以在三维空间中的任意两个点之间往返移动。
空间向量加减的公式与平面向量相同。
空间向量的数量积:a·b=|a||b|cosθ。
八、向量的应用平移变换:平移是向量应用最广泛的变换之一,在2D空间或3D空间中使用相同的基础技巧。
投影:当我们需要在三维空间中绘制3D图像时,我们经常需要计算平行于某个坐标轴的投影。
高三知识点向量

高三知识点向量高三知识点:向量向量是高中数学中非常重要的概念之一。
它在几何和代数中都有广泛的应用,特别是在解决各种几何问题和物理问题时。
本文将介绍向量的定义、性质以及常见的计算方法和应用。
一、向量的定义和表示方法在平面几何和空间几何中,向量可以用有序的数对或有序的三元组表示。
设P和Q是平面上或空间中的两点,向量PQ表示从点P到点Q的位移。
记作→PQ,或者简记为→a。
二、向量的性质1. 向量的相等性:两个向量相等,当且仅当它们的起点和终点相同。
2. 零向量:长度为零的向量称为零向量,记作→0。
零向量的方向可以是任意方向。
3. 负向量:设→a是一个非零向量,则称与→a有相同大小,方向相反的向量为→a的负向量,记作-→a。
4. 平行向量:如果两个向量的方向相同或相反,那么它们是平行向量。
5. 向量的数量积:设→a和→b是两个向量,它们的数量积记作→a·→b,定义为|→a|·|→b|·cosθ,其中θ是→a与→b的夹角。
三、向量的运算1. 向量的加法:向量的加法满足平行四边形法则,即把两个向量的起点放在一起,然后用一条新的向量连接它们的终点。
2. 向量的数乘:向量的数乘是将向量的长度进行伸缩的运算。
当数为正数时,向量的方向不变;当数为负数时,向量的方向相反。
3. 向量的减法:向量的减法可以通过使用向量的负向量和加法来表示,即→a-→b=→a+(-→b)。
4. 向量的数量积:向量的数量积满足交换律和分配律,可以用于计算向量的夹角、判断向量的正交性等问题。
5. 向量的叉乘(仅适用于三维向量):向量的叉乘满足反交换律和结合律,可以用于计算两个向量所在平面的法向量。
四、向量的应用1. 几何应用:向量常用于解决几何问题,如线段相交、判断点是否在三角形内部、判断线段的相对位置等。
2. 物理应用:力、速度、加速度等物理量都可以通过向量表示,并利用向量的加法和数量积进行计算。
3. 数据分析:向量也常用于数据分析中,如表达多维数据、计算特征向量和特征值等。
向量知识点总结公式高中
向量知识点总结公式高中一、向量的定义向量是具有大小和方向的有序组,可以用箭头表示,表示为a→。
向量有两种表示方法,一种是点表示法,将向量的起点放在坐标原点上,由坐标对(x,y)来确定向量的终点,另一种是分量表示法,将向量的起点放在坐标原点上,向量的终点为(x,y),则向量a→=(a1,a2),其中a1为横坐标,a2为纵坐标。
二、向量的基本运算1. 向量的加法:向量的加法符合三角形法则,即若有三个向量a→,b→和c→,则a→+b→=c→,其中c→为以a→和b→为两条边的三角形的第三条边的向量。
2. 向量的减法:向量的减法可以转化为向量的加法,即a→-b→=a→+(-b→)=c→,其中-c→为向量b→的反向量。
3. 向量的数乘:向量的数乘是指向量与一个实数的乘积。
若有向量a→和实数k,则ka→=b→,其中b→的大小为ka的绝对值,方向与a→一致。
4. 基本运算规律:(1) 结合律:a→+(b→+c→)=(a→+b→)+c→;(2) 交换律:a→+b→=b→+a→;(3) 数乘结合律:k(la→)=(kl)a→;(4) 分配律:k(a→+b→)=ka→+kb→。
三、向量的数量积向量的数量积,又叫点积或内积,是数学中的一种运算。
已知有向量a→=(a1,a2)和向量b→=(b1,b2),则a→·b→=a1b1+a2b2,其中a1b1和a2b2分别为向量a→和b→的横坐标和纵坐标乘积之和。
数量积的几何意义是向量a→在向量b→上的投影的长度乘以向量b→的模的长度,即a→·b→=|a→|·|b→|·cosθ,其中θ为向量a→和b→之间的夹角。
数量积还有以下几个重要的性质:1. a→·b→=b→·a→2. (ka→)·b→=k(a→·b→)=a→·(kb→)3. a→·a→=|a→|^24. a→是b→的倍数当且仅当a→·b→=|a→|·|b→|四、向量的叉积向量的叉积,又称外积或向量积,是将两个向量相乘得到一个新的向量的一种向量运算。
数学向量知识点大全
数学向量知识点大全数学向量是高中数学的重要内容之一、它是表示大小和方向的物理量,常用箭头或有向线段表示。
下面是数学向量的一些重要知识点:1.向量的定义:向量是有大小和方向的量。
2.零向量:大小为零的向量,表示为0或。
3.等于向量:若向量和向量的对应分量相等,则称这两个向量相等。
4.向量的加法:若向量和向量都有相同的起点,则它们的和向量从共同起点出发,终点位于连接两个向量终点的直线上。
5. 向量的数量乘法:若向量a和实数k,积ka的大小为,k,乘以a的大小,方向和a相同(若k>0)或相反(若k<0)。
6.两个向量的数量乘积:向量的数量乘积是一个向量,大小等于这两个向量大小的乘积,方向和这两个向量夹角的余弦相同。
7.向量的平行条件:若向量和向量大小相等或其大小为零,则称这两个向量平行。
8.向量的线性组合:若给定向量,实数称为向量的系数,则向量的线性组合是形如的向量。
9.向量的加法交换律:对于任意两个向量a和b,有a+b=b+a。
10.向量的加法结合律:对于任意三个向量a、b和c,有(a+b)+c=a+(b+c)。
11.零向量的加法逆元:对于任意向量a,有a+(-a)=0。
12.向量长度的计算:向量的长度(或模)由勾股定理求得,即,a,=√(a₁²+a₂²)。
13.单位向量:长度为1的向量,可以通过将向量除以其长度得到。
14. 单位向量的夹角余弦:若a和b是非零向量,则向量a与向量b 的夹角余弦由公式cosθ = (a·b) / (,a,·,b,)求得。
15.向量的点乘积:向量的点乘积是一个标量,等于两个向量大小的乘积,方向是两个向量夹角的余弦。
表示为a·b。
16.向量的点乘积的性质:对于任意向量a、b和c,以及实数k,有以下性质:-a·b=b·a(交换律)-a·(b+c)=a·b+a·c(分配律)- (ka)·b = k(a·b)17.向量的叉乘积(向量积):向量的叉乘积是一个向量,大小等于两个向量大小的乘积与夹角的正弦乘积,方向垂直于这两个向量所确定的平面。
高中向量知识点总结简要
高中向量知识点总结简要一、向量的概念1、向量的基本概念向量是一个有大小和方向的量,通常用箭头或者有向线段表示,向量的大小叫做模,记作|a|或a,其方向表示向量的指向。
两个有相同模和方向的向量是相等的,称之为零向量。
在空间直角坐标系中,向量可以表示为一个元素是实数的有序数组。
2、向量的性质(1) 相等的向量具有相同的大小和方向。
(2) 向量的加法满足交换律和结合律。
(3) 向量的数乘即一个向量与一个数的乘积,也满足分配律。
3、单位向量单位向量指模为1的向量,通常用字母e加方向符号表示。
4、零向量向量的大小为零,方向不定。
5、向量的相等向量完全相等(具有相同的大小和方向)时,称为相等。
符号:→AC=→BD。
6、向量的夹角(1) 向量的夹角是指两个向量之间的夹角。
向量夹角的余弦公式:cosθ=→a•→b/|→a||→b|。
(2) 向量的夹角为0时,两个向量为共线向量,夹角为90度时,两个向量垂直。
7、向量的模向量的模是向量的大小,表示为向量的长度。
在直角坐标系中,向量的大小可以用勾股定理来求解。
8、向量的方向角向量必须与坐标轴的正方向所成的角,叫做向量的方向角。
向量的方向角是α、β、γ三组件角所确定的。
9、向量的三角形定理向量的三角形定理即两边和等于第三边,两个向量相加之后的结果是第三个向量。
二、向量的坐标表示1、二维坐标系中的向量表示二维空间中的一个向量可以表示为(x,y),表示向量在坐标系中的横纵坐标。
2、三维坐标系中的向量表示三维空间中的一个向量可以表示为(x,y,z),由三个有序数组成。
三、向量的运算1、向量的加法两个向量相加等于将两个向量的对应分量相加,即(a,b)+(c,d)=(a+c, b+d)。
2、向量的减法两个向量相减等于将两个向量的对应分量相减,即(a,b)-(c,d)=(a-c, b-d)。
3、向量的数乘向量a与实数k相乘,等于将a的每个分量乘以k,即k•(a,b)=(ka, kb)。
高中数学平面向量知识及注意事项
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学的平面向量知识任意一个向量的可用若干个向量线性表示。
我们把能用最少个数的若干个向量线性组合叫基底人为规定的两个不共线向量,e1,e2,使得平面上任意一向量e3=me1+ne2 (m,n是实数)e1,e2就是基底。
特别的,在直角坐标系下,e1,e2分别是平行于x轴,y轴的单位向量a和b同向,则它们和空间的任何向量都不能构成空间的一个基底。
-------对的。
只有不共线的三个单位向量才能构成空间的基底。
向量的概念既有方向又有大小的量叫做向量(物理学中叫做矢量),向量可以用a,b,c,.......表示,也可以用表示向量的有向线段的起点和终点字母表示。
只有大小没有方向的量叫做数量(物理学中叫做标量)。
在自然界中,有许多量既有大小又有方向,如力、速度等。
我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念。
这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。
向量的几何表示具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。
(AB 是印刷体,也就是粗体字母,书写体是上面加个→)有向线段AB的长度叫做向量的模,记作|AB|。
有向线段包含3个因素:起点、方向、长度。
相等向量、平行向量、共线向量、零向量、单位向量:长度相等且方向相同的向量叫做相等向量。
两个方向相同或相反的非零向量叫做平行向量或共线向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)长度等于0的向量叫做零向量,记作0。
(注意粗体格式,实数“0”和向量“0”是有区别的)零向量的方向是任意的;且零向量与任何向量都平行,垂直。
模等于1个单位长度的向量叫做单位向量。
平面向量的坐标表示在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。
任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j我们把(x,y)叫做向量a的(直角)坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。
在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。
而点的坐标是绝对的。
若一向量的起点在原点,例如该向量为(1,2)那么该向量上的所有点都可以用(a,2a)表示。
即,若一向量的起点在原点,那么该向量上的任意一点的横纵坐标比例关系与向量坐标的比例关系是一样的。
向量的运算加法运算向量加法的定义已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a与b的和,记做a+b,即a+b=AB+BC=ACAB+BC=AC,这种计算法则叫做向量加法的三角形法则。
(首尾相连,连接首尾,指向终点) 同样,作AB=a,且AD=BC,再作平行AD的BC=b,连接DC,因为AD∥BC,且AD=BC,所以四边形ABCD为平行四边形,AC叫做a与b的和,表示为:AC=a+b.这种方法叫做向量加法的平行四边形法则。
(共起点,对角连)。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算AB-AC=CB,这种计算法则叫做向量减法的三角形法则。
(共起点,连终点,方向指向被减向量)与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a 的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a= λ(μa)(2)(λ + μ)a= λa+ μa(3)λ(a±b) = λa±λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
坐标运算已知a=(x1,y1),b=(x2,y2),则a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j即a+b=(x1+x2,y1+y2)。
同理可得a-b=(x1-x2,y1-y2)。
这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
由此可以得到:一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
根据上面的结论又可得若a=(x,y),则λa=(λx,λy)这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
向量的数量积向量数量积定义:(1)向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b,则角AOB=θ叫做向量a与b的夹角。
(2)已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a〃b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b 在a方向上)的投影。
零向量与任意向量的数量积为0。
a〃b的几何意义:数量积a〃b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
即:若a=(x1,y1),b=(x2,y2),则a〃b=x1x2+y1y2向量的数量积的性质(1)a〃a=∣a∣^2≥0(2)a〃b=b〃a(3)k(ab)=(k a)b=a(k b)(4)a〃(b+c)=a〃b+a〃c(5)a〃b=0<=>a⊥b(6)a=k b<=>a//b(7)e1〃e2=|e1||e2|cosθ=cosθ向量的混合积定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)〃c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)〃c混合积具有下列性质:1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c 构成左手系时ε=-1)2、上性质的推论:三向量a、b、c共面的充要条件是(abc)=03、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)4、(a×b)〃c=a〃(b×c)平面向量的基本定理如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数λ、μ,使a= λ*e1+ μ*e2。
相关练习1.若a =0,则对任一向量b ,有a 〃 b=0. 2.若a ≠0,则对任一非零向量b ,有a 〃 b≠0.错(当a⊥b时,a 〃 b=0)3.若a ≠0,a 〃 b =0,则b=0 错(当a和b都不为零,且a⊥b时,a 〃 b=0)4.若a 〃 b=0,则a 〃 b中至少有一个为0. 错(可以都不为0,当a⊥b时,a 〃 b=0成立)5.若a≠0,a 〃 b= b 〃 c,则a=c 错(当b=0时)6.若a 〃 b = a 〃 c ,则b≠c,当且仅当a= 0 时成立.错(a≠0且同时垂直于b,c时也成立)7.对任意向量 a 有a*a=∣a∣* ∣a∣向量与三角形有关的特殊规律1.三角形ABC内一点O,向量OA〃向量OB=向量OB〃向量OC=向量OC〃向量OA,则点O是三角形的垂心。
2.若O是三角形ABC的外心,点M满足向量OA+向量OB+向量OC=向量OM,则M 是三角形ABC的垂心。
3若O和三角形ABC共面,且满足向量OA+向量OB+向量OC=零向量,则O是三角形ABC的重心。
来源向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型.从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O 年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.概念、方法、题型、易误点及应试技巧总结平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。