计量经济学异方差PPT课件
合集下载
《异方差的概念》PPT课件

不满足基本假定的情况,称为基本假定违背。
主要包括:
(1)随机误差项序列存在异方差性; (2)随机误差项序列存在序列相关性; (3)解释变量之间存在多重共线性; (4)解释变量是随机变量且与随机误差项相关 (随机解释变量);
在进行计量经济学模型的回归分析时,必须对模型是否 满足基本假定进行检验,这种检验称为计量经济学检验。
第一节 异方差的概念
一、异方差的概念
对于模型
Yi 0 1X1i 2 X 2i k X ki ui
如果出现
Var
(ui
)
2 i
即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为模型出现了异方 差性(Heteroskedasticity)。
概
率
异方差一般可归结为三种类型:
(1)单调递增型: i2随X的增大而增大; (2)单调递减型: i2随X的增大而减小; (3)复 杂 型: i2与X的变化呈复杂形式。
图5.1 异方差的类型
三、实际经济问题中的异方差性
例5.1:截面资料下研究居民家庭的储蓄行为
Yi 0 1Xi ui
Yi : 第i个家庭的储蓄额; Xi : 第i个家庭的可支配收入
高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较小 高收入家庭随机误差项的方差明显大于低收入家 庭。
例5.2:截面资料下研究企业的成本函数
Yi 0 1Xi ui
Yi : 第i个企业的生产成本; Xi : 第i个企业的总产值
密
Y
度
X1
X2
X3
X
异方差性干扰
存在异方差时U的方差 协方差矩阵为:
主要包括:
(1)随机误差项序列存在异方差性; (2)随机误差项序列存在序列相关性; (3)解释变量之间存在多重共线性; (4)解释变量是随机变量且与随机误差项相关 (随机解释变量);
在进行计量经济学模型的回归分析时,必须对模型是否 满足基本假定进行检验,这种检验称为计量经济学检验。
第一节 异方差的概念
一、异方差的概念
对于模型
Yi 0 1X1i 2 X 2i k X ki ui
如果出现
Var
(ui
)
2 i
即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为模型出现了异方 差性(Heteroskedasticity)。
概
率
异方差一般可归结为三种类型:
(1)单调递增型: i2随X的增大而增大; (2)单调递减型: i2随X的增大而减小; (3)复 杂 型: i2与X的变化呈复杂形式。
图5.1 异方差的类型
三、实际经济问题中的异方差性
例5.1:截面资料下研究居民家庭的储蓄行为
Yi 0 1Xi ui
Yi : 第i个家庭的储蓄额; Xi : 第i个家庭的可支配收入
高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较小 高收入家庭随机误差项的方差明显大于低收入家 庭。
例5.2:截面资料下研究企业的成本函数
Yi 0 1Xi ui
Yi : 第i个企业的生产成本; Xi : 第i个企业的总产值
密
Y
度
X1
X2
X3
X
异方差性干扰
存在异方差时U的方差 协方差矩阵为:
计量经济学课件-异方差

计量经济学课件-异方差
PPT文档演模板
2020/12/8
计量经济学课件-异方差
PPT文档演模课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
3rew
演讲完毕,谢谢听讲!
再见,see you again
PPT文档演模板
2020/12/8
计量经济学课件-异方差
PPT文档演模板
2020/12/8
计量经济学课件-异方差
PPT文档演模课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
PPT文档演模板
计量经济学课件-异方差
3rew
演讲完毕,谢谢听讲!
再见,see you again
PPT文档演模板
2020/12/8
计量经济学课件-异方差
第五章异方差ppt课件

f
ˆ 2
2
w i (Yˆ ( ˆ1 ˆ2 X i ))( X i ) 0
ˆ2
wi xi* yi*
w
i
x
* i
2
ˆ1 Y * ˆ 2 X *
其中, X * w i X i , Y * w iYi
wi
wi
xi*
Xi
X
* i
,
yi*
Yi
Yi*
Econometrics 2005
将是不可靠的。
Econometrics 2005
13
5.3 异方差的检验
方法有 (1)图示法( X _ e2); (2)解析法:
戈德菲尔德-匡特检验 怀特检验 ARCH检验
Econometrics 2005
14
5.3.1 图示法及其类型
1. 异方差指u的方差随着x的变化而变化。 2. 故可以根据x-e2的散点图,对异方差是否
Y的预测值的精度降低;
2
(2)由于 i 难以确定, Y的方差也就难以确定, Y
的预测区间的确定也出 现困难;
2
(3)在 = ei2 /( n k )是 2的无偏的证明中用到了
2
同方差的假定,由于异 方差性,使得 = ei2 /( n k )
是有偏的。在此区间估 计基础上区间估计和假 设检验
基本思路:
(以二元回归为例Y:t 1 2 X2t 3X3t ut)
如果有异方差,则i2与解释变量有关系。:如
i2=0
1X2i
3 X3i
2
X
2 2i
4 X32i
5 X2i
X3i+vi
但是i2一般未知,用模型回剩归余ei2作为i2的渐进
《数学异方差》ppt课件

R&D=1172.69+0.0238X2+ei
(1)
t=(1.0300)(2.3121) r2=0.2504
33
u
••
••
• •
•
••••
••
•• ••
••••••••••
•• •• •
• •
•
0
••
••••
••
••
•••
• •
•••••
•• •
• •
•• •
X •
••
• •
•
上图表明误差和解释变量X之间不是线性相关。
18
第十三章 异方差
三、帕克(Park)检验
如果存在异方差,则
2 i
可能与一个或多个解释变量系
统相关(可以用模型来刻画)。
帕克检验的步骤如下:
(1) 作普通最小二乘回归,不考虑异方差。
(2) 从原始回归方程中得残差 ei,并求其平方,再取对数形式。
(3) 利用原始模型中的一个解释变量做回归(如果有多个变量,我 们就做多个回归)。
15
第十三章 异方差
第三节 异方差的诊断
一、根据问题的性质
所考察问题的性质往往提供是否存在异方差的 信息。例如:我们考虑区域经济的发展问题。所 以在涉及不均匀单位的横截面数据中,异方差可 能是常有的情况,而不是例外。
二、残差的图形检验
在回归分析中,常常对拟合回归方程中的残差 进行分析,将残差对其相应的观察值描图(残差图)。
而是与Xi的平方成比例。
E(ui2 )
2 i
2
X
2 i
34
第十三章 异方差
情形2:误差方差与
计量经济学异方差性PPT课件

(
n
2
c
k
,
n
2
性水
c k)
平 计
,查 算统计
F分* 量
布表 。
得
临
界
值
如果
F*
F
(n
2
c
k,
n
2
c
k)
则拒绝原假设,接受备择假设,即模型中的 24 第24页/共69页
(三)检验的特点
●要求大样本 ●异方差的表现既可为递增型,也可为递减型 ●检验结果与选择数据删除的个数C的大小有关 ●只能判断异方差是否存在,在多个解释变量 的情下,对哪一个变量引起异方差的判断存在 局限。
19
第19页/共69页
二、Goldfeld-Quanadt检验
作用:检验递增性(或递减性)异方差。
基本思想:将样本分为两部分,然后分别对两个 样
本进行回归,并计算两个子样的残差平方和所构 成
的比,以此为统计量来判断是否存在异方差。
(一) 检验的前提条件
1、要求检验使用的为大样本容量。
2、除了同方差假定不成立外,其它假定均满
差。
第32页/共69页
32
(三)ARCH 检验:1 = 2 = ... = p = 0 ;
2.参数估计并计算
H1
:
不全为零
j
对原模型作OLS估计,求出残差 et ,并计算
残差平方序列 et2,et21,..., et2p ,以分别作为对 σt2 ,σt21,...,σt2p 的估计。
同的方差,所以利用分析Y与X的相关图形,可以 初略地看到Y的离散程度与X之间是否有相关关系。
如果随着X的增加,Y的离散程度为逐渐增大(或
减小)的变化趋势,则认为存在递增型(或递减
第六章异方差的性质-PPT课件

(一)残差序列分析 (二)戈德菲尔德-夸特检验 (三)戈里瑟检验 (四)怀特检验
(一)残差序列分析
(a)
e
i
X k
(b)
eห้องสมุดไป่ตู้
i
X k
(c)
e
i
X k
(d)
e
i
X k
(e)
e
i
X k
(f)
e
i
X k
(二)戈德菲尔德-夸特检验
戈德菲尔德-夸特检验是最常用的异方差专门检 验方法之一。这种方法适合于检验样本容量较大 的线性回归模型的递增或递减型异方差性。 对于存在递增异方差模型,步骤:首先将样本按 X值的大小顺序将观测值排列,然后略去居中的C 个观测值,并将其余的(n-C)个观测值分成两组, 每组(n-C)/2个,分别对两个子样本进行回归, 并分别获得残差平方和,自由度都为(n-C)/2K-1。
普遍性:两类数据都有,横截面数据更多。 原因:
1.按照边错边改学习模型,人们在学习过程中,其行为误 2 差随时间而减少。在这种情形下,方差 i 会逐渐变小。 例如,随着打字练习小时数的增加,不仅平时打错的个 数而且打错的方差都有所下降。 2.随着收入的增长,人们有更多的备用收入,从而如何支 配他们的收入有更大的选择范围。因此,在作出储蓄对 收入的回归时,很可能发现,由于人们对其储蓄行为有 更多的选择, i2 与收入俱增。因此,以增长为导向的公 司比之于已发展定型的公司在红利支付方面也可能表现 更多的变异。
(二)戈德菲尔德-夸特检验
计算统计量:
F e
i2 2 i2
2 e i1 i1
《异方差教学》课件

White检验
基于最小二乘法的残差,通过构造统计量检验异方差的存在 性。该方法适用于多种类型的数据,尤其适用于面板数据。
非参数检验法
Park检验
利用数据中的信息,通过比较不同阶数的自回归模型对数据的拟合效果,判断 是否存在异方差。该方法不需要预设模型形式,较为灵活。
ARCH模型
利用自回归条件异方差模型进行异方差的检验,通过比较不同滞后阶数的模型 拟合效果,判断是否存在异方差。该方法适用于波动性较大的数据。
Box-Cox变换法
总结词
Box-Cox变换法是一种通用的修正异方 差的方法,通过选择适当的λ值进行变换 ,使数据的方差变得相等。
VS
详细描述
Box-Cox变换法是一种灵活的修正异方差 的方法,适用于不同类型的异方差数据。 通过选择适当的λ值进行变换,可以使数 据的方差变得相等,从而消除异方差的影 响。Box-Cox变换法的优点在于能够自动 选择最佳的λ值进行变换,使得数据的同 方差性得到最大程度的保持。在回归模型 中,可以使用Box-Cox变换法来处理因变 量的异方差问题。
PART 03
异方差的修正
对数变换法
总结词
对数变换法是一种常用的修正异方差的方法,通过取对数将异方差转化为同方差 。
详细描述
对数变换法适用于正态分布的异方差数据,通过取自然对数或对数变换,可以使 方差变得相等,从而消除异方差的影响。在回归模型中,可以使用对数变换法来 处理因变量的异方差问题。
平方根变换法
提出相应的解决策略。
PART 06
总结与展望
异方差研究的意义
揭示数据内在规律
异方差研究有助于揭示数据分布的内在规律,为数据分析和预测 提供更准确的模型。
提高统计推断的准确性
基于最小二乘法的残差,通过构造统计量检验异方差的存在 性。该方法适用于多种类型的数据,尤其适用于面板数据。
非参数检验法
Park检验
利用数据中的信息,通过比较不同阶数的自回归模型对数据的拟合效果,判断 是否存在异方差。该方法不需要预设模型形式,较为灵活。
ARCH模型
利用自回归条件异方差模型进行异方差的检验,通过比较不同滞后阶数的模型 拟合效果,判断是否存在异方差。该方法适用于波动性较大的数据。
Box-Cox变换法
总结词
Box-Cox变换法是一种通用的修正异方 差的方法,通过选择适当的λ值进行变换 ,使数据的方差变得相等。
VS
详细描述
Box-Cox变换法是一种灵活的修正异方差 的方法,适用于不同类型的异方差数据。 通过选择适当的λ值进行变换,可以使数 据的方差变得相等,从而消除异方差的影 响。Box-Cox变换法的优点在于能够自动 选择最佳的λ值进行变换,使得数据的同 方差性得到最大程度的保持。在回归模型 中,可以使用Box-Cox变换法来处理因变 量的异方差问题。
PART 03
异方差的修正
对数变换法
总结词
对数变换法是一种常用的修正异方差的方法,通过取对数将异方差转化为同方差 。
详细描述
对数变换法适用于正态分布的异方差数据,通过取自然对数或对数变换,可以使 方差变得相等,从而消除异方差的影响。在回归模型中,可以使用对数变换法来 处理因变量的异方差问题。
平方根变换法
提出相应的解决策略。
PART 06
总结与展望
异方差研究的意义
揭示数据内在规律
异方差研究有助于揭示数据分布的内在规律,为数据分析和预测 提供更准确的模型。
提高统计推断的准确性
PPT-第7章-异方差-计量经济学及Stata应用

© 陈强,2015 年,《计量经济学及 Stata 应用》,高等教育出版社。
第 7 章 异方差 现实的数据千奇百怪,常不符合古典模型的某些假定。从本章 开始,逐步放松古典模型的各项假定。
7.1 异方差的后果
“条件异方差”(conditional heteroskedasticity) ,简称“异方差” (heteroskedasticity),是违背球型扰动项假设的一种情形,即条件
因此, (K 1)F (n K )R2 p (n K )R 2 (7.10) 1 R2
在大样本下,(n K )R2 与nR2并无差别,故LM 检验与F 检验渐 近等价。
如认为异方差主要依赖被解释变量拟合值 yˆi ,可将辅助回归改 为
e2 yˆ error
i
1 2i
i
(7.11)
然后检验H0 : 2 0 (可使用 F 或 LM 统计量)。
ˆFWLS无资格参加 BLUE 的评选。
FWLS 的优点主要体现在大样本中。如果ˆ2是 2的一致估计,
i
i
则 FWLS 一致,且在大样本下比 OLS 更有效率。
FWLS 的缺点是必须估计条件方差函数ˆ2 (x ),而通常不知道条 ii
件方差函数的具体形式。
如果该函数的形式设定不正确,根据 FWLS 计算的标准误可能 失效,导致不正确的统计推断。
方差Var(i | X )依赖于i ,而不是常数 2。
在异方差的情况下:
(1)OLS 估计量依然无偏、一致且渐近正态。因为在证明这些性质 时,并未用到“同方差”的假定。
(2) OLS 估计量方差Var( βˆ | X )的表达式不再是 2 ( X X)1,因为 Var(ε | X ) 2I 。使用普通标准误的t 检验、F 检验失效。
第 7 章 异方差 现实的数据千奇百怪,常不符合古典模型的某些假定。从本章 开始,逐步放松古典模型的各项假定。
7.1 异方差的后果
“条件异方差”(conditional heteroskedasticity) ,简称“异方差” (heteroskedasticity),是违背球型扰动项假设的一种情形,即条件
因此, (K 1)F (n K )R2 p (n K )R 2 (7.10) 1 R2
在大样本下,(n K )R2 与nR2并无差别,故LM 检验与F 检验渐 近等价。
如认为异方差主要依赖被解释变量拟合值 yˆi ,可将辅助回归改 为
e2 yˆ error
i
1 2i
i
(7.11)
然后检验H0 : 2 0 (可使用 F 或 LM 统计量)。
ˆFWLS无资格参加 BLUE 的评选。
FWLS 的优点主要体现在大样本中。如果ˆ2是 2的一致估计,
i
i
则 FWLS 一致,且在大样本下比 OLS 更有效率。
FWLS 的缺点是必须估计条件方差函数ˆ2 (x ),而通常不知道条 ii
件方差函数的具体形式。
如果该函数的形式设定不正确,根据 FWLS 计算的标准误可能 失效,导致不正确的统计推断。
方差Var(i | X )依赖于i ,而不是常数 2。
在异方差的情况下:
(1)OLS 估计量依然无偏、一致且渐近正态。因为在证明这些性质 时,并未用到“同方差”的假定。
(2) OLS 估计量方差Var( βˆ | X )的表达式不再是 2 ( X X)1,因为 Var(ε | X ) 2I 。使用普通标准误的t 检验、F 检验失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
看是否形成一斜率为零的直线
e~i2
e~i2
X 同方差
e~i2
X 递增异方差
e~i2
X 递减异方差
X 复杂型异方差
2、帕克(Park)检验与戈里瑟(Gleiser)检验
基本思想: 尝试建立方程:
e ~i2f(Xji)i 或 |e ~i |f(Xji)i
选择关于变量X的不同的函数形式,对方程进 行估计并进行显著性检验,如果存在某一种函 数形式,使得方程显著成立,则说明原模型存 在异方差性。
如果出现
Var(i)i2
即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为出现了异方差性 (Heteroskedasticity)。
二、异方差的类型
同方差性假定:i2 = 常数 f(Xi)
异方差时:
i2 = f(Xi)
异方差一般可归结为三种类型:
(1)单调递增型: i2随X的增大而增大 (2)单调递减型: i2随X的增大而减小 (3)复 杂 型: i2与X的变化呈复杂形式
六、异方差的修正
基本思想:在获得关于随机扰动项的变动,及其 它们之间相互关系的更多信息条件下,通过一定 的数学变换,将这个随机扰动项转化成满足经典 假设的同方差的情形。
基本方法有二:
一是在知道随机扰动项相对波动大小的情况下,直接 对每个样本的随机扰动项进行加权,从而使它们的波 动幅度一样;
二是在知道了随机扰动项的波动,及各个随机扰动项 之间相关性的条件下,利用正定或半正定矩阵经过线 性变换,可以化成单位矩阵的逻辑,将随机扰动项转 化成满足经典假设条件。
②将序列中间的c=n/4个观察值除去,并将剩 下的观察值划分为较小与较大的相同的两个 子样本,每个子样样本容量均为(n-c)/2
③对每个子样分别进行OLS回归,并计算各自 的残差平方和
④在同方差性假定下,构造如下满足F分布的 统计量
F e ~ 2 2 i (n2 ck1 )~F (nck1 ,nck1 )
计量经济学异方差
基本假定违背:不满足基本假定的情况。主要 包括: (1)随机误差项序列存在异方差性; (2)随机误差项序列存在序列相关性; (3)解释变量之间存在多重共线性; (4)解释变量是随机变量且与随机误差项相关
(随机解释变量); 此外: (5)模型设定有偏误 (6)解释变量的方差不随样本容量的增而收敛
有 充 分 认 识 扰 动 项 变 化 规 律 情 况 下 进 行 的 估 计 ,
因 而 准 确 度 会 大 打 折 扣 .
其 他 检 验 , 只 要 是 用 到 了 2 的 估 计 2 , 均 会 使 检 验 的 " 仪 器 " 失 效 .
五、异方差性的检验
• 检验思路:
由于异方差性就是相对于不同的解释变量 观测值,随机误差项具有不同的方差。那么:
似 估 计 量 ” , 用 e ~i 表 示 。 于 是 有
V a r (i) E (i2 ) e ~ i2
e ~ i yi(y i)0ls
几种异方差的检验方法:
1、图示法
(1)用X-Y的散点图进行判断 看是否存在明显的散点扩大、缩小或复杂型
趋势(即不在一个固定的带型域中)
( 2 ) X - e ~ i 2 的 散 点 图 进 行 判 断
2Wˆ
e~12
e~n2
这时可直接以 D 1 d { 1 / i |e ~ 1 a |1 / , |e ~ 2 g | ,, 1 / |e ~ n |}
作为权矩阵。
注意:
在实际操作中人们通常采用如下的经验 方法:
不对原模型进行异方差性检验,而是直接 选择加权最小二乘法,尤其是采用截面数据 作样本时。
Y i 0 1 X 1 i 2 X 2 i i
然后做如下辅助回归
e ~ i 2 0 1 X 1 i 2 X 2 i 3 X 1 2 i 4 X 2 2 i 5 X 1 i X 2 i i (*)
可以证明,在同方差假设下:
R2为(*)的可决系数,h为(*)式解释变量的个数, 表示渐近服从某分布。
从事农业经营 其他收入
从事农业经营 其他收入
人均消费
的收入
人均消费
的收入
支出
支出
地区
Y
X1
X2
地区
Y
X1
X2
北京
3552.1
579.1 4446.4 湖 北
2703.36
1242.9 2526.9
天津
2050.9
1314.6 2633.1 湖 南
1550.62
1068.8
875.6
四、异方差性的后果
计量经济学模型一旦出现异方差性,如果仍采 用OLS估计模型参数,会产生下列不良后果:
1、参数估计量非有效 OLS估计量仍然具有无偏性与一致性,但不具有有效性
因为在有效性证明中利用了 E(’)=2I
而且,在大样本情况下,尽管参数估计量具有 一致性,但仍然不具有渐近有效性。
• 直观解释:
1 f(Xj i)X2i
k
f(1Xji)Xk i
1 f(Xj i)
i
新模型中,存在
V (a f( 1 X jr ) i i) E (f( 1 X j) i i) 2 f( X 1 j) iE (i) 2 2
即满足同方差性,可用OLS法估计。
一般情况下: 对于模型
Y=X+
存在
E(μ )0
Co(μ v)E(μ μ )2W
w1
W
w2
wn
即存在异方差性。
W是一对称正定矩阵,存在一可逆矩阵D使得
W=DD’
用D-1左乘 Y=X+
两边,得到一个新的模型: D 1 Y D 1 X β D 1 μ Y *X *β μ *
在采用OLS方法时:
对较小的残差平方ei2赋予较大的权数, 对较大的残差平方ei2赋予较小的权数。
例如,如果对一多元模型,经检验知:
V (i a ) E ( ri) 2 i 2 f( X j) i 2
f(1Xji)Yi 0
f(1Xj i)1
f(1Xji)X1i 2
如果确实存在异方差,则被有效地消除了; 如果不存在异方差性,则加权最小二乘法 等价于普通最小二乘法
七、案例--中国农村居民人均消费函数
例4.1.4 中国农村居民人均消费支出主要由人 均纯收入来决定。
农村人均纯收入包括(1)从事农业经营的收入, (2)包括从事其他产业的经营性收入(3)工资性收 入、(4)财产收入(4)转移支付收入。
Ci=0+1Yi+I
将居民按照收入等距离分成n组,取组平均数为样 本观测值。
一般情况下,居民收入服从正态分布:中等收入 组人数多,两端收入组人数少。而人数多的组平均 数的误差小,人数少的组平均数的误差大。
所以样本观测值的观测误差随着解释变量观测值 的不同而不同,往往引起异方差性。
例4.1.3,以某一行业的企业为样本建立企业生产 函数模型
该模型具有同方差性。因为
E (μ *μ *)E(D 1 μ μ D 1)D 1E (μ μ )D 1
D 1 2Ω D 1D 1 2D D D 1 2I
β ˆ*(X *X *) 1X *Y *
(XD1D1X)1XD1D1Y (XW 1X)1XW 1Y
考察从事农业经营的收入(X1)和其他收入(X2) 对中国农村居民消费支出(Y)增长的影响:
lY n 0 1 lX n 1 2 lX n 2
表 4.1.1 中 国 2001 年 各 地 区 农 村 居 民 家 庭 人 均 纯 收 入 与 消 费 支 出 相 关 数 据 ( 单 位 : 元 )
Yi=Ai1 Ki2 Li3ei
被解释变量:产出量Y 解释变量:资本K、劳动L、技术A, 那么:每个企业所处的外部环境对产出量的影响被 包含在随机误差项中。
每个企业所处的外部环境对产出量的影响程度不 同,造成了随机误差项的异方差性。
这时,随机误差项的方差并不随某一个解释变量 观测值的变化而呈规律性变化,呈现复杂型。
注意:
辅助回归仍是检验与解释变量可能的组合的 显著性,因此,辅助回归方程中还可引入解释 变量的更高次方。
如果存在异方差性,则表明确与解释变量的 某种组合有显著的相关性,这时往往显示出有 较高的可决系数以及某一参数的t检验值较大。
当然,在多元回归中,由于辅助回归方程中 可能有太多解释变量,从而使自由度减少,有 时可去掉交叉项。
计量经济检验:对模型基本假定的检验
§4.1 异方差性
一、异方差的概念 二、异方差的类型 三、实际经济问题中的异方差性 四、异方差性的后果 五、异方差性的检验 六、异方差的修正 七、案例
一、异方差的概念
对于模型
Y i 0 1 X i i2 X 2 i k X k i i
如: 帕克检验常用的函数形式:
f(Xji) 2X je ii 或 ln e ~ i2 ) (ln 2lX n jii
若在统计上是显著的,表明存在异方差性。
3、戈德菲尔德-匡特(Goldfeld-Quandt)检验
G-Q检验以F检验为基础,适用于样本容量较大、 异方差递增或递减的情况。
G-Q检验的思想:
先将样本一分为二,对子样①和子样②分别 作回归,然后利用两个子样的残差平方和之比构 造“仪器”进行异方差检验。
由于该统计量服从F分布,因此假如存在递增 的异方差,则F远大于1;反之就会等于1(同方 差)、或小于1(递减方差)。
G-Q检验的步骤: