计量经济学:异方差

合集下载

计量经济学基础-异方差

计量经济学基础-异方差
D(ˆ ) 2( XT X )1,
但是如果出现了异方差而一味采用惯常的检验程序,将导致检验及 区间估计的偏误。
3、模型的预测失效
第三节、异方差性的检验
一个重要的问题是:怎样知道在一个具体的情况中是否有异方 差?实际中并不存在侦破异方差性的严明法则,只有少数的经验规 则。我们介绍几种:
1、图解法 如果对异方差性的性质没有任何先验或经验信息,实际上,可 先在无异方差性的假定下作回归分析,以解释变量为横坐标,以残 差平方为纵坐标得出二维散点图,从图中判断二者的相关性。这是 非正式的方法,不够精确。
本章结束
坐标,可作出残差图(如图所示)。该残差图的形状象一个喇叭, 由此可以看出,销售收入小的商店,其残差一般也较小;而销售
收入大的商店,其残差一般也较大;残差有随着商店规模增大而
增大的倾向。这表明,不同规模的商店,其利润总额的方差是不
相同的,从而模型中随机误差的方差不是常数,这里存在着异方
差现象。
在实际问题中出现异方差性的例子很多.对回归模型 中异方差现象的研究,是经济计量学中的一个重要内容。 为什么会产生这种异方差性呢? 一方面是因为随机项包括 了观察测量误差和模型中被省略的一些因素对被解释变量 (因变量)的影响,另一方面来自不同抽样单元的因变量 观察值之间可能差别很大。因此、异方差性多出现在横断 面样本之中。至于时间序列,则由于因变量观察值来自不 同时期的同一样本单元.通常因变量的不同观察值之间的 差别不是很大。所以异方差性一般不明显。
( X T X )1 X T E( T ) X ( X T X )1
2 ( X T X )1( X T X ) X ( X T X )1 2 ( X T X )1
因而使用OLS 法,得到的估计量是无偏的,但不是有效的。

计量经济学异方差实验报告及心得体会

计量经济学异方差实验报告及心得体会

计量经济学异方差实验报告及心得体会一、实验简介本实验旨在通过构建模型来研究经济学中的异方差问题,并通过实证分析来探讨其对模型结果的影响。

实验数据采用随机抽样方法自真实经济数据中获取,共包括两个自变量和一个因变量。

在实验中,我将对模型进行两次回归分析,一次是假设无异方差问题,一次是考虑异方差问题,并比较两个模型的结果。

二、实验过程1.数据准备:根据实验设计,我根据随机抽样方法,从真实经济数据中抽取了一部分样本数据。

2.模型建立:我将自变量Y和X1、X2进行回归分析。

首先,我假设模型无异方差问题,得到回归结果。

然后,我将检验异方差性,若存在异方差问题,则建立异方差模型继续回归分析。

3.模型估计:利用最小二乘法进行参数估计,并计算回归结果的标准差和假设检验。

4.模型比较:对比两个模型的回归结果,分析异方差对模型拟合程度和参数估计的影响。

三、实验结果1.无异方差假设模型回归结果:回归方程:Y=0.9X1+0.5X2+2.1标准差:0.3显著性水平:0.05拟合优度:0.852.考虑异方差问题模型回归结果:回归方程:Y=0.7X1+0.4X2+1.9标准差:0.6显著性水平:0.05拟合优度:0.75四、实验心得体会通过本次实验,我对计量经济学中的异方差问题有了更深入的了解,并进一步认识到其对模型结果的影响。

1.异方差问题的存在会对统计推断结果产生重要影响。

在本次实验中,考虑异方差问题的模型相较于无异方差模型,参数估计值差异较大,并且拟合优度也有所下降。

因此,我们在实证分析中应尽可能考虑异方差问题。

2.在实际应用中,异方差问题可能较为普遍。

经济学中的许多变量存在异方差性,例如,个体收入、消费支出等。

因此,在进行经济学研究时,我们应当警惕并尽量排除异方差问题。

3.针对异方差问题,我们可以采用多种方法进行调整,例如,利用异方差稳健标准误、加权最小二乘法等。

在本次实验中,我们采用了异方差模型进行调整,并得到了相对较好的结果。

计量经济学第六章异方差性1

计量经济学第六章异方差性1
根据所研究问题的性质就可作出定性判断。 ei2 是否呈 残差分析:通过残差散点图,检查 现任何系统样式
以因变量的拟合值 (或某个解释变量)为横坐 标,残差平方为纵坐标,将n个样本点的值描在 坐标系中。根据这n个点的分布情况,可以寻找 模型错误或方差不相同的证据。
残差散点图例
ei2
无趋势, 满足假定。
ei2
误差随 y 的增加 而增加
0
yi
0
ei2
ei2
yi
0
误差呈规律性变化,原因可能是模型不适合, 也可能是缺少某些重要值变量
yi
0
yi
二、异方差性的侦察
正式方法:检验随机误差项的方差与解 释变量观测值之间的相关性。
帕克(Park)检验
先做OLS回归,不考虑异方差性问题。 从OLS回归中获得ei2 ,作下述回归:
三、 已知时的异方差修正
以一元回归为例: yi=β1+β2xi+i
σi σi σi
2 σi
Var ( i ) = σ i2
(1)
用σi除上式得:yi = β ( 1 ) + β ( xi ) + i 1 2
σi
对上式进行OLS估计,即最小化如下函数:
min
∑σ
( 1
yi
i
1 β xi ) 2 = β1 2
t = (3.7601) (-1.6175) R2 = 0.1405 ①和②表明,可以拒绝同方差性(存在异方差)

异方差的修正
2 E ( i ) = CX i RD 1 变换: = 246.68 + 0.0368 salei salei salei se : (341.13) (0.0071) t : (0.6472) (5.1723) r 2 = 0.6258

计量经济学试题异方差性与加权最小二乘法

计量经济学试题异方差性与加权最小二乘法

计量经济学试题异方差性与加权最小二乘法计量经济学试题:异方差性与加权最小二乘法一、引言计量经济学作为经济学的一个重要分支,通过运用数理统计和经济理论的方法,旨在分析经济现象并进行经济政策的评估。

在实证分析中,经常会遇到异方差性的问题,而加权最小二乘法是处理异方差性的一种重要方法。

本文将探讨异方差性的来源、加权最小二乘法的原理与应用。

二、异方差性的来源异方差性是指随着自变量的变化,随机误差的方差也会发生变化。

异方差性可能会导致经验结果不准确、偏离真实情况,并影响对经济现象的解释和预测。

以下是可能导致异方差性的原因:1. 条件异方差性:数据的方差可能与自变量之间的关系存在相关性。

例如,在研究家庭收入对教育支出的影响时,高收入家庭的支出方差可能比低收入家庭更大。

2. 记忆效应:在纵向数据分析中,随着时间的推移,个体经济行为可能受到过去观测结果的影响,进而导致异方差性的存在。

3. 测量误差:数据收集中的测量误差可能会导致异方差性。

例如,对于某些变量,测量误差可能更大,从而导致随机误差的方差不一致。

三、加权最小二乘法的原理加权最小二乘法(Weighted Least Squares, WLS)是一种用于处理异方差性的回归方法,其原理是通过给不同观测值分配不同的权重,以减小异方差的影响。

具体来说,加权最小二乘法的目标是最小化加权残差平方和。

在加权最小二乘法中,权重的选择是关键。

常见的权重选择方法包括:1. 方差稳定化权重:根据方差与自变量的关系,将观测值的权重设置为方差的倒数,以减小方差变化带来的影响。

2. 广义最小方差法权重:将权重设置为具有稳定方差的函数形式,例如Huber权重函数、Andrews权重函数等。

3. 经验权重:根据经验判断,给不同观测值分配权重,以反映其重要性。

四、加权最小二乘法的应用加权最小二乘法在计量经济学中有广泛的应用。

以下是一些常见的应用领域:1. 金融经济学:在金融领域中,异方差性往往普遍存在。

计量经济学-第11章 异方差性

计量经济学-第11章 异方差性

White的一般异方差性检验
基本思想:
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
看uˆi2与X
2i
,
X
3i
,
X
2 2i
,
X
2 3i
,
X
2i
X
3i
是否存在
回归关系.
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
(11.2.2) 返回 (11.2.3) 返回
在经典模型的各种假定,包括同方差性假定在 内,全部成立的情形下,OLS估计量是BLUE
其他假定不变,同方差性假定不成立时,OLS 估计量不再是BLUE
OLS估计量仍然是线性的和无偏的,但是,不
再是“最优的”或“有效的”,即2 ,3

,, n
E (u i2
)


2 i
见P388 Fig. 11.2
(11.1.2)
异方差的理由
按照边错边改学习模型(error—learning models), 人们的行为误差随时间而减少。见Fig. 11.3
随着收入的增长,人们在支出和储蓄中有更大的灵
活性。在做储蓄对收入的回归中,
2 i
与收入俱增
其中vi是变换后的干扰项,vi

ui Xi
。可以证明:
2
E(vi2 )

E

ui Xi


1
X
2 i
E(ui2 )
2 利用(11.6.5)
假定2.:
误差方差正比于X

i
E(ui2 ) 2 X i

计量经济学第九章异方差

计量经济学第九章异方差
2 2
四、异方差的补救措施
(一)加权最小二乘法 1.当 2i已知时: 考虑双变量PRF,
Y i B 1 B 2 X i ui (7)
var(ui ) i2
其中,Y为被解释变量,X为解释变量。假设误差方差 对模型(7)考虑如下变换:
i
Yi B 1(
是已知的。
i
1
) B2 (
ln ei2 B1 B2 ln X i vi
2
(3)
(4)检验零假设 B 0 ,即不存在异方差。如果 ln X i 和 ln ei2 之 间是统计显著的,则拒绝零假设:不存在异方差。

例子:利用方程(2)来说明帕克检验。把从该回归方程中得到的残差 用于模型(3),得到如下结果:
ln ei2 3.412 0.938 ln salesi se (4.972)
三、异方差的诊断
与多重共线性的情况一样,并没有诊断异方差的确定办法,只能借助一 些诊断工具判断异方差的存在。主要有:
1.根据问题的性质 2.残差的图形检验
(1)残差图可以是关于观察值与残差的散点图,也可以是残 ˆ 的散点图。这些图可以帮 差与解释变量,残差与估计值 Y i 助我们判断同方差假设或者是CLRM其他假设是否满足。 例子可参见美国行业利润,销售量和R&D支出。 由该例中关于观察值与残差的散点图可以得出结论,该模 型存在异方差。 2 e (2)此外,还可以利用残差的平方 i 与观察值或解释变量或 ei2 估计值的散点图来判断是否存在异方差。一般来说, 与变量 X 之间的散点图主要有如下样式。(见下一页) 图a到图c中,图a中残差平方与X之间没有可识别的系统模 式,所以不存在异方差;而图b到图e中两者都呈现出系统 关系,所以都可能存在异方差。

计量经济学第五章异方差性

计量经济学第五章异方差性

计量经济学第五章异⽅差性第五章异⽅差性本章教学要求:根据类型,异⽅差性是违背古典假定情况下线性回归模型建⽴的另⼀问题。

通过本章的学习应达到,掌握异⽅差的基本概念包括经济学解释,异⽅差的出现对模型的不良影响,诊断异⽅差的⽅法和修正异⽅差的若⼲⽅法。

经过学习能够处理模型中出现的异⽅差问题。

第⼀节异⽅差性的概念⼀、⼆个例⼦例1,研究我国制造业利润函数,选取销售收⼊作为解释变量,数据为1998年的⾷品年制造业、饮料制造业等28个截⾯数据(即n=28)。

数据如下表,其中y表⽰制造业利润函数,x表⽰销售收⼊(单位为亿元)。

Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较⼩,有的点分散幅度较⼤。

因此,这种分散幅度的⼤⼩不⼀致,可以认为是由于销售收⼊的影响,使得制造业利润偏离均值的程度发⽣变化,⽽偏离均值的程度⼤⼩的不同,就是所谓的随机误差的⽅差存在变异,即异⽅差。

如果⾮线性,则属于哪类⾮线性,从图形所反映的特征看,并不明显。

下⾯给出制造业利润对销售收⼊的回归估计。

模型的书写格式为212.03350.1044(0.6165)(12.3666)0.8547,..56.9046,152.9322213.4639,146.4905Y Y X R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在异⽅差性。

例2,改⾰开放以来,各地区的医疗机构都有了较快发展,不仅政府建⽴了⼀批医疗机构,还建⽴了不少民营医疗机构。

各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,⽽医疗服务需求与⼈⼝数量有关。

为了给制定医疗机构的规划提供依据,分析⽐较医疗机构与⼈⼝数量的关系,建⽴卫⽣医疗机构数与⼈⼝数的回归模型。

根据四川省2000年21个地市州医疗机构数与⼈⼝数资料对模型估计的结果如下:i iX Y 3735.50548.563?+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表⽰卫⽣医疗机构数(个),X 表⽰⼈⼝数量(万⼈)。

计量经济学:异方差性

计量经济学:异方差性

计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。

虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。

本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。

第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。

这里的方差2σ度量的是随机误差项围绕其均值的分散程度。

由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。

设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。

由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。

所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。

通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2E+11 RESID 8.0E+10
4.0E+10
6.0E+11
0.0E+00
4.0E+11 2.0E+11 0.0E+00 84 86 88 90 92 94 96 98 00 02
-4.0E+10
-8.0E+10 84 86 88 90 92 94 96 98 00 02
(第3版教材第92页)
ˆ t 2 = 0 +1 xt1 +2 xt2 + 3 xt12 +4 xt22 + 5 xt1 xt2 + vt u ˆ t 2 对原回归式中的各解释变量、解释变量的平方项、交叉积项进行 即用 u
OLS 回归。注意,上式中要保留常数项。求辅助回归式的可决系数 R2。 ③White 检验的零假设和备择假设是 H0:ut 不存在异方差, H1:ut 存在异方差。
异方差
异方差概念 异方差来源与后果 异方差检验(Goldfeld-Quandt 检验、 White 检验、Glejser 检验) 异方差的修正方法(GLS、WLS) 异方差案例分析
5.1 异方差概念
同方差假定:模型的假定条件⑴ 给出Var(u) 是一个对角 矩阵,且主对角线上的元素都是常数且相等。 Var(u) = E(u u' ) =
5.2 异方差来源与后果
B1F1 12 10 8 6 4 2
B1F2
B1F3
异方差后果:
0 0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.42.6ຫໍສະໝຸດ 2.8当 Var(ut) = t 2,为异方差时(t 2 是一个随时间或序数变化的量) , 回归参数估计量仍具有无偏性和一致性,但是不再具有有效性。
②用两个子样本分别估计回归直线, 并计算残差平方和。 相对于 n2 和 n1 分 别用 SSE2 和 SSE1 表式。 ③ 构造 F 统计量。F =
SSE2 /(n 2 k ) SSE2 , (k 为模型中被估参数个数) SSE1 /(n1 k ) SSE1
在 H0 成立条件下,F F(n2 - k, n1 - k) ④ 判别规则如下, 若 F F (n2 - k, n1 - k), 接受 H0(ut 具有同方差) 若 F > F(n2 - k, n1 - k), 拒绝 H0(递增型异方差) 注意: ① 当摸型含有多个解释变量时,应以每一个解释变量为基准检验异方差。 ② 此法只适用于递增型异方差。 ③ 对于截面样本,计算 F 统计量之前,必须先把数据按解释变量的值从小 到大排序。
500
600
700
800
900 1000 1100 1200
5.2 异方差来源与后果
异方差来源: (1) 时间序列数据和截面数据中都有可能存在异方差。 (2) 经济时间序列中的异方差常为递增型异方差。金融时间序 列中的异方差常表现为自回归条件异方差。
1.2E+12 1.0E+12 8.0E+11 GDP of Philippin
(第3版教材第91页)
异方差通常有三种表现形式, (1)递增型, (2)递减型, (3)条件自回归型。
7 6 5 4 3 2 1 0 20 40 60 80 100 120 140 160 180 200 Y
7 6 5 4 3 2 1 0 0 50 100 150 200 X Y
6 4 2 0 -2 -4 -6 -8 400 DJ PY
= (X ' X)-1 X ' E (u u' ) X (X ' X )-1 = 2 (X 'X )-1 X ' X (X ' X )-1
ˆ 是非有效估计量。 不等于 (X ' X )-1,所以异方差条件下
5.4 异方差检验
5.4.1 定性分析异方差 (1) 宏观经济变量容易出现异方差。 (2) 利用散点图做初步判断。 (3) 利用残差图做初步判断。
7 6 5 Y
3 Y 2 1
4
0
3 2 1 0 20 40 60 80 100 120 140 160 180 200
-1 -2 T -3 0 50 100 150 200
散点图
残差图
5.4 异方差检验
(第3版教材第93页)
(1) Goldfeld-Quandt 检验
H0: ut 具有同方差, H1: ut 具有递增型异方差。 ①把原样本分成两个子样本。具体方法是把成对(组)的观测值按解释变
5.4 异方差检验
(第3版教材第93页)
(2) White 检验 White 检验由 H. White 1980 年提出。White 检验不需要对观测值排序,也 不依赖于随机误差项服从正态分布, 它是通过一个辅助回归式构造 2 统计 量进行异方差检验。以二元回归模型为例,White 检验的具体步骤如下。 yt = 0 +1 xt1 +2 xt2 + ut ①首先对上式进行 OLS 回归,求残差 ut 。 ②做如下辅助回归式,
12 10 8 6 4 2 0 X -2 0 50 100 150 200 Y
0 1 1 2 2I = σ 0 1 T T
(第3版教材第90页)
5.1 异方差概念
当这个假定不成立时,Var(u) 不再是一个纯量对角矩阵。
0 11 22 2 2 2 I Var(u) = = σ 0 TT
ˆ ) = E[ (X 'X )-1 X 'Y ] = E[ (X 'X )-1 X ' (X + u) ] E(
= + (X 'X)-1 X ' E(u) =
ˆ ) = E [( ˆ- )( ˆ - )' ] = E [(X 'X )-1 X ' u u' X (X 'X)-1 ] Var(
量顺序排列,略去m个处于中心位置的观测值(通常T 30时,取m T / 4,
余下的T- m个观测值自然分成容量相等,(T- m) / 2,的两个子样本。)
7 6 5 4 3 2 1 X 0 0 50 100 150 200 Y Y
5.4
异方差检验
(第3版教材第93页)
(1) Goldfeld-Quandt 检验
相关文档
最新文档