2012年中考数学基础知识要点总结 人教新课标版

合集下载

2012年中考数学知识点备考复习13

2012年中考数学知识点备考复习13

三.归纳与猜想一、 知识综述归纳是一种重要的推理方法,是根据具体事实和特殊现象,通过实验、观察、比较、概括出一般的原理和结论。

猜想是一种直觉思维,它是通过对研究对象的实验、观察和归纳、猜想它的规律和结论的一种思维方法。

猜想往往依据直觉来获得,而恰当的归纳可以使猜想更准确。

我们在进行归纳和猜想时,要善于从变化的特殊性中寻找出不变的本质和规律。

二、理解掌握例1、用等号或不等号填空:(1)比较2x 与x 2+1的大小①当x =2时,2x x 2+1;②当x =1时,2x x 2+1;③当x =-1时,2x x 2+1.(2)可以推测:当x 取任意实数时,2x x 2+1.分析:本题是通过计算发现和猜想一般规律题,正确计算和发现规律是关键。

解:(1)<,=,<; (2)≤。

例2、观察下列分母有理化的计算:12121-=+,23231-=+,34341-=+,45451-=+…从计算结果中找出规律,并利用这一规律计算:1)2002)(200120021341231121(+++++++++ =____。

分析:解本题时,要抓住分每有理化后的结果都是两数之差,且可以错位相消。

还要注意相消后所剩下的是什么。

解:1)2002)(200120021341231121(+++++++++=)12002)(20012002342312(+-++-+-+- =)12002)(12002(+-=2002—1 =2001。

例3、 观察下列数表:1 2 3 4 … 第一行 2 3 4 5 … 第二行 3 4 5 6 … 第三行 4 5 6 7 … 第四行…………第一列第二列第三列第四列根据数表所反映的规律,猜想第6行与第6列的交叉点上的数应为____,第n行与第n 列交叉点上的数应为____。

(用含正整数n的式子表示)分析:本题要求的是同行同列交叉点上的数,因此,必须先研究同行同列交叉点上的数有什么规律,然后利用此规律解题。

2012年中考初三数学的知识点和考点

2012年中考初三数学的知识点和考点

2012年中考初三的知识点和考点第21章二次根式这一章在中考中大约占12分,同学们主要掌握二次根式有意义的条件;会把二次根式化成最简二次根式;准确进行二次根式的混合运算。

只要掌握这三点,在中考中就能稳拿这12分。

1、二次根式定义2、两个重要公式3、积的算术平方根4、二次根式的乘法法则5、二次根式比较大小的方法6、商的算术平方根7、二次根式的除法法则。

注意:分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

8、最简二次根式9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

10、二次根式的混合运算第22章一元二次方程这一章是工具,单独命题的分数在6分左右,但是二次函数知识的考查中往往用到这一章的知识点,这又往往是拉分的题目,所以不容忽视!要准确掌握一元二次方程的解法,灵活运用各种解法,为后面二次函数的学习奠定坚实的基础。

1、一元二次方程的一般形式:ax2+bx+c=0(a≠0)2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

3、一元二次方程根的判别式:当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式。

请注意以下等价命题:Δ>0《=》有两个不等的实根;Δ=0《=》有两个相等的实根;Δ<0《=》无实根;4、一元二次方程的应用(1)平均增长率问题(2)利润率问题第23章旋转这一章的知识在中考题目中大约占6分,图形的变换包括平移、轴对称和旋转,要求同学们直观感觉图形的变换,并且把这些变化运用到几何证明题和代数几何的综合题中,从而更好地提高解题能力。

1、概念2、旋转的性质3、中心对称4、中心对称的性质5、中心对称图形6、坐标系中的中心对称第24章圆这一章的知识在中考命题中占10~15分,同学们重点掌握切线的判定方法、切线的性质,弧长、扇形面积与圆锥的侧面积的计算。

2012年中考数学知识点备考复习9.doc

2012年中考数学知识点备考复习9.doc

八.几何计算题选讲几何计算题历年来是中考的热点问题。

几何计算是以推理为基础的几何量的计算,主要有线段 与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。

解几何计算题的常用方法有:几何法、代数法、三角法等。

一、三种常用解题方法举例例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC交于P ,PE ⊥AB 于E ,AB=10,求PE 的长. 解法一:(几何法)连结OT ,则OT ⊥CD ,且OT=21AB =5 BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2=CP ·CA. ∴PC=5,∴AP=CA-CP=54.∵PE ∥BC ∴AC AP BC PE =,PE=5554×5=4. 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别要注意图形中的隐含条件. 解法二:(代数法) ∵PE ∥BC ,∴AB AE CB PE =. ∴21==AB CB AE PE . 设:PE=x ,则AE=2 x ,EB=10–2 x .连结PB. ∵AB 是直径,∴∠APB=900.在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE . ∴21==AE PE EP EB .∴EP=2EB ,即x=2(10–2x ). 解得x =4. ∴PE=4.说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系. 解法三:(三角法)连结PB ,则BP ⊥AC.设∠PAB=α 在Rt △APB 中,AP=10COS α,在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α. 在Rt △ABC 中, BC=5,AC=55.∴sin α=55555=, COS α=5525510=.∴PE=10×55255⨯=4. 说明:在几何计算中,必须注意以下几点:(1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系.(2) 注意推理和计算相结合,先推理后计算,或边推理边计算,力求解题过程规范化. (3) 注意几何法、代数法、三角法的灵活运用和综合运用. 二.其他题型举例例2.如图,ABCD 是边长为2 a 的正方形,AB 为半圆O 的直径,CE 切⊙O 于E ,与BA 的延长线交于F ,求EF 的长.分析:本题考察切线的性质、切割线定理、相似三角形性质、以及正方形有关性质.本题可用代数法求解.解:连结OE ,∵CE 切⊙O 于E , ∴OE ⊥CF ∴△EFO ∽△BFC ,∴FB FE BC OE ,又∵OE=21AB=21BC ,∴EF=21FB 设EF=x ,则FB=2x ,FA=2x –2a∵FE 切⊙O 于E ∴FE 2=FA ·FB ,∴x 2=(2x –2a )·2x 解得x =34a , ∴EF=34a. 例3.已知:如图,⊙O 1 与⊙O 2相交于点A 、B ,且点O 1在⊙O 2上,连心线O 1O 2交⊙O 1于点C 、D ,交⊙O 2于点E ,过点C 作CF ⊥CE ,交EA 的延长线于点F ,若DE=2,AE=52 (1) 求证:EF 是⊙O 1的切线;(2) 求线段CF 的长; (3) 求tan ∠DAE 的值. 分析:(1)连结O 1A ,O 1E 是⊙O 2的直径,O 1A ⊥EF ,从而知 EF 是⊙O 1的切线.(2)由已知条件DE=2,AE=52,且EA 、EDC 分别是⊙O 1的切线和割线,运用切割线定理EA 2=ED ·EC ,可求得EC=10.由CF ⊥CE ,可得CF 是⊙O 1的切线,从而FC=FA.在Rt △EFC 中,设CF= x ,则FE= x +52.又CE=10,由勾股定理可得:(x +52)2= x 2+102,解得 x =54.即CF=54.(3)要求tan ∠DAE 的值,通常有两种方法:①构造含∠DAE 的直角三角形;②把求tan ∠DAE 的值转化为求某一直角三角形一锐角的正切(等角转化).在求正切值时,又有两种方法可供选择:①分别求出两线段(对边和邻边)的值;②整体求出两线段(对边和邻边)的比值. 解:(1)连结O 1A ,∵O 1E 是⊙O 2的直径,∴O 1A ⊥EF ∴EF 是⊙O 1的切线..(2)∵DE=2,AE=52,且EA 、EDC 分别是⊙O 1的切线和割线 ∴EA 2=ED ·EC ,∴EC=10由CF ⊥CE ,可得CF 是⊙O 1的切线,从而FC=FA.在Rt △EFC 中,设CF= x ,则FE= x +52.又CE=10,由勾股定理可得:(x +52)2= x 2+102,解得 x =54.即CF=54.(3)解法一:(构造含∠DAE 的直角三角形) 作DG ⊥AE 于G ,求AG 和DG 的值.分析已知条件,在Rt △A O 1E 中,三边长都已知或可求(O 1A=4,O 1E=6),又DE=2,且DG ∥A O 1(因为DG ⊥AE ),运用平行分线段成比例可求得DG=,354,34=AG 从而tan ∠DAE=55. 解法二:(等角转化)连结AC ,由EA 是⊙O 1的切线知∠DAE=∠ACD.只需求tan ∠ACD.易得∠CAD=900,所以只需求AC AD 的值即可.观察和分析图形,可得△ADE ∽△CAE ,551052===CE AE AC AD .从而tan ∠ACD=55=AC AD ,即tan ∠DAE=55. 说明:(1)从已知条件出发快速地找到基本图形,得到基本结论,在解综合题时更显出它的基础性和重要性.如本题(2)求CF 的长时,要能很快地运用切割线定理,先求出CE 的长. (2)方程思想是几何计算中一种常用的、重要的方法,要熟练地掌握.例4.如图,已知矩形ABCD ,以A 为圆心,AD 为半径的圆交AC 、AB 于M 、E ,CE 的延长线交⊙A 于F ,CM=2,AB=4.(1) 求⊙A 的半径;(2) 求CF 的长和△AFC 的面积. 解:(1)∵四边形ABCD 是矩形,∴CD=AB=4,在Rt △ACD 中,AC 2=CD 2+AD 2,∴(2+AD )2=42+AD 2,解得AD=3.(2) A 作AG ⊥EF 于G.∵BG=3,BE=AB ―AE=1,∴CE=10132222=+=+BEBC由CE ·CF=CD 2,得CF=105810422==CE CD .又∵∠B=∠AGE=900,∠BEC=∠GEA ,∴△BCE∽△GAE.∴AE CE AG BC =,即,3103=AG S △AFC =21CF ·AG=536. 例5.如图,△ABC 内接于⊙O ,BC=4,S △ABC =36,∠B 为锐角,且关于x 的方程x 2–4xcosB+1=0有两个相等的实数根.D 是劣弧AC 上的任一点(点D 不与点A 、C 重合),DE 平分∠ADC ,交⊙O 于点E ,交AC 于点F.(1) 求∠B 的度数;(2) 求CE 的长.分析:本题是一道综合了代数知识的几何计算题,考察了圆的有关性质,解题时应注意线段的转化.解:(1)∵关于x 的方程x 2–4xcosB+1=0有两个相等的实数根,∴Δ=(-4cosB )2-4=0.∴cosB=21,或cosB=-21(舍去). 又∵∠B 为锐角,∴∠B=600.(2) 点A 作AH ⊥BC ,垂足为H. S △ABC =21BC ·AH=21BC ·AB ·sin600=36,解得AB=6 在Rt △ABH 中,BH=AB ·cos600=6×21=3,AH=AB ·sin600=6×3323=,∴CH=BC-BH=4-3=1. 在Rt △ACH 中,AC 2+CH 2=27+1=28.∴AC=72±(负值舍去).∴AC=72.连结AE ,在圆内接四边形ABCD 中,∠B+∠ADC=1800,∴∠ADC=1200.又∵DE 平分∠ADC ,∴∠EDC=600=∠EAC. 又∵∠AEC=∠B=600,∴∠AEC=∠EAC ,∴CE=AC=72.例6. 已知:如图,⊙O 的半径为r ,CE 切⊙O 于点C ,且与弦AB 的延长线交于点E ,CD ⊥AB 于D.如果CE=2BE ,且AC 、BC 的长是关于x 的方程x 2–3(r –2)x+ r 2–4=0的两个实数根.求(1)AC 、BC 的长;(2)CD 的长. 分析:(1)图中显然存在切割线定理的基本图形,从而可得△ECB ∽△EAC ,AC=2BC.又∵AC 、BC 是方程的两根,由根与系数关系可列出关于AC 、BC 的方程组求解.(2)∵CD 是Rt △CDB 的一边,所以考虑构造直角三角形与之对应.若过C 作直径CF ,连结AF ,则Rt △CDB ∽Rt △CAF ,据此可列式计算.解:(1)∵CE 切⊙O 于C ,∴∠ECB=∠A.又∵∠E 是公共角,∴△ECB ∽△EAC ,21==CE BE AC BC ,∴AC=2BC.由AC 、BC 的长是关于x 的方程x 2–3(r –2)x+ r 2–4=0的两个实数根,∴AC+BC=3(r-2);AC ·BC=r 2-4,解得r=6,∴BC=4,AC=8.(2) CO 并延长交⊙O 于F ,连结AF ,则∠CAF=900,∠CFA=∠CBD. ∵∠CDB=900=∠CAF ,∴△CAF ∽△CDB ,BC CF CD AC =.∴CD=381248=⨯=⋅CF BC AC . 说明:(1)这是一道代数、几何的综合题,关键是寻找相似三角形,建立线段之间的比例关系,再根据根与系数关系列等式计算;(2)构造与相似的直角三角形的方法有许多种,同学们不妨试一试.例7.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,PA 是过A 点的直线,∠PAC=∠B. (1)求证:PA 是⊙O 的切线;(2)如果弦CD 交AB 于E ,CD 的延长线交PA 于F ,AC=CE ∶EB=6∶5,AE ∶EB=2∶3,求AB 的长和∠FCB 的正切值. 解:(1)∵AB 是⊙O 的直径,∴∠ACB=900. ∴∠CAB+∠B=900,又∠PAC=∠B ,∴∠CAB+∠PAC=900.即PA ⊥AB ,∴PA 是⊙O 的切线. (2) 设CE=6a ,AE=2x,则ED=5a ,EB=3 x.由相交弦定理,得2x ·3x=5a ·6a ∴x=5a. 连结AD.由△BCE ∽△DAE ,得553==ED EB AD BC .连结BD.由△BED ∽△CEA ,得25==AE BE AC BD . ∴BD=54.由勾股定理得BC=228-AB ,AD=2)54(-AB .∴553)54(82222=--AB AB .两边平方,整理得1002=AB ,∴10=AB (负值舍去). ∴AD=52.∵∠FCB=∠BAD ,∴tan ∠FCB= tan ∠BAD=25254==AD BD . 解几何计算题要求我们必须掌握扎实的几何基础知识,较强的逻辑推理能力,分析问题时应注意分析法与综合法的同时运用,还特别要注意图形中的隐含条件,在平时的学习中要善于总结归纳,只有这样才能掌握好几何计算题的解法.。

2012年中考数学系统复习资料(全面)

2012年中考数学系统复习资料(全面)

第一部分数与代数第一节:实数课时1:有理数课时2:实数课时3:实数的运算第二节:代数式课时4:整式及其运算课时5:因式分解课时6:分式及其运算课时7:二次根式第三节:方程与方程组课时8:一元一次方程与二元一次方程组课时9:一元二次方程与分式方程课时10:列方程(组)解应用题第四节:不等式与不等式组课时11:一元一次不等式(组)及其解法课时12:列一元一次不等式(组)解应用题第五节:函数及其图象课时13:函数及其图象课时14:一次函数课时15:反比例函数课时16:二次函数第二部分:空间与图形第六节:图形的初步认识课时17:点、线、面、角课时18:相交线、平行线第七节:三角形与四边形课时19:三角形课时20:全等三角形课时21:四边形课时22:特殊四边形的性质与判定第八节:图形与变换课时23:图形的平移、轴反射与旋转课时24:相似三角形课时25:位置的确定、平面直角坐标系第九节:解直角三角形。

课时26:锐角三角函数课时27:解直角三角形第十节:圆课时28:圆的有关性质课时29:点与圆的位置关系、直线与圆的位置关系。

课时30:圆与圆的位置关系、圆锥课时31:视图与投影第十一节:图形与证明:课时32:命题、证明、反证法课时33:尺规作图。

第三部分:统计与概率课时34:统计课时35:概率第四部分:实践与综合应用课时36:方程与函数综合课时37:圆与相似综合课时38:代数与几何综合课时1 有理数◆明纲亮标一、考标要求1.理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。

2.掌握五条法则:有理数的加、减、乘、除、乘方法则及简单的混合运算。

3.能运用有理数的运算解决简单的问题。

4.对含有较大数字的信息作出合理解释。

二、知识要点1.有理数的分类:整数、分数统称有理数;整数又包括________,___,_____;分数又包括________,________。

2.相反数、倒数、绝对值的概念:只有符号不同的两个数是________,a的相反数为-a;0的相反数是0。

2012年中考数学一轮复习精品讲义 一元二次方程 人教新课标版

2012年中考数学一轮复习精品讲义 一元二次方程 人教新课标版

第二十二章一元二次方程本章小结小结1 本章概述本章的主要内容有三部分.第一部分是一元二次方程的概念:学习一元二次方程的一般形式、成立的条件,一元二次方程的根(或解),检验一个数值是否是一元二次方程的解的方法;第二部分是一元二次方程的解法:理解一元二次方程的解法的数学思想是降次,由降次的不同方法得出一元二次方程的不同解法,掌握一元二次方程的解法(配方法、公式法、因式分解法);第三部分是一元二次方程的应用:利用一元二次方程来解答实际应用问题、数学综合问题等。

一元二次方程是初中阶段最重要的方程,它是解答数学问题的重要工具和方法,并且对学习函数,尤其是二次函数的综合问题起着决定性的作用,它在中考试题中占有一定的比例.小结2 本章学习重难点【本章重点】正确理解一元二次方程的有关概念及二次项系数不为0这一前提条件,掌握化一元二次方程为一般形式的方法及一元二次方程的解法.【本章难点】熟练求一元二次方程的解,并会将实际问题抽象为单纯的数学问题(列一元二次方程)来解决.会用一元二次方程的根与系数的关系求未知字母的系数,掌握一元二次方程根的判别式的应用.小结3 学法指导1. 经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界数量关系的一个有效的数学模型,本章遵循了“问题情境——建立模型——应用”的模式.2.在观察、归纳、类比、计算与交流活动中,理解并掌握一元二次方程的基本解法——直接开平方法、因式分解法、配方法和公式法,并形成利用语言文字规范化地表达方程思想和方程知识的过程.3.通过对一元二次方程解法的探索与思考,进一步体会“化归”与“转化”的数学,思想的重要地位,解一元二次方程实际上是转化为解一元一次方程,达到降次的目的,进一步认识“方程是反映现实世界数量关系的一个有效的数学模型”.4.经历在具体问题情境中估计一元二次方程的解的过程,注意精确解、近似解的含义,并根据具体问题检验解的合理性.5.学好本章的关键是熟练掌握一元二次方程的解法和利用一元二次方程解决实际问题的方法,在学习过程中随时类比一元一次方程等相关知识,注意一元二次方程根与系数的关系,并在探索过程中体会“化归”与“转化”等数学思想在解决问题中的作用.知识网络结构图一元二次方程定义:等号两边都是整式,只含有一个未知数(一元),未知数的最高次数是2(二次)的方程为一元二次方程解法(降次)直接开平方法因式分解法配方法公式法22240404b acb acb ac⎧-⇔⎪-⇔⎨⎪-⇔⎩>方程有两个不相等的实数根=方程有两个相等的实数根<方程无实数根应用一元二次方程解决实际问题⎧⎨⎩步骤实际问题的答案专题总结及应用一、知识性专题专题1 一元二次方程的定义【专题解读】涉及一元二次方程定义的问题,应注意强调二次项系数不为0,不要忽略某些题目中的隐含条件.例1 已知(m -1)x |m |+1+3x -2=0是关于x 的一元二次方程,求m 的值.分析 依题意可知m -1≠0与|m |+1=2必须同时成立,因此求出满足上述两个条件的m 的值即可. 解:依题意得|m |+1=2,即|m |=1, 解得m =±1,又∵m -1≠0,∴m ≠1, 故m =-1. 【解题策略】解决此类问题的关键是牢记并理解一元二次方程的定义,特别是二次项系数应为非零数这一隐含条件要注意.专题2 一元二次方程的解法【专题解读】解一元二次方程时,主要考虑降次,其解法有直接开平方法、因式分解法、配方法及公式法,在具体的解题过程中,应结合具体的方程的特点选择简单、恰当的方法.例2 用配方法解一元二次方程2x 2+1=3 x . 分析 本题考查配方法解方程的步骤.解:移项,得2x 2-3 x =-1,二次项系数化为1,得231,22x x -=- 配方,得231().416x -=由此可得12311,1,.442x x x -=±∴==【解题策略】在二次系数为1的前提下,方程两边都加上一次项系数一半的平方.例3 一元二次方程3x 2-x =0的解是( ) A.x =0 B.x 1=0,x 2=3 C. 1210,3x x ==D. 13x = 分析 根据本题特点应采用因式分解法,将原方程化为x (3x -1)=0,易求出x =0或3x -1=0,问题得解.故选C.【解题策略】方程易转化为两个一次式乘积为0的形式,可采用因式分解法来解方程.例4 解方程x 2-2x -2=0.分析 结合方程特点,本题可采用公式法或配方法求解. 解法1:∵a =1,b =-2,c =-2,∴b 2-4ac =(-2)2-4×1×(-2)=12,∴x (2)12--±==1211x x ==解法2:移项,得x 2-2x =2,配方得x 2-2x +1=3,即(x -1)2=3,∴x -1=1211x x ==【解题策略】 一元二次方程的解法中,配方法及公式法是“万能”的方法. 专题3 与方程的根有关的问题【专题解读】 这部分内容主要考查已知方程的一根求字母的值,或者是根与系数及判别式相联系的问题.(1)通过填表,你发现这些方程的两个解的和与积与方程的系数有什么关系了吗?(2)一般地,对于关于x 的方程x 2+px +q =0(p ,q 为常数,且p 2-4q ≥0)来说,是否也具备(1)中你所发现的规律?如果具备,请你写出规律,并说明理由;如果不具备,请举出反例.分析 这是一道探究规律的试题,解决此题应按照题中所给顺序逐项认真完成,仔细观察,能发现一元二次方程的根与系数的关系.(1)由上表可以发现:上述方程的两根之和等于方程的一次项系数的相反数,两根之积等于常数项.(2)对方程x 2+px +q =0(p ,q 为常数,且p 2-4q ≥0)来说也具备同样的规律.设方程x 2+px +q =0的两根为x 1,x 2,则x 1+x 2=-p ,x 1·x 2=q , 理由如下:∵p 2-4q ≥0,∴方程x 2+px +q =0有两个实数根,∴12x x ==∴x 1+x 22,2pp -==-x 1·x 222(4)444p p q qq --===,即x 1+x 2=-p ,x 1·x 2=q .例6 若a 是关于x 的方程x 2+bx +a =0的根,且a ≠0,则由此可得求得下列代数式的值恒为常数的是( ) A.ab B.baC.a +bD.a -b 分析 此题应由根的意义入手,将a 代入方程等得到关于a ,b 的一个方程,再通过因式分解进行求解.把x=a代入方程x2+bx+a=0,得a2+ab+a=0,∴a(a+b+1)=0,又∵a≠0,∴a+b+1=0,即a+b=-1.故选C.【解题策略】本题将方程解的意义、方程的解法融为一体,体现了消元、降次的转化思想,具有一定的探究性,而且此题在设计思路上跳出了固定套路,是一道具有创新意识的题.专题4 一元二次方程的应用【专题解读】利用一元二次方程解决实际问题时,应根据具体问题找到等量关系,进而列出方程,另外,对方程的解要注意合理进行取舍.例7 乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是校舍,2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是8050.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x,则根据题意列方程得 .分析本题考查一元二次方程在增长率问题中的应用.因两年投入农牧区校舍改造资金的年平均增长率为x,则2006年投入资金是5786(1+x)万元,2007年的投入资金是5786(1+x)2万元,故所求方程为5786(1+x)2=8058.9.【解题策略】有关增长率问题的常用公式为a(1+x)n=b(n为正整数).二、规律方法专题专题5 一元二次方程的解法技巧【专题解读】除了常见的几种一元二次方程的解法外,对于特殊类型的方程,可采用特殊的方法.1.换元法例8 如果(2m+2n+1)(2m+2n-1)=63,那么m+n的值是 .分析把m+n看做一个整体求解.设m+n=x,则原方程化为(2x+1)(2x-1)=63,整理,得4x2=64,解得x=±4,∴m+n=±4.故填±4.例9 解方程(3x+2)2-8(3x+2)+15=0.分析此题可以把原方程展开为一般形式,运用公式法、因式分解法或配方法求解,但都比较麻烦,观察题目的结构可知把3x+2看做一个整体,设为t,则原方程就可化成关于未知数t的一元二次方程.解:设3x+2=t,原方程化为t2-8t+15=0,∴t1=3,t2=5.当t=3时,3x+2=3,∴x=13;当t=5时,3x+2=5,∴x=1.∴原方程的根为x1=13,x2=1.【解题策略】本题也可直接分解为[(3x+2)-3][ (3x+2)-5]=0,即(3x-1)(3x-3)=0,用因式分解法解得x1=13,x2=1.例10 解方程(x+2)(x+3)(x-4)(x-5)=44.分析解方程的基本思想是“降次”,例如把一元二次方程降次,转化为两个一元二次方程.本题是一个一元四次方程,我们可尝试用因式分解法把方程的左边进行因式分解(方程的右边为0).解:原方程转化为(x+2)(x+3)(x-4)(x-5)-44=0,[(x+2)(x-4)][ (x+3)(x-5)] -44=0,(x2-2x-8)(x2-2x-15)-44=0,令x2-2x=y,则原方程化为(y-8)(y-15)-44=0,∴y2-23y+76=0,∴y1=4,y2=19.当y =4时,x 2-2x =4,∴1211x x ==当y =19时,x 2-2x =19,∴3411x x =+=-∴原方程的根是1211x x ==3411x x =+=-2.配方法例11 先用配方法说明:无论x 取何值,代数式x 2-6x +10的值部大于0;再求出当x 取何值时,代数式x 2-6x +10的值最小,最小值是多少.解:x 2-6x +10=x 2-6x +32+(10-32)=(x -3)2+1.∵(x -3)2≥0,∴(x -3)2+1>0,∴无论x 取何值,代数式x 2-6x +10的值部大于0.当x -3=0,即x =3时,(x 2-6x +10)最小=1.例12 若实数m ,n ,p 满足m -n =8,mn +p 2+16=0,则m +n +p 的值为( ) A.-1 B. 0 C.1 D.2分析 本题有三个未知数m ,n ,p 给出两个关系式,思路应放在消元转化上.由m -n=8,得m =n +8,将m =n +8代入mn +p 2+16=0中,得n (n -8)+p 2+16=0,∴n 2+8n +16+p 2=0,即(n +4)2+p 2=0,又∵(n +4)2≥0,p 2≥0,且(n +4)2+p 2=0,∴400,n p +=⎧⎨=⎩,4,4(4)00.0,n m n p p =-⎧∴++=+-+=⎨=⎩解得故选B.3.构造法例13 解方程3x 2+11x +10=0.解:原方程两边同时乘3,得(3x )2+11×3x +30=0, ∴(3x +5)(3x +6)=0, ∴3x +5=0,或3x +6=0, ∴125, 2.3x x =-=-4.特殊解法例14 解方程(x -1994)(x -1995)=1996×1997.分析 观察方程可知1994+1997=1995+1996,1994-1996=1995-1997,并且一元二次方程最多只有两个实数解,则可用特殊的简便解法求解.解:方程组19941997,19951996x x -=⎧⎨-=⎩的解一定是原方程的解,解得x =3991,方程组19941996,19951997x x -=-⎧⎨-=-⎩的解也一定是原方程的解,解得x =-2,∵原方程最多只有两个实数解,∴原方程的解为x1=3991,x2=-2.【解题策略】解本题也可采用换元法.设x-1995=t,则x-1994=t+1,原方程化为t(t+1)=1996×1997,∴t2+t-1996×1997=0,∴(t+1997)(t-1996)=0,∴t+1997=0,或t-1996=0,∴t1=-1997,t2=1996.当t=-1997时,x-1995=-1997,∴x=-2;当t=1996时,x-1995=1996,∴x=3991.∴原方程的解为x1=-2,x2=3991.三、思想方法专题专题6 建模思想【专题解读】建模思想是指根据实际问题中数量之间的关系建立方程模型表达这个等量关系,通过解方程来解决实际问题.例15 经过两年的连续治理,某城市的大气环境有了明显改善,其每年每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是 .分析根据题意,设所求百分率为x,则有50(1-x)2=40.5,解得x1=1.9,x2=0.1,而1.9>1,不合题意,舍去,故x=0.1.故平均每年下降的百分率是10%.故填10%.【解题策略】利用一元二次方程解实际问题时,方程的解一定要符合实际意义.在建立方程模型解决实际问题时,应找准对应的数量关系.2011中考真题精选一、选择题1.(2011新疆乌鲁木齐,8,4)关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A、-1B、0C、1D、-1或1考点:一元二次方程的解;一元二次方程的定义。

新课标初中数学知识点汇总2012

新课标初中数学知识点汇总2012

初中数学知识点大全1、二元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

2012中考数学知识点及分数分布小结

2012中考数学知识点及分数分布小结

2012中考数学知识点及分数分布小结第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a2;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

初三数学知识点归纳人教版

初三数学知识点归纳人教版

初三数学知识点归纳人教版一、一元二次方程。

1. 定义。

- 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。

例如(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

- 配方法:将一元二次方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后再用直接开平方法求解。

例如x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。

例如x^2-3x+2 = 0,分解因式得(x - 1)(x -2)=0,解得x = 1或x = 2。

3. 根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。

- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

4. 一元二次方程根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),若方程的两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。

二、二次函数。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a≠0)的函数叫做二次函数,其中a、b、c是常数,x是自变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学基础知识要点总结实数⑴数轴的三要素为、和 . 数轴上的点与构成一一对应.⑵实数的相反数为________. 若,互为相反数,则 = .⑶非零实数的倒数为______. 若,互为倒数,则 = .⑷绝对值.⑸科学记数法:把一个数表示成的形式,其中1≤<10的数,n是整数.⑹一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字.练习:(略)数的开方⑴任何正数都有______个平方根,它们互为________.其中正的平方根叫_______________. 没有平方根,0的算术平方根为______.⑵任何一个实数都有立方根,记为 .⑶。

3. 实数的分类: 和统称实数.4.(其中 0 且是)(其中 0)练习:(略)整式(1)单项式:由数与字母的组成的代数式叫做单项式(单独一个数或也是单项式).单项式中的叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数.(2) 多项式:几个单项式的叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数最高的项的叫做这个多项式的次数.不含字母的项叫做 .(3) 整式:与统称整式.4. 同类项:在一个多项式中,所含相同并且相同字母的也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: am·an= ; (am)n= ; am÷an=_____; (ab)n= .练习:(略)因式分解1. 因式分解:就是把一个多项式化为几个整式的的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴,⑵,⑶ .3. 提公因式法: __________ _________.4. 公式法: ⑴⑵,⑶ .5. 十字相乘法:.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式).7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式. 练习:1.简便计算: .2.分解因式: ____________________.3.分解因式: ____________________.4.分解因式: ____________________.5.分解因式.6.将分解因式的结果是.分式1. 分式:整式A除以整式B,可以表示成的形式,如果除式B中含有,那么称为分式.若,则有意义;若,则无意义;若,则=0.2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的.用式子表示为 .3. 约分:把一个分式的分子和分母的约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为的分式,这一过程称为分式的通分.例1:(1)当x 时,分式无意义;(2)当x 时,分式的值为零.例2:⑴已知,则= .⑵已知,则代数式的值为 .例3:先化简,再求值:(1)(-)÷,其中x=1.⑵,其中 .练习:(略)二次根式1.二次根式的有关概念⑴式子叫做二次根式.注意被开方数只能是.并且根式.⑵简二次根式:被开方数所含因数是,因式是,不含能的二次根式,叫做最简二次根式.(3)同类二次根式:化成最简二次根式后,被开方数的几个二次根式,叫做同类二次根式.2.二次根式的性质:⑴ 0;⑵(≥0);;⑶();⑷().练习:(略)方程(组)和不等式(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像,等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.例1:当取什么整数时,关于的方程的解是正整数?例2:解下列方程:;(2) .例3:解下列方程组:(1)(2)例4:某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?例5:某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.①求该同学看中的随身听和书包单价各是多少元?②某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?一元二次方程的常用解法(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n<0,则原方程无解.(3)公式法:一元二次方程的求根公式是.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.例1:选用合适的方法解下列方程:(1);(2);(3);(4) .例2:已知一元二次方程有一个根为零,求的值.练习:(略)一元二次方程根的判别式关于x的一元二次方程的根的判别式为 .(1) >0一元二次方程有两个实数根,即 .(2) =0一元二次方程有相等的实数根,即 .(3) <0一元二次方程实数根.例1:解方程会出现的增根是()A. B. C.或 D.例2:如果分式与的值相等,则的值是( )A.9 B. 7 C.5 D.3例3:如果,则下列各式不成立的是()A. B. C. D.例4:若分式的值为0,则x的值为()A. 1B. -1C. ±1D.2例5:在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.例6:某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组每天各修桌凳多少套.(2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理.你认为哪种方案既省时又省钱?试比较说明.练习:1.若关于方程无解,则的值是.2.分式方程的解是.3.以下是方程去分母、去括号后的结果,其中正确的是()A. B. C. D.4.分式方程的解是()A. B. C. D.5.分式方程的解是()A. ,B. ,C. ,D.6.今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成. (1) 已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天.如果甲、乙两组合做24天完成,那么甲、乙两组合做能否在规定时间内完成?(2) 在实际工作中,甲、乙两组合做完成这项工程的后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.不等式的基本性质(1)若<,则 + ;(2)若>,>0则(或);(3)若>,<0则(或).例1:1.不等式组的解集在数轴上表示为()12A.12B.12C.12D.2.解不等式组3.解不等式组,并把它的解集表示在数轴上.例2:绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?例3:某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)【中考演练】1.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,则a的取值范围是.2.海门市三星镇的叠石桥国际家纺城是全国最大的家纺专业市场,年销售额突破百亿元.2005年5月20日,该家纺城的羽绒被和羊毛被这两种产品的销售价如下表:现购买这两种产品共____条.3.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少应付给超市元.4.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品,已知该超市的锦江牌钢笔每支8元,红梅牌钢笔每支4.8元,他们要购买这两种笔共40支.(1)如果他们一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔数量要少于红梅牌钢笔的数量的,但又不少于红梅牌钢笔的数量的 .如果他们买了锦江牌钢笔支,买这两种笔共花了元,①请写出 (元)关于 (支)的函数关系式,并求出自变量的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?5.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?。

相关文档
最新文档