视导材料:直线与圆锥曲线位置关系教师版资料
圆锥曲线直线与圆锥曲线的位置课件

直线是二维空间中的一维图形,表示 两点之间所有点的集合。
位置关系的分类与定义
相交
当直线与圆锥曲线至少有一个交点时,称为 相交。
相切
当直线与圆锥曲线仅有一个交点时,称为相 切。
相离
当直线与圆锥曲线没有交点时,称为相离。
02 直线与圆锥曲线相交的位 置关系
直线与圆锥曲线交点个数的问题
01 直线与圆锥曲线可能有一个、两个或无交点。 02 判断交点个数需要利用代数方法,如判别式法。 03 交点个数与直线的斜率和圆锥曲线的类型有关。
离点距离的计算
离点距离是指离点到直线或圆锥曲线的 某一点的距离,可以通过坐标计算得到。
计算方法为使用两点间距离公式,即 $sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$。
根据具体问题,可以选择不同的点 作为计算离点距离的基准点,如直 线的交点、圆锥曲线的顶点等。
05 直线与圆锥曲线位置关系 的几何意义
几何问题的求解方法
代数法
通过代数运算和方程求解的方法,求出直线和圆锥曲线的交点坐标。
解析几何法
利用解析几何的基本原理和方法,通过代数运算和方程求解的方法, 求出直线和圆锥曲线的交点坐标。
几何直观法
通过观察和想象,利用几何图形的性质和特点,直接求解几何问题。
06 直线与圆锥曲线位置关系 的实际应用
几何图形的构造与解释
直线与圆锥曲线相交
当直线与圆锥曲线只有一个交点时,表示直线与圆锥曲线相切; 当直线与圆锥曲线有两个交点时,表示直线与圆锥曲线相交。
直线与圆锥曲线相切
当直线与圆锥曲线只有一个交点时,表示直线与圆锥曲线 相切。
直线与圆锥曲线相离
当直线与圆锥曲线没有交点时,表示直线与圆锥曲线相离。
直线与圆锥曲线的位置关系知识梳理

直线与圆锥曲线的位置关系知识梳理1.直线与圆锥曲线的位置关系的判定(1)代数法:把圆锥曲线方程C 1与直线方程l 联立消去y ,整理得到关于x 的方程ax 2+bx +c =0.说明:(2)几何法:在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判定直线与圆锥曲线的位置关系.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+1k 2|y 2-y 1|=1+1k2(y 1+y 2)2-4y 1y 2, |x 2-x 1|=||a ∆,|y 2-y 1|=||a ∆ 3.中点弦问题:中点弦问题常用“根与系数的关系”或“点差法”求解.(1)点差法设而不求,借用中点公式即可求得斜率.(2)在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0; 在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0; 在抛物线y 2=2px 中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0. 典型例题题型一 直线与圆锥曲线的位置关系的判断及应用例1 若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( )条变式训练 若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是________.题型二 中点弦问题例2 过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________.变式训练 已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A 、B 两点,且AB 的中点为N (-12,-15),则E 的方程为____________.题型三 弦长问题例3 已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A 、B 两点,则弦AB 的长为________.课堂练习1.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为________.2.已知F 1、F 2为椭圆x 225+y 2169=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A |+|F 2B |=30,则|AB |=________.3. 已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为________.4.(四川文)过双曲线x 2-y 23=1的右焦点与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于________.5.(课标全国I )已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.课下作业1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为________.2.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为________.3.已知直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A ,B 两点,且点A ,B 到y 轴的距离分别为m ,n ,则m +n +2的最小值为________.4.椭圆的焦点为F 1,F 2,过F 1的最短弦PQ 的长为10,△PF 2Q 的周长为36,则此椭圆的离心率为________.5.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,这样的直线有________.6.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是________.7.已知斜率为-12的直线l 交椭圆C :x 2a 2+y 2b 2=1(a >b >0)于A ,B 两点,若点P (2,1)是AB 的中点,则C 的离心率等于________.8.直线l :y =x +3与曲线y 29-x ·|x |4=1交点的个数为________. 9.动直线l 的倾斜角为60°,若直线l 与抛物线x 2=2py (p >0)交于A 、B 两点,且A 、B 两点的横坐标之和为3,则抛物线的方程为________.10.已知对k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m=1恒有公共点,则实数m 的取值范围是________.11.已知抛物线C 的顶点在坐标原点,焦点为F (0,-1),直线l 与抛物线C 相交于A 、B 两点,若AB 的中点为(2,-2),则直线l 的方程为________.12.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的短半轴长b =1,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4 2. (1)求椭圆M 的方程;(2)设直线l :x =my +t 与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的右顶点C ,求t 的值.13.(陕西文)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.。
《直线与圆锥曲线位置关系》教案

《直线与圆锥曲线位置关系》教案
作者:王晓丹
来源:《学校教育研究》2020年第01期
一、教学目标
知识与技能:了解直线与圆锥曲线的位置关系,通过类比直线与圆的位置关系,学会判断直线与椭圆、双曲線、抛物线的位置关系,能利用对方程组解的讨论来研究直线与圆锥曲线的位置关系。
过程与方法:在探究过程中,运用数形结合和方程的思想,以运动的观点观察问题,思考问题,分析问题,进一步提高学生解决问题的能力。
情感与态度:通过师生合作,生生合作学习,感受学习交流带来的成功感,激发学生提出问题和解决问题的勇气,树立自信心。
二、教学重点与难点
重点:用代数的方法(对方程组解的讨论)来研究直线与圆锥曲线的公共点问题。
难点:对直线与圆锥曲线仅有一个公共点时位置关系的应用探索。
三、教学方法
以学生为主体,引导学生探索发现如何用代数法判断直线与圆锥曲线的位置关系,再通过师生合作、生生合作解决直线与圆锥曲线的相关问题。
四、教学过程
(一)复习导入
问题1:直线与圆的位置关系有相交,相切,相离三种,如果把圆换成一般圆锥曲线,又有怎样的位置关系呢?
问题2:判断直线与圆的位置关系有哪些方法?
由此,引出本节课的重点:用代数法判断直线与圆锥曲线的位置关系。
7.10直线与圆锥曲线的位置关系名师课件

或当k存在且不为零时
l
1 1 k2
y1 y2
②抛物线y2=2px的焦点弦长公式
|AB|=
x1
x2
p
2p
sin 2
其中α为过焦点的直线的倾斜角。
例1.直线y=x+3与曲线 y 2 x | x | 1
S OAB
SOAN SOBN
1 ON 2
y1
1 ON 2
y2
1 ON 2
y1 y2
S OAB
1 2
1
( y1
y2 )2
4 y1 y2
1 2
(1)2 4 k
S OAB
10 , 10 1 2
1 4,解得k 1
k2
6
例4. 在抛物线 y2=4x 上恒有两点关于直线 y=kx+3对称,求k的取值范围.
若化为x或y的方程二次项系数非零,判 别式⊿=0时必相切;⊿>0时必相交;⊿<0 时必相离;
若二次项系数为零,有一组解仍是相交.
2. 弦:直线被圆锥曲线截得的线段称为圆 锥曲线的弦。 焦点弦:若弦过圆锥曲线的焦点叫焦点弦; 通径:若焦点弦垂直于焦点所在的圆锥曲 线的对称轴,此时= 焦点弦也叫通径。 ①当直线的斜率k存在时,弦长公式:
4
因为 sin 2 [0 , 1] ,所以 当且仅当 s i n2 1时,
AB CD 有最小值是 8 2
1 2k 2
1 2k 2
பைடு நூலகம்
1 2k 2
直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。
2. 能够运用直线与圆锥曲线的位置关系解决实际问题。
3. 培养学生的逻辑思维能力和数学解决问题的能力。
二、教学内容1. 直线与圆锥曲线的基本概念和性质。
2. 直线与圆锥曲线的相切、相离和相交情况。
3. 直线与圆锥曲线的交点个数与判别式。
4. 直线与圆锥曲线的应用问题。
三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。
2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。
3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。
四、教学准备1. 教学课件和教学素材。
2. 直尺、圆规等绘图工具。
3. 练习题和答案。
五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。
2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。
3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。
4. 练习:让学生进行相关的练习题,巩固所学知识。
6. 作业布置:布置相关的练习题,巩固所学知识。
六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。
2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。
七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。
2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。
八、作业布置1. 完成课后练习题,巩固所学知识。
2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。
九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。
2. 教学方法的适用性,是否达到预期教学效果。
十、教学评价1. 学生作业、练习题和课堂表现的评价。
2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。
3. 教学反馈,了解学生对教学内容的满意度和建议。
精品教案:直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系【知识网络】1.直线与圆锥曲线之间的位置关系及其判定方法. 2.一元二次方程根的判别式及韦达定理的应用. 3.中点问题,弦长问题的求解. 4.进一步应用数形结合思想. 【典型例题】[例1](1)过点(2,4)作直线与抛物线x y 82=有且只有一个公共点,这样的直线有( )A.一条 B.两条 C.三条 D.四条(2)直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,则m 的取值范围是( ) A.[)()+∞,55,1 B.(0,5) C.[)+∞,1 D.(1,5)(3)以圆锥曲线过焦点的弦为直径的圆与对应的准线无交点,则此圆锥曲线是( ) A 不能确定 B 椭圆 C 双曲线 D 抛物线(4)斜率为2的直线与圆锥曲线交于),(),,(2211y x B y x A 两点,若弦长52=AB ,则=-21y y . (5)双曲线122=-y x 的左焦点为F,点P为左支下半支上的动点(异于顶点),则直线PF的斜率的范围是 .[例2] 在椭圆141622=+y x 内,求通过点M(1,1)且被这点平分的弦AB所在直线的方程.[例3] 中心在坐标原点,焦点在x 轴上的椭圆,它的离心率为23,与直线x+y -1=0相交于两点M、N,且OM⊥ON.求椭圆的方程.[例4] 如图,在△ABC 中,∠C =90°,BC =2AC ,A 、B 、C 都是椭圆上的点,其中A 是椭圆的左顶点,直线BC 经过椭圆中心(即原点O ).(1)求证:无论 AC 的长取何正实数,椭圆的离心率恒为定值,并求出该 定值; (2)若PQ 是椭圆的一条弦,PQ ∥AB ,求证∠PCQ 的平分线垂直于AO .【课内练习】1.平面内有一线段AB,其长为33,动点P满足3=-PB PA ,O为AB的中点,则OP 的最小值为 ( ) A.23B.1 C.2 D.3 2.已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和,它们所表示的曲线可能是( )A B C D3.设A 为双曲线191622=-y x 右支上一点,F 为该双曲线的右焦点,连AF 交双曲线于B ,过B 作直线BC 垂直于双曲线的右准线,垂足为C ,则直线AC 必过定点( )A .(0,1041) B .(0,518) C .(4,0) D .(0,522) 4.若直线1-=kx y 与椭圆1422=+ay x 有且只有一公共点,那么 ( ) A.(]⎪⎭⎫ ⎝⎛-∈∈21,21,1,0k a B.()⎪⎭⎫ ⎝⎛-∈∈21,21,1,0k aC.(]⎥⎦⎤⎢⎣⎡-∈∈21,21,1,0k a D.()⎥⎦⎤⎢⎣⎡-∈∈21,21,1,0k a 5.过原点的直线l ,如果它与双曲线14322=-x y 相交,则直线l 的斜率k 的取值范围是 . 6.直线y=x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积是 .7.若曲线y 2=|x |+1与直线y=kx +b 没有公共点,则k,b 应满足的条件是 .8.已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λ.(1)证明:λ=1-e 2; (2)若43=λ,△PF 1F 2的周长为6;写出椭圆C 的方程. .9.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案第一章:直线与圆锥曲线的基本概念1.1 直线的基本概念直线的定义直线的性质直线的方程1.2 圆锥曲线的基本概念圆锥曲线的定义圆锥曲线的性质圆锥曲线的方程第二章:直线与圆锥曲线的交点2.1 直线与圆的交点直线与圆的位置关系直线与圆的交点个数直线与圆的交点坐标求解方法2.2 直线与椭圆的交点直线与椭圆的位置关系直线与椭圆的交点个数直线与椭圆的交点坐标求解方法2.3 直线与双曲线的交点直线与双曲线的position 关系直线与双曲线的交点个数直线与双曲线的交点坐标求解方法第三章:直线与圆锥曲线的切点3.1 直线与圆的切点直线与圆的位置关系直线与圆的切点性质直线与圆的切点坐标求解方法3.2 直线与椭圆的切点直线与椭圆的位置关系直线与椭圆的切点性质直线与椭圆的切点坐标求解方法3.3 直线与双曲线的切点直线与双曲线的position 关系直线与双曲线的切点性质直线与双曲线的切点坐标求解方法第四章:直线与圆锥曲线的距离4.1 直线与圆的距离直线与圆的位置关系直线与圆的距离公式直线与圆的距离求解方法4.2 直线与椭圆的距离直线与椭圆的位置关系直线与椭圆的距离公式直线与椭圆的距离求解方法4.3 直线与双曲线的距离直线与双曲线的position 关系直线与双曲线的距离公式直线与双曲线的距离求解方法第五章:直线与圆锥曲线的应用5.1 直线与圆的相切问题直线与圆相切的条件直线与圆相切的应用实例直线与圆相切的解题方法5.2 直线与椭圆的相切问题直线与椭圆相切的条件直线与椭圆相切的应用实例直线与椭圆相切的解题方法5.3 直线与双曲线的相切问题直线与双曲线相切的条件直线与双曲线相切的应用实例直线与双曲线相切的解题方法第六章:直线与圆锥曲线的对称性6.1 直线与圆的对称性直线与圆的对称性质直线与圆的对称变换直线与圆的对称问题实例与解法6.2 直线与椭圆的对称性直线与椭圆的对称性质直线与椭圆的对称变换直线与椭圆的对称问题实例与解法6.3 直线与双曲线的对称性直线与双曲线的对称性质直线与双曲线的对称变换直线与双曲线的对称问题实例与解法第七章:直线与圆锥曲线的相交弦7.1 直线与圆的相交弦直线与圆的相交弦性质直线与圆的相交弦公式直线与圆的相交弦问题实例与解法7.2 直线与椭圆的相交弦直线与椭圆的相交弦性质直线与椭圆的相交弦公式直线与椭圆的相交弦问题实例与解法7.3 直线与双曲线的相交弦直线与双曲线的相交弦性质直线与双曲线的相交弦公式直线与双曲线的相交弦问题实例与解法第八章:直线与圆锥曲线的焦点8.1 直线与圆的焦点直线与圆的焦点性质直线与圆的焦点问题实例与解法直线与圆的焦点应用8.2 直线与椭圆的焦点直线与椭圆的焦点性质直线与椭圆的焦点问题实例与解法直线与椭圆的焦点应用8.3 直线与双曲线的焦点直线与双曲线的焦点性质直线与双曲线的焦点问题实例与解法直线与双曲线的焦点应用第九章:直线与圆锥曲线的综合问题9.1 直线与圆的综合问题直线与圆的位置关系的综合应用直线与圆的交点、切点、距离的综合问题实例与解法直线与圆的对称性、相交弦、焦点的综合应用9.2 直线与椭圆的综合问题直线与椭圆的位置关系的综合应用直线与椭圆的交点、切点、距离的综合问题实例与解法直线与椭圆的对称性、相交弦、焦点的综合应用9.3 直线与双曲线的综合问题直线与双曲线的position 关系的综合应用直线与双曲线的交点、切点、距离的综合问题实例与解法直线与双曲线的对称性、相交弦、焦点的综合应用第十章:直线与圆锥曲线的拓展与提升10.1 直线与圆锥曲线的拓展问题直线与圆锥曲线的特殊位置关系问题直线与圆锥曲线的创新性问题实例与解法直线与圆锥曲线的综合应用提升10.2 直线与圆锥曲线的解题策略与方法直线与圆锥曲线的分类讨论方法直线与圆锥曲线的数形结合方法直线与圆锥曲线的构造法与方程法10.3 直线与圆锥曲线的教学反思与评价直线与圆锥曲线教学的重点与难点直线与圆锥曲线教学的方法与技巧直线与圆锥曲线教学的评价与反思重点和难点解析1. 第一章:直线与圆锥曲线的基本概念重点关注直线和圆锥曲线的定义、性质和方程。
《直线与圆锥曲线的位置关系》教案全面版

(4) 显然当 l ox 时,弦 CD 不存在.
当 l 不与 x 轴垂直时,设
C(
c2 , c) , D ( 2p
d2
,
2p
d ) ,且
c ≠ d ,则 kCD
=
2p cd
.
若 l ⊥ CD ,则 kl =- c d 2p
∵ kl ≠0,∴ c d ≠ 0
设线段 CD 的中点为
M
(x0 , y0 ) , 则
A( x1, y1 ), B(x2 , y2 ) 两点,证明 :(1)焦点弦公式 AB = x1 x2 p ; (2) 若 l 的倾斜角为
2p ,则 AB = sin 2
11
; (3)
+
为常量; (4) 若 CD 为抛物线的任何一条弦,则直
FA FB
线 l 不可能是线段 CD 的垂直平分线. 分析 : 已知直线 l 过抛物线的焦点,分斜率存在、不存在将直线方程设出,将直线方程和抛物线方程
2
2a 1 a2
,
5 12
x22
2
2
2a 1 a2
.消去
x2 , 得
2a 289 1 a 2 = 60
由 a 0, 所以 a = 17 . 13
小结: 本题考查直线、双曲线的概念性质,韦达定理、不等式、平面向量的运算,解方程等知识,
考查数形结合,方程、不等式的思想方法,以及推理运算能力和综合运用数学知识解决问题的能力,此
2
2
( 2 ,+ ∞ ).
(2) 设 A( x1 , y1 ), B( x2 , y2 ) , P (0,1) .∵ PA =
5 12
PB
∴
5
(x1, y1 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:直线与圆锥曲线活动一:基础检测:1.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为 3 的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是________.2.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是________. 3.过点(0,-12)的直线l 与抛物线y =-x 2交于A 、B 两点,O 为坐标原点,则OA →·OB →的值为________. 答案:1.43 2. .±34 3.-14活动二:探究点一 直线与圆锥曲线的位置关系例1(南通市2015届高三上期末)如图,在平面直角坐标系xOy 中,1F ,2F 分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,顶点B 的坐标为(0,b ),且△12BF F 是边长为2的等边三角形.(1)求椭圆的方程;(2)过右焦点2F 的直线l 与椭圆交于,A C 两点,记△2ABF ,△2BCF 的面积分别为1S ,2S .若122S S =,求直线l 的斜率.训练1.(2015届南京、盐城市高三二模)如图,在平面直角坐标系xoy 中,椭圆E :22221x y a b+=(0a b >>)的离心率为22,直线l :x y 21=与椭圆E 相交于A ,B 两点,52=AB ,C ,D 是椭圆E 上异于A ,B 两点,且直线AC ,BD 相交于点M ,直线AD ,BC 相交于点N .(1)求b a ,的值;(2)求证:直线MN 的斜率为定值.解(1)因为e =c a =22,所以c 2=12a 2,即a 2-b 2=12a 2,所以a 2=2b 2.…… 2分故椭圆方程为x 22b 2+y 2b 2=1.由题意,不妨设点A 在第一象限,点B 在第三象限.由⎩⎨⎧ y =12x ,x 22b 2+y 2b2=1,解得A (233b ,33b ).又AB =25,所以OA =5,即43b 2+13b 2=5,解得b 2=3.故a =6,b =3. ……………… 5分(2)方法一:由(1)知,椭圆E 的方程为 x 26+y 23=1,从而A (2,1),B (-2,-1).①当CA ,CB ,DA ,DB 斜率都存在时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0), 显然k 1≠k 2.从而k 1 ·k CB =y 0-1x 0-2·y 0+1x 0+2=y 02-1x 02-4=3(1-x 026)-1x 02-4=2-x 022x 02-4=-12.所以k CB =-12k 1. …………………… 8分同理k DB =-12k 2. 于是直线AD 的方程为y -1=k 2(x -2),直线BC 的方程为y +1=-12k 1(x +2).由⎩⎪⎨⎪⎧y +1=-12k 1(x +2),y -1=k 2(x -2),解得⎩⎨⎧x =4k 1k 2-4k 1-22k 1k 2+1,y =-2k 1k 2-4k 2+12k 1k 2+1.从而点N 的坐标为(4k 1k 2-4k 1-22k 1k 2+1,-2k 1k 2-4k 2+12k 1k 2+1). 用k 2代k 1,k 1代k 2得点M 的坐标为(4k 1k 2-4k 2-22k 1k 2+1,-2k 1k 2-4k 1+12k 1k 2+1).………… 11分所以k MN =-2k 1k 2-4k 2+12k 1k 2+1--2k 1k 2-4k 1+12k 1k 2+14k 1k 2-4k 1-22k 1k 2+1-4k 1k 2-4k 2-22k 1k 2+1 =4(k 1-k 2)4(k 2-k 1)=-1.即直线MN 的斜率为定值-1. ……… 14分②当CA ,CB ,DA ,DB 中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在, 故不妨设直线CA 的斜率不存在,从而C (2,-1).仍然设DA 的斜率为k 2,由①知k DB =-12k 2.此时CA :x =2,DB :y +1=-12k 2(x +2),它们交点M (2,-1-2k 2).BC :y =-1,AD :y -1=k 2(x-2),它们交点N (2-2k 2,-1),从而k MN =-1也成立.由①②可知,直线MN 的斜率为定值-1. ………… 16分方法二:由(1)知,椭圆E 的方程为 x 26+y 23=1,从而A (2,1),B (-2,-1).①当CA ,CB ,DA ,DB 斜率都存在时,设直线CA ,DA 的斜率分别为k 1,k 2.显然k 1≠k 2.直线AC 的方程y -1=k 1(x -2),即y =k 1x +(1-2k 1).由⎩⎪⎨⎪⎧y =k 1x +(1-2k 1),x 26+y 23=1得(1+2k 12)x 2+4k 1(1-2k 1)x +2(4k 12-4k 1-2)=0.设点C 的坐标为(x 1,y 1),则2·x 1=2(4k 12-4k 1-2)1+2k 12,从而x 1=4k 12-4k 1-22k 12+1.所以C (4k 12-4k 1-22k 12+1,-2k 12-4k 1+12k 12+1).又B (-2,-1),所以k BC =-2k 12-4k 1+12k 12+1+14k 12-4k 1-22k 12+1+2=-12k 1. ……………… 8分所以直线BC 的方程为y +1=-12k 1(x +2).又直线AD 的方程为y -1=k 2(x -2). 由⎩⎪⎨⎪⎧y +1=-12k 1(x +2),y -1=k 2(x -2),解得⎩⎨⎧x =4k 1k 2-4k 1-22k 1k 2+1,y =-2k 1k 2-4k 2+12k 1k 2+1.从而点N 的坐标为(4k 1k 2-4k 1-22k 1k 2+1,-2k 1k 2-4k 2+12k 1k 2+1). 用k 2代k 1,k 1代k 2得点M 的坐标为(4k 1k 2-4k 2-22k 1k 2+1,-2k 1k 2-4k 1+12k 1k 2+1).……… 11分所以k MN =-2k 1k 2-4k 2+12k 1k 2+1--2k 1k 2-4k 1+12k 1k 2+14k 1k 2-4k 1-22k 1k 2+1-4k 1k 2-4k 2-22k 1k 2+1 =4(k 1-k 2)4(k 2-k 1)=-1.即直线MN 的斜率为定值-1. ……………… 14分②当CA ,CB ,DA ,DB 中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在, 故不妨设直线CA 的斜率不存在,从而C (2,-1).仍然设DA 的斜率为k 2,则由①知k DB =-12k 2.此时CA :x =2,DB :y +1=-12k 2(x +2),它们交点M (2,-1-2k 2).BC :y =-1,AD :y -1=k 2(x-2),它们交点N (2-2k 2,-1),从而k MN =-1也成立.由①②可知,直线MN 的斜率为定值-1. ……………… 16分探究点二 中点弦问题【例2】过点P (-1,1)作直线交椭圆 x 24+y 22=1于A ,B 两点,若线段AB 的中点恰为点P ,求AB 所在直线的方程.[审题视点] 已知弦的中点,常采用“点差法”求弦所在直线的斜率,进而求得直线的方程. 解 设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 214+y 212=1,① x 224+y 222=1,② 由①-②得y 1-y 2x 1-x 2=-2(x 1+x 2)4(y 1+y 2)=-2×(-1)4×2=12.∴线段AB 所在直线的方程为y -1=12(x +1),即x -2y +3=0.中点弦问题常用“点差法”求解.在椭圆x 2a 2+y 2b2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0a 2y 0;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0a 2y 0,在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =py 0.【训练2】椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若AB =22,OC 的斜率为22,求椭圆的方程. 解 设A (x 1,y 1)、B (x 2,y 2),代入椭圆方程并作差得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k OC =22,代入上式可得b =2a .再由|AB |=1+k 2|x 2-x 1|=2|x 2-x 1|=22,其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根,故⎝⎛⎭⎫2b a +b 2-4·b -1a +b =4,将b =2a 代入得a =13,∴b =23. ∴所求椭圆的方程是x 23+2y 23=1.探究点三 定值(定点)问题【例3】已知椭圆x 24+y 22=1上的两个动点P ,Q ,设P (x 1,y 1),Q (x 2,y 2)且x 1+x 2=2.(1)求证:线段PQ 的垂直平分线经过一个定点A ;(2)设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.[审题视点] (1)由x 1+x 2=2可得PQ 的中点横坐标,引入参数PQ 中点的纵坐标,先求k PQ ,利用直线PQ 的方程求解.(2)建立PB 关于动点坐标的目标函数,利用函数的性质求最值.(1)证明 ∵P (x 1,y 1),Q (x 2,y 2),且x 1+x 2=2.当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4x 2+2y 22=4,得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2. 设线段PQ 的中点N (1,n ),∴k PQ =y 1-y 2x 1-x 2=-12n ,∴线段PQ 的垂直平分线方程为y -n =2n (x -1),∴(2x -1)n -y =0,则直线恒过一个定点A ⎝⎛⎭⎫12,0. 当x 1=x 2时,线段PQ 的中垂线也过定点A ⎝⎛⎭⎫12,0.综上,线段PQ 的垂直平分线恒过定点A ⎝⎛⎭⎫12,0. (2)解 由于点B 与点A 关于原点O 对称,故点B ⎝⎛⎭⎫-12,0. ∵-2≤x 1≤2,-2≤x 2≤2,∴x 1=2-x 2∈[0,2],PB 2=⎝⎛⎭⎫x 1+122+y 21=12(x 1+1)2+74≥94, ∴当点P 的坐标为(0,±2)时,PB min =32.以直线与圆锥曲线的位置关系为背景的证明题常见的有:证明直线过定点和证明某些量为定值.而解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.【训练3】(2011·四川)如图过点C (0,1)的椭圆 x 2a 2 + y 2b 2 =1(a >b >0)的离心率为32.椭圆与x 轴交于两点A (a ,0)、B (-a ,0).过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P .直线AC 与直线BD 交于点Q .(1)当直线l 过椭圆右焦点时,求线段CD 的长;(2)当点P 异于点B 时,求证:OP →·OQ →为定值.(1)解 由已知得b =1,c a =32,解得a =2,所以椭圆方程为x 24+y 2=1.椭圆的右焦点为(3,0),此时直线l 的方程为y =-33x +1,代入椭圆方程化简得7x 2-83x =0. 解得x 1=0,x 2=837,代入直线l 的方程得y 1=1,y 2=-17,所以D 点坐标为⎝⎛⎭⎫837,-17. 故CD =⎝⎛⎭⎫837-02+⎝⎛⎭⎫-17-12=167.(2)当直线l 与x 轴垂直时与题意不符.设直线l 的方程为y =kx +1(k ≠0且k ≠12).代入椭圆方程化简得(4k 2+1)x 2+8kx =0.解得x 1=0,x 2=-8k4k 2+1,代入直线l 的方程得y 1=1,y 2=1-4k 24k 2+1,所以D 点坐标为⎝ ⎛⎭⎪⎫-8k 4k 2+1,1-4k 24k 2+1.又直线AC 的方程为x2+y =1,直线BD 的方程为y =1+2k 2-4k (x +2),联立解得⎩⎪⎨⎪⎧x =-4k ,y =2k +1.因此Q 点坐标为(-4k ,2k +1).又P 点坐标为⎝⎛⎭⎫-1k ,0. 所以OP →·OQ →=⎝⎛⎭⎫-1k ,0·(-4k ,2k +1)=4. 故OP →·OQ →为定值.活动三:自主检测: 一、填空题1.(2009·重庆)已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A ,B 两点,若AB 的中点为(2,2),则直线l 的方程为________.2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值为________.3.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若F A =2FB ,则k = .4.(2011·镇江模拟)若直线y =kx +1(k ∈R )与焦点在x 轴上的椭圆 x 25 + y 2t =1恒有公共点,则t 的范围是 .5.(2010·全国Ⅱ)已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为 3 的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p =________.自主检测: 1. y =x 2.2 解析由抛物线y 2=4x 知直线l 2为其准线,焦点为F (1,0).由抛物线的定义可知动点P 到直线l 2的距离与P 到焦点F (1,0)的距离相等,所以P 到直线l 1的距离与P 到焦点F (1,0)的距离之和的最小值为焦点F (1,0)到直线l 1的距离(如图),则d =|4×1-0+6|32+42=2.3.2234.[1,5)5.2 二、解答题:6.(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知椭圆2214x y +=的左、右焦点分别为F '与F ,圆F :22(3)5x y +=.(1)设M 为圆F 上一点,满足1MF'MF ⋅=u u u u r u u u u r,求点M 的坐标;(2)若P 为椭圆上任意一点,以P 为圆心,OP 为半径的圆P 与圆F 的公共弦为QT ,证明:点F 到直线QT 的距离FH 为定值.(第6题)TQPF 'HO yxF7.(2010·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连结椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为(-a ,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4,求y 0的值. 解 (1)由e =c a =32,得3a 2=4c 2.再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2.解方程组⎩⎪⎨⎪⎧ a =2b ,ab =2,得⎩⎪⎨⎪⎧a =2,b =1.所以椭圆的方程为x 24+y 2=1.(4分)(2)由(1)可知A (-2,0),且直线l 的斜率必存在.设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).于是A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1.由方程组消去y 并整理,得(1+4k 2)x 2+16k 2x +(16k 2-4)=0. 由根与系数的关系,得-2x 1=16k 2-41+4k 2,所以x 1=2-8k 21+4k 2,从而y 1=4k1+4k 2. 设线段AB 的中点为M ,则M 的坐标为(-8k 21+4k 2,2k1+4k 2).(6分) 以下分两种情况讨论:①当k =0时,点B 的坐标是(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →=(2,-y 0).由QA →·QB →=4,得y 0=±22.(8分)②当k ≠0时,线段AB 的垂直平分线的方程为y -2k 1+4k 2=-1k (x +8k 21+4k 2).令x =0,解得y 0=-6k 1+4k2. 由QA →=(-2,-y 0),QB →=(x 1,y 1-y 0), QA →·QB →=-2x 1-y 0(y 1-y 0)=-2(2-8k 2)1+4k 2+6k 1+4k 2(4k 1+4k 2+6k 1+4k 2)=4(16k 4+15k 2-1)(1+4k 2)2=4,整理得7k 2=2,故k =±147.所以y 0=±2145.(13分) 综上,y 0=±22或y 0=±2145.(14分)8.(2015年江苏高考)如图,在平面直角坐标系xoy 中,已知椭圆22221x y a b +=(0a b >>)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线分别交椭圆于A ,B 两点,线段AB 的垂直平分线交直线l 和AB 于点P ,C ,若2PC AB =,求直线AB 的方程.解:(1)22c e a ==,又23a c c+=,解得:2,1,1a c b ===,所以椭圆的标准方程为:2212x y +=.(2)设AB 的方程为(1)y k x =-,1122(,),(,)A x y B x y ,则1212(,)22x x y y C ++. 其中1,2x x 满足方程2222(1)20x k x +--=,即2222(12)4220k x k x k +-+-=.故22121222422,1212k k x x x x k k -+==++,即2222(,)1212k k C k k -++.而1PC k k=-,所以 PC 方程为:22212()1212k k y x k k k =---++.故22252,(12)x y k P P k k +=-=+. 根据题意,224PC AB =, 22222222225(2)[]12(12)12k k k PC k k k k +=++++++22222126()12k k k k ++=+, 2221212(1)[()4]AB k x x x x =++-22228(1)(1)(12)k k k +=++, 所以2222222222(1)(26)32(1)(1)(12)(12)k k k k k k k +++=+++,得到21k =,所以1k =±. 故直线AB 的方程为1y x =-或者1y x =-+.9.(苏锡常镇四市2015届高三教学情况调研(二))如图,在平面直角坐标系xOy 中,四边形ABCD 的顶点都在椭圆22221x y a b+=(0a b >>)上,对角线AC 与BD 分别过椭圆的左焦点1F (-1,0)和右焦点2F (1,0),且AC BD ⊥,椭圆的一条准线方程为4x =.(1)求椭圆方程;(2)求四边形ABCD 面积的取值范围。