解不等式及不等式组的练习题
不等式与不等式组练习

不等式与不等式组练习题1、 用不等式表示下列关系:(1) a 的3倍与6的差大于0; (2) x 的平方不小于5;(3) m 与n 的和的平方不小于m 的平方与n 的平方的和; (4) a 与3的差是非负数。
解:2、 在-2.5,0,1,2,3中,是x+1<3的解的有( )A.1个B.2个C.3个D.4个 3、 直接说出下列不等式的解集,并在数轴上表示出来。
(1) 21>+x (2)31≤-x 解:4、 利用不等式的性质解下列不等式,并把解集在数轴上表示出来。
(1)23231--≥x x(2)x x 415+< (3)154>-x(4)2452-<+x x5、 若实数 a 在数轴上对应的点如图所示,刚a,-a,1的大小关系正确的是( )A. 1<<-a aB. 11<<a aC. a a <-<1D. a a -<<16、 判断正误。
(1) 若b a >,则22bc ac >( ) (2)若22bc ac >,则b a >( )(3)若c ab >,则bca >( ) (3)若a b a >-,则0>b ( ) (5)若0>ab ,则0>a ,0>b 。
( )7、 习题课上,老师在黑板上出了一道有关7a 与6a 大小比较的问题,小文不假恩索地回管:“b a 77>。
”小明反驳道:“不对,应是b a 77<。
”小芳说:“你们两人回答得都不全面,把你们两人的答案合在一起就对了。
”你认为他们三人的观点谁的正确?谈谈你的看法。
8、 A 取什么值时,解方程a x =-23得到的x 值,(1)是正数? (2)是0? (3)是负数?9、 已知二元一次方程组⎩⎨⎧=-=+2341032y x x x ,的解满足不等式4>+y ax ,求a 的取值范围。
完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
初中数学不等式与不等式组练习题目

不等式的解与解集(上午班)一、选填题1.下列说法错误的是()A、1不是x≥2的解B、0是x<1的一个解C、不等式x+3>3的解是x>0D、x=6是x-7<0的解集2、不等式x-2>3的解集是()A、x>2B、x>3C、x>5D、x<53、若不等式-3x+n>0的解集是x<2,则不等式-3x+n<0的解集是________.4、若一个角的余角不大于它的补角的1/3,则这个角的范围是()5、某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=售价-进价/进价*100%)不底于5%,则至少可打()A.6折B.7折C.8折D.9折6、在下列不等式中,与3-2x/3≤-1的解集相同的是()A.2x+6≥0B.2x-6≤0C.2x-6≥0D.2x+6≤0二、解答题1.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)4x+3<3x (2)2x-4≥0 (3)-x+2>52.已知不等式5x-2<6x+1的最小正整数解是方程3x-ax=6的解,求a的值.3.已知两个正整数的和与积相等,求这两个正整数.4、在满足x+2y≤3,x≥0,y≥0的条件下,求2x+y能达到的最大值5、根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B>0,则A>B;若A-B=0,则A=B;若A-B<0,则A<B,这种比较大小的方法称为“作差比较法”,试比较2x2-2x与x2-2x的大小.5、某校师生要去外地参加夏令营,车站提出2种车票票价,第一种是教师按原价付款,学生按原价的78%付款:第2种方案是师生按原价的80%付款,该校有5名教师,试根据参加夏令营的学生人数,选购票付款的最佳方案8.若不等式2X—M小于等于0只有3个正整数解,求正整数M的取值范围9.已知某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元,某中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由。
不等式组练习题

不等式组练习题一、单变量不等式组1. 解下列不等式组,并表示解集:(1) |2x - 5| > 3(2) |x + 1| ≤ 2解:(1) 首先根据不等式的绝对值性质,可以得到两组不等式:-2x + 5 > 3 或 2x - 5 > 32x - 5 < -3 或 -2x + 5 < -3解第一组不等式,得到 -2x > -2 或 2x > 8,两边同时除以-2和2得到 x < 1 或 x > 4。
解第二组不等式,得到 2x < 2 或 -2x < -8,两边同时除以2和-2得到 x < 1 或 x > 4。
综合两组解,得到 x < 1 或 x > 4。
(2) 同样根据不等式的绝对值性质,可以得到两组不等式:x + 1 ≤ 2 或 -(x + 1) ≤ 2解第一组不等式,得到x ≤ 1。
解第二组不等式,得到 -x - 1 ≤ 2,将两边同时加上1得到 -x ≤ 3,再将两边同时乘以-1,改变不等号的方向得到x ≥ -3。
综合两组解,得到 -3 ≤ x ≤ 1。
因此,不等式组的解集为 x < 1 或 x > 4 和 -3 ≤x ≤ 1。
2. 求下列不等式组的解集:(1) x + 2 > 0x - 1 < 0(2) x + 3 ≥ 0-2x + 5 > 0解:(1) 解第一个不等式,得到 x > -2。
解第二个不等式,得到 x < 1。
综合两个不等式的解,可得 -2 < x < 1。
(2) 解第一个不等式,得到x ≥ -3。
解第二个不等式,得到 x < 2.5。
综合两个不等式的解,可得 -3 ≤ x < 2.5。
因此,不等式组的解集为 -2 < x < 1 和 -3 ≤ x < 2.5。
二、多变量不等式组1. 解下列不等式组,并表示解集:(1) {x + y > 3{2x - y < 5(2) {x - 2y > -1{3x + 4y < 7解:(1) 解第一个不等式组中的第一个不等式,得到 y > 3 - x。
(完整word版)中考数学专题练习-不等式的解及解集(含解析)

中考数学专题练习-不等式的解及解集(含解析)一、单选题1。
某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是() A。
t>26 B。
t≥12C. 12<t<26 D。
12≤t≤262.下列说法正确的是( )A. x=1是不等式-2x<1的解集B。
x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D。
不等式-x<1的解集是x<-13.不等式组的解集是x>a,则a的取值范围是( )A。
a<﹣2 B. a=﹣2 C。
a>﹣2 D. a≥﹣24.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A。
x>﹣1 B。
x>2 C. x<﹣1 D. x<25.若关于x的一元一次不等式组无解,则a的取值范围是( )A. a≥1B。
a>1 C。
a≤﹣1 D。
a<﹣16。
下列式子中,是不等式的有( )①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A. 5个B。
4个 C. 3个D。
1个7.若不等式组有解,则a的取值范围是()A。
a≤3B。
a<3 C. a<2 D. a≤28.某种品牌奶粉合上标明“蛋白质≥20%”,它所表达的意思是( )A. 蛋白质的含量是20%B 。
蛋白质的含量不能是20%C. 蛋白质的含量高于20%D。
蛋白质的含量不低于20%9.对于不等式x﹣3<0,下列说法中不正确的是( )A.x=2是它的一个解B.x=2不是它的解C。
有无数个解D.x<3是它的解集10.若不等式组无解,则a的取值范围是()A. a≥﹣3 B。
a>﹣3 C. a≤﹣3 D. a<﹣311。
某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A. t>33 B. t≤24C。
24<t<33 D。
24≤t≤3312。
已知不等式组的解集是x>2,则a的取值范围是()A。
a≤2B。
(完整版)不等式与不等式组练习题答案

(完整版)不等式与不等式组练习题答案第九章不等式与不等式组测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上表⽰解集.(⼀)课堂学习检测⼀、填空题:1.⽤“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1; (4)6+2______5+2;(5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2). 2.⽤不等式表⽰:(1)m -3是正数______; (2)y +5是负数______; (3)x 不⼤于2______; (4)a 是⾮负数______;(5)a 的2倍⽐10⼤______; (6)y 的⼀半与6的和是负数______;(7)x 的3倍与5的和⼤于x 的31______;(8)m 的相反数是⾮正数______.3.画出数轴,在数轴上表⽰出下列不等式的解集: (1)?>213x(2)x ≥-4.(3)?≤51x(4)?-<312x⼆、选择题:4.下列不等式中,正确的是( ).(A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 5.“a 的2倍减去b 的差不⼤于-3”⽤不等式可表⽰为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3三、解答题:6.利⽤数轴求出不等式-2<x ≤4的整数解.(⼆)综合运⽤诊断⼀、填空题:7.⽤“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不⼩于-4的相反数”,⽤不等式表⽰为______.⼆、选择题:9.如果a 、b 表⽰两个负数,且a <b ,则( ).(A)1>b a(B)1a 11< (D)ab <110.如图在数轴上表⽰的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成⽴的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值⼀定是( ).(A)⼤于零 (B)⼩于零 (C)不⼤于零 (D)不⼩于零三、判断题:13.不等式5-x >2的解集有⽆数多个. ( ). 14.不等式x >-1的整数解有⽆数多个. ( ).15.不等式32421<<-x 的整数解有0、1、2、3、4. ( ). 16.若a >b >0>c ,则.0>cab( ).四、解答题:17.若a 是有理数,⽐较2a 和3a 的⼤⼩.(三)拓⼴、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a 、b 、c 、d ,定义db a -=,已知3411<<db ,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基本性质,并会⽤它们解简单的⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.已知a <b ,⽤“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7ba -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.⽤“<”或“>”填空: (1)若a -2>b -2,则a______b ; (2)若,33ba <则a ______b ; (3)若-4a >-4b ,则a ______b ;(4),22ba -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______. 4.如果a 2x >a 2y (a ≠0).那么x______y .⼆、选择题:5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满⾜的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0三、解答题:9.根据不等式的基本性质解下列不等式,并将解集表⽰在数轴上.(1)x -10<0.(2).621(3)2x ≥5.(4).131-≥-x10.⽤不等式表⽰下列语句并写出解集:⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(⼆)综合运⽤诊断⼀、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从⼩到⼤排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;mnx <当m ______时,解集是?>mn x 12.已知b <a <2,⽤“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最⼤的整数x =______. 14.如果ax >b 的解集为,abx >则a ______0.⼆、选择题:15.已知⽅程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ).(A)25=m (B)25>m (C)25≤m 16.已知⼆元⼀次⽅程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4 (B)x <4 (C)x >-4 (D)x <-4 17.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2 (B)a <3 (C)a <4 (D)a <5三、解答题:18.当x 取什么值时,式⼦563-x 的值为(1)零;(2)正数;(3)⼩于1的数.(三)拓⼴、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解⼀元⼀次不等式会解⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.⽤“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0.2.当a ______时,式⼦152-a 的值不⼤于-3.3.不等式2x -3≤4x +5的负整数解为______.⼆、选择题:4.下列各式中,是⼀元⼀次不等式的是( ).(A)x 2+3x >1(B)03<-yx (C)5511≤-x(D)31312->+x x 5.关于x 的不等式2x -a ≤-1的解集如图所⽰,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表⽰出来:6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.?-->+22531x x 9.-≥--+612131y y y10.求不等式361633->---x x 的⾮负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(⼆)综合运⽤诊断⼀、填空题:12.已知a <b <0,⽤“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0). 13.⑴已知x <a 的解集中的最⼤整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最⼩整数为-2,则a 的取值范围是______.⼆、选择题:14.下列各对不等式中,解集不相同的⼀对是( ).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2⼗x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的⽅程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b(D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4)-+≤--+15)2(22537313x x x(5)).1(32)]1(21[21-<---x x x x (6)->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知⽅程组?-=++=+②①m y x m y x 12,312的解满⾜x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不⼩于8)1(32++x 的值.19.已知关于x 的⽅程3232xm x x -=--的解是⾮负数,m 是正整数,求m 的值.*20.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4 )5(的解集.(三)拓⼴、探究、思考21.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有⼀个整数解; (2)x ⼀个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试⽐较A 与B 的⼤⼩.测试4 实际问题与⼀元⼀次不等式学习要求:会从实际问题中抽象出不等的数量关系,会⽤⼀元⼀次不等式解决实际问题.(⼀)课堂学习检测⼀、填空题:1.若x 是⾮负数,则5231x-≤-的解集是______. 2.使不等式x -2≤3x +5成⽴的负整数有______. 3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______ 4.6⽉1⽇起,某超市开始有偿..提供可重复使⽤的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装⼤⽶3公⽄、5公⽄和8公⽄.6⽉7⽇,⼩星和爸爸在该超市选购了3只环保购物袋⽤来装刚买的20公⽄散装⼤⽶,他们选购的3只环保购物袋⾄少..应付给超市______元.⼆、选择题:5.三⾓形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm (B)6cm (C)5cm (D)4cm6.⼀商场进了⼀批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元 (B)920元 (C)960元 (D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对⼀题给6分,答错⼀题倒扣2分,不答题不得分也不扣分.某同学有⼀道题未答,那么这个学⽣⾄少答对多少题,成绩才能在60分以上?(⼆)综合运⽤诊断⼀、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______; (2)(2x -1)+x >2x 的解集是______;(3)5231052--≤-x x x 的解集是______. 10.若m >5,试⽤m 表⽰出不等式(5-m )x >1-m 的解集______.⼆、选择题:11.初三⑴班的⼏个同学,毕业前合影留念,每⼈交0.70元,⼀张彩⾊底⽚0.68元,扩印⼀张相⽚0.50元,每⼈分⼀张,将收来的钱尽量⽤掉的前提下,这张相⽚上的同学最少有( ). (A)2⼈ (B)3⼈ (C)4⼈(D)5⼈12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不⾜1km 按1km 计).某⼈乘这种出租车从甲地到⼄地共⽀付车费19元,设此⼈从甲地到⼄地经过的路程是x km ,那么x 的最⼤值是( ). (A)11 (B)8 (C)7 (D)5三、解答题:13.已知:关于x 、y 的⽅程组?-=++=+134,123p y x p y x 的解满⾜x >y ,求p 的取值范围.14.某⼯⼈加⼯300个零件,若每⼩时加⼯50个可按时完成;但他加⼯2⼩时后,因事停⼯40分钟.那么这个⼯⼈为了按时或提前完成任务,后⾯的时间每⼩时他⾄少要加⼯多少个零件?(三)拓⼴、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每⽇耗电1度;⽽B 型节能冰箱,每台售价⽐A ⾼出10%,但每⽇耗电0.55度.现将A 型冰箱打折出售(打九折后的售价为原价的⼗分之九),问商场最多打⼏折时,消费者购买A 型冰箱才⽐购买B 型冰箱更合算?(按使⽤期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名⼯⼈,已知每名⼯⼈每天可制造甲种零件6个或⼄种零件5个,且每制造⼀个甲种零件可获利150元,每制造⼀个⼄种零件可获利260元,在这20名⼯⼈中,车间每天安排x 名⼯⼈制造甲零件,其余⼯⼈制造⼄种零件.⑴若此车间每天所获利润为y (元),⽤x 的代数式表⽰y ;(2)若要使每天所获利润不低于24000元,⾄少要派多少名⼯⼈去制造⼄种零件?测试5 ⼀元⼀次不等式组(⼀)学习要求:会解⼀元⼀次不等式组,并会利⽤数轴正确表⽰出解集.(⼀)课堂学习检测⼀、填空题:1.解不等式组?>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.⽤字母x 的范围表⽰下列数轴上所表⽰的公共部分: (1)________________________;(2)_______________________; (3)________________________.⼆、选择题:4.不等式组+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)⽆解5.不等式组?>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x(C)32-三、解下列不等式组,利⽤数轴确定不等式组的解集.6.≥-≥-.04,012x x7.?>+≤-.074,03x x8.??+>-≤-.3342,121x x x x9.-5<6-2x <3.四、解答题:10.解不等式组??<-+≤+321),2(352x x x x 并写出不等式组的整数解.(⼆)综合运⽤诊断⼀、填空题:11.当x 满⾜______时,235x-的值⼤于-5⽽⼩于7. 12.不等式组≤-+<25 12,912x x x x 的整数解为______.⼆、选择题:13.如果a >b ,那么不等式组?<<.,b x a x 的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)⽆解14.不等式组?+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m <1 (D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组??-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,⽅程组-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知?+=+=+122,42k y x k y x 中的x 、y 满⾜且0<y -x <1,求k 的取值范围.(三)拓⼴、探究、思考19.已知a 是⾃然数,关于x 的不等式组?>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组?->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 ⼀元⼀次不等式组(⼆)学习要求:进⼀步掌握⼀元⼀次不等式组.(⼀)课堂学习检测1.直接写出解集:(1)->>3,2x x 的解集是______;(2)-<<3,2x x 的解集是______;(3)??-><32x x 的解集是______;(4)??-<>3,2x x 的解集是______.2.⼀个两位数,它的⼗位数字⽐个位数字⼩2,如果这个数⼤于20且⼩于40,那么此数为______.⼆、选择题:3.如果式⼦7x -5与-3x +2的值都⼩于1,那么x 的取值范围是( ).(A)76<x (B)31>x (C)7631<4.已知不等式组?->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解⼀共有( ).(A)1个(B)2个(C)3个(D)4个5.若不等式组?>≤1有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1三、解下列不等式组,并把解集在数轴上表⽰出来:6.??>-<-322,352x x x x7.??->---->-.6)2(3)3(2,132x x xx8.+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(⼆)综合运⽤诊断⼀、填空题:10.不等式组<->+233,152x x 的所有整数解的和是______,积是______.11.k 满⾜______时,⽅程组?=-=+.4,2y x k y x 中的x ⼤于1,y ⼩于1.⼆、解下列不等式组:12.<+->+--.1)]3(2[21,312233x x x x x13.>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的⽅程5x +4=16k -x 的根⼤于2且⼩于10? 15.已知关于x 、y 的⽅程组?-=-+=+3472m y x m y x ,的解为正数.(2)化简|3m +2|-|m -5|.(三)拓⼴、探究、思考16.若关于x 的不等式组+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利⽤不等关系分析实际问题学习要求:利⽤不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际⽣活中的作⽤.(⼀)课堂学习检测列不等式(组)解应⽤题:1.⼀个⼯程队原定在10天内⾄少要挖掘600m 3的⼟⽅.在前两天共完成了120m 3后,接到要求要提前2天完成掘⼟任务.问以后⼏天内,平均每天⾄少要挖掘多少⼟⽅?2.某城市平均每天产⽣垃圾700吨,由甲、⼄两个垃圾⼚处理.如果甲⼚每⼩时可处理垃圾55吨,需花费550元;⼄⼚每⼩时处理45吨,需花费495元,如果规定该城市每天⽤于处理垃圾的费⽤的和不能超过7150元,问甲⼚每天⾄少要处理多少吨垃圾?3.若⼲名学⽣,若⼲间宿舍,若每间住4⼈将有20⼈⽆法安排住处;若每间住8⼈,则有⼀间宿舍的⼈不空也不满,问学⽣有多少⼈?宿舍有⼏间?4.今年5⽉12⽇,汶川发⽣了⾥⽒8.0级⼤地震,给当地⼈民造成了巨⼤的损失.某中学全体师⽣积极捐款,其中九年级的3个班学⽣的捐款⾦额如下表:⽼师统计时不⼩⼼把墨⽔滴到了其中两个班级的捐款⾦额上,但他知道下⾯三条信息:信息⼀:这三个班的捐款总⾦额是7700元;信息⼆:(2)班的捐款⾦额⽐(3)班的捐款⾦额多300元;信息三:(1)班学⽣平均每⼈捐款的⾦额⼤于..51元...48元,⼩于请根据以上信息,帮助⽼师解决:①(2)班与(3)班的捐款⾦额各是多元;②(1)班的学⽣⼈数.(⼆)综合运⽤诊断5.某学校计划组织385名师⽣租车旅游,现知道出租公司有42座和60座客车,42座客车的租⾦为每辆320元,60座客车的租⾦为每辆460元.(1)若学校单独租⽤这两种客车各需多少钱?(2)若学校同时租⽤这两种客车8辆(可以坐不满),⽽且⽐单独租⽤⼀种车辆节省租⾦,请选择最节省的租车⽅案.(三)拓⼴、探究、思考A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建⼀间A型板房和⼀间B型板房所需板材及能安置的⼈数板房型号甲种板材⼄种板材安置⼈数A型板房54m226m2 5B型板房78m241m28问:这400间板房最多能安置多少灾民?全章测试(⼀)⼀、填空题:1.⽤“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成⽴,则y ______. 3.不等式x >-4.8的负整数解是______.⼆、选择题:4.x 的⼀半与y 的平⽅的和⼤于2,⽤不等式表⽰为( ).(A)2212>+y x (B)2212>++y x (C)222>+y x(D)221>+y x5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x (D)三种情况都可能 6.若a ≠0,则下列不等式成⽴的是( ). (A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 2(D)x >-1三、解不等式(组),并把解集在数轴上表⽰出来:9..11252476312-+≥---x x x10.<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式⼦729+x 与2143-x 的差⼤于6但不⼤于8.12.当k 为何值时,⽅程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知⽅程组?-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天⽣产的汽车零件⽐原来多10个,因⽽8天⽣产的配件超过200个.第⼆次技术改造后,每天⼜⽐第⼀次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第⼀次改造后8天所做配件的个数.求这个车间原来每天⽣产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼⼲和⽜奶的标价各是多少?全章测试(⼆) ⼀、填空题1.当m______时,⽅程5(x-m)=-2有⼩于-2的根.2.满⾜5(x-1)≤4x+8<5x的整数x为______.3.若11=--xx,则x的取值范围是______.4.已知b<0<a,且a+b<0,则按从⼩到⼤的顺序排列a、-b、-|a|、-|-b|四个数为______.⼆、选择题5.若0<a<b<1,则下列不等式中,正确的是( ).,11;11;1;1babababa<><>④③②①(A)①、③(B)②、③(C)①、④(D)②、④6.下列命题结论正确的是( ).(A)(1)、(2)、(3)(B)(2)、(3)(C)(3)(D)没有⼀个正确7.若不等式(a+1)x>a+1的解集是x<1,则a必满⾜( ).(A)a<0 (B)a>-1 (C)a<-1 (D)a<18.已知x<-3,那么|2+|3+x||的值是( ).(A)-x-1 (B)-x+1 (C)x+1 (D)x-19.如下图,对a、b、c三种物体的重量判断正确的是( ).(A)a<c(B)a<b(C)a>c(D)b<c三、解不等式(组):10.3(x+2)-9≥-2(x-1).11..57321<+<-x12.>--+<-.041131xxxx13.求≤-->32,134xxx的整数解.14.如果关于x的⽅程3(x+4)-4=2a+1的解⼤于⽅程3)43(41xa的解,求a的取值范围.15.某单位要印刷⼀批北京奥运会宣传资料,在需要⽀付制版费600元和每份资料0.3元印刷费的前提下,甲、⼄两个印刷⼚分别提出了不同的优惠条件,甲印刷⼚提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,⼄印刷⼚提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。
专题15:不等式与不等式组(简答题专练)(解析版)

专题15:不等式与不等式组(简答题专练)一、解答题1.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,列二元一次方程组,解方程组即可得到答案;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台,利用超市准备用不多于7500元,列不等式160a +120(50﹣a )≤7500,解不等式可得答案;(3)由超市销售完这50台电风扇实现利润超过1850元,列不等式(200﹣160)a +(150﹣120)(50﹣a )>1850,结合(2)问,得到a 的范围,由a 为非负整数,从而可得答案. 【解答】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元, 依题意得:341200561900x y x y +=⎧⎨+=⎩①②,①5⨯-②3⨯得:2300,y =150,y ∴=把150y =代入①得:200,x =解得:200150x y =⎧⎨=⎩,答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台. 依题意得:160a +120(50﹣a )≤7500,401500,a ∴≤解得:a ≤1372. 因为:a 为非负整数,所以:a 的最大整数值是37.答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元. (3)根据题意得:(200﹣160)a +(150﹣120)(50﹣a )>1850, 10a ∴>350, 解得:a >35, ∵a ≤1372, 35∴<a 1372≤,a 为非负整数,36a =或37.a =∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种: 当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台; 当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【点评】本题考查的是二元一次方程组的应用,一元一次不等式,一元一次不等式组的应用的方案问题,掌握以上知识是解题的关键.2.解不等式组1(1)1212x x ⎧-≤⎪⎨⎪-⎩<并写出该不等式组的所有整数解.【答案】解集是-1<x≤3;整数解是0,1,2,3【分析】分别解出每个不等式的解集,确定不等式组的解集,然后在解集中确定所有整数解即可. 【解答】解不等式1(1)12x -≤得:x≤3 解不等式12x -<得:x >-1 所以不等式组的解集是-1<x≤3.大于-1而小于或等于3的所有整数有0,1,2,3, ∴该不等式组的所有整数解为0,1,2,3.【点评】本题考查了解不等式组,解决本题的关键是先计算出每个不等式的解集,然后确定不等式组的解集.3.(1)解不等式413x x -> (2)解不等式组()()315121531123x x x x ⎧-+-⎪⎨-+-⎪⎩【答案】(1)1x >; (2)13x ≥. 【分析】(1)移项、合并同类项即可;(2)分别求出两个不等式的解集,再根据同大取大即可确定不等式组的解集. 【解答】解:(1)移项得:431x x ->合并同类项得:1x >(2)()()315121531123x x x x ⎧-+-⎪⎨-+-⎪⎩①②解不等式①得3x ≥-, 解不等式②得13x ≥, 不等式组的解集为: 13x ≥【点评】本题考查了解一元一次不等式(组),熟练掌握解不等式的基本步骤是解决此题的关键.在利用不等式的性质同乘或除时,不等式的两边都乘以(或除以)同一个负数时,不等号的方向改变.在确定不等式组的解集时需注意:同大取大;同小取小;大小小大中间找;大大小小找不到. 4.若关于x 的方程2x 3m 2m 4x 4-=-+的解不小于7183m--,求m 的最小值. 【答案】14-【分析】首先求解关于x的方程2x−3m=2m−4x+4,即可求得x的值,根据方程的解的解不小于7183m--,即可得到关于m的不等式,即可求得m的范围,从而求解.【解答】由54 232446546mx m m x x m x+ -=-+=+=,得,即.根据题意,得5471683m m+-≥-,解得14m,≥-所以m的最小值为1 4 -.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解决下列问题.(1)[-4.5]=_____ ;<3.5>=________;(2)若[x]=2,则x的取值范围是________;若<y>=-1,则y的取值范围是_______ .(3)若[]21 3x x=-,则x为_________.(4)已知x、y满足方程组[][]32336x yx y⎧+=⎪⎨-=-⎪⎩<><>,求x、y的取值范围.【答案】(1)-5; 4,(2)2≤x<3;-2≤y<-1,;(3)x=-3(4)x,y的取值分别为-1≤x<0,2≤y<3. 【分析】(1)根据新定义与不等式的性质即可求解;(2)根据[a]表示不大于a的最大整数与<a>表示大于a的最小整数与不等式的性质求解;(3)根据[]21 3x x=-得到关于x的方程即可求解;(4)先求出[x]、<y>的值,再根据新定义即可求解. 【解答】(1)依题意得[-4.5]=-5;<3.5>=4,(2)∵[x]=2,则x的取值范围是2≤x<3;∵<y>=-1,则y的取值范围是-2≤y<-1,;(3)∵[x]≤x,[]21 3x x=-化为213x x=-,解得x=-3,符合题意,故x=-3(4)∵[][]323326x y x y ⎧+=⎪⎨-=-⎪⎩<><>,解得[]13x y ⎧=-⎨=⎩<> ∴x ,y 的取值分别为-1≤x <0,2≤y <3.【点评】此题主要考查不等式的应用,解题的关键是熟知不等式的性质. 6.求不等式()()2130x x -+>的解集。
不等式及不等式组中的整数解问题

不等式及不等式组中的整数解问题一、一元一次不等式中的整数问题例1.若关于x的不等式2x﹣a≤0只有2个正整数解,求a的取值范围解:解不等式2x﹣a≤0得:x≤a2,根据题意得:2≤a2<3,解得:4≤a<6练习1.如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围是()A.9≤m<12B.9<m<12C.m<12D.m≥9练习2.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4练习3.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2练习4.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7B.4<m<7C.4≤m≤7D.4<m≤7练习 5.在不等式x﹣8>3x﹣5+a解集中有3个正整数,则a的取值范围是.练习6.已知关于x的不等式x+m≤1的只有三个正整数解,那么m的取值范围是.练习7.已知关于x的不等式3x+m﹣4<0的最大整数解为﹣2,m的取值范围是.练习8.若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是.二、一元一次不等式组中的整数问题例2.关于x的不等式组恰有四个整数解,求m的取值范围.解:在中,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,根据题意得:原不等式组的解集为m<x≤3,因为该不等式组恰好有四个整数解,所以整数解为0,1,2,3,所以﹣1≤m<0练习1.已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A.a>0B.0≤a<1C.0<a≤1D.a≤1练习2.关于x的不等式组恰好只有四个整数解,则a的取值范围()A.a<3B.2<a≤3C.2≤a<3D.2<a<3练习3.不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣5练习4.已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1B.≤a≤1C.<a≤1D.a<1练习5.若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0练习6.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<2练习7.关于x的不等式组的整数解共有3个,则a的取值范围是.练习8.已知关于x的不等式组的整数解有且只有2个,则m的取值范围是.练习9.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.练习10.若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是.练习11.关于x的不等式组有且只有三个整数解,则a的最大值是三、不等式和方程中含有参数问题例3.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.练习1.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为.练习2.若关于x、y的方程组的解满足x+y≤6,则k的取值范围是.练习3.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为练习4.已知m,n是实数,且|m|+2=7,若P(|m|,)是2x﹣3y=s的一点,求s的最大值与最小值的和.练习5.(1)在关于x,y的二元一次方程组中,x>1,y<0,求a的取值范围.(2)已知x﹣2y=4,且x>8,y<4,求3x+2y的取值范围.四、不等式组中有解和无解问题例4.不等式组的解集是x>1,则m的取值范围是()A.m≥1B.m≤1C.m≥0D.m≤0练习1.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.﹣2练习2.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥3练习3.若关于x的不等式组无解,则m的取值范围是()A.m>4B.m<4C.m≥4D.m≤4练习4.若不等式组无解,则a的取值范围是.练习5.已知不等式组无解,则a的取值范围是.练习6.若不等式组的解集为x>3,则a的取值范围是.练习7.若关于x的一元一次不等式组有解,则m的取值范围为.练习8.已知关于x的不等式组的解集为﹣1≤x≤2,则n+m=.五、课后练习1.对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c 为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;2.已知m,n为非负整数,且,若P(,|n|)是方程2x+y=8的一点,求2m﹣n的平方根.。