知识点35 与圆的有关计算2018-2019领军中考数学(原卷版)

合集下载

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。

专题28 圆的问题-2019年中考数学年年考的28个重点微专题(原卷版)

专题28 圆的问题-2019年中考数学年年考的28个重点微专题(原卷版)

专题28 圆的问题一、基础知识1.基本概念规律(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.3.与圆有关的公式设圆的周长为r ,则:(1)求圆的直径公式d=2r(2)求圆的周长公式 C=2πr(3)求圆的面积公式S=πr 24.扇形弧长面积公式(1)弧长的计算公式(2)扇形面积计算公式5.圆柱侧面积体积公式(1)圆柱的侧面积公式S 侧=2πrh(2)圆柱的表面积公式:S 表=S 底×2+S 侧=2πr 2+2πr h 1802360r n r n l ππ=⋅=2360r n s π⋅=lr s 21=或6.圆锥侧面积体积公式(1)圆锥侧面积计算公式从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,圆锥侧面积计算公式:S圆锥侧=S扇形== πrl(2)圆锥全面积计算公式:S圆锥全=S圆锥侧+S圆锥底面= πr l +πr2=πr(l +r)二、解题要领1.判定切线的方法:(1)若切点明确,则“连半径,证垂直”。

常见手法有全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。

常见手法有角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。

2018-2019年中考数学《第六讲:圆的综合题》专题复习含答案

2018-2019年中考数学《第六讲:圆的综合题》专题复习含答案

中考数学专题辅导第六讲圆的综合专题选讲一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图1A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

中考数学五三习题整理-18-5.2与圆有关的计算

中考数学五三习题整理-18-5.2与圆有关的计算

§5.2 与圆有关的计算A 组 2015—2019年山东中考题组题组考点一 弧长、扇形面积的计算1.(2019泰安,11,4分)如图,将☉O 沿弦AB 折叠,⌒AB 恰好经过圆心O,若☉O 的半径为3,则 ⌒AB 的长为 ( ) A.π21 B.π C.π2 D.π3 2.(2018滨州,8,3分)已知半径为5的☉O 是△ABC 的外接圆,若∠ABC=25°,则劣弧⌒AC 的长为( )A.3625π B.36125π C.1825π D.365π 3.(2018德州,9,4分)如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为 ( )A.2π 2m B.π23 2m C.π 2m D.π2 2m 4.(2019烟台,12,3分)如图,AB 是☉O 的直径,直线DE 与☉O 相切于点C,过点A,B 分别作AD⊥DE,BE ⊥DE,垂足为点D,E,连接AC,BC.若AD=3,CE=3,则⌒AC 的长为 ( )A.332B.π33C.π23D.π3325.(2016临沂,10,3分)如图,AB 是☉O 的切线,B 为切点,AC 经过点O,与☉O 分别相交于点D,C.若∠ACB=30°,AB 3=,则阴影部分的面积是 ( ) A.23 B.6π C.623π- D.633π- 6.(2018威海,12,3分)如图,正方形ABCD 中,AB=12,点E 为BC 中点,以CD 为直径作半圆CFD,点F 为半圆的中点,连接AF,EF,则图中阴影部分的面积是 ( )A.π3618+B.π1824+C.π1818+D.π1812+7.(2017莱芜,8,3分)如图,在Rt △ABC 中,∠BCA=90°,∠BAC=30°,BC=2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE,则BC 扫过的面积为 ( )A.2π B.π)32(- C.π232- D.π 8.(2019泰安,15,4分)如图,∠AOB=90°,∠B=30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C,交OB 于点D,若OA=3,则阴影部分的面积为 .9.(2018青岛,13,3分)如图,Rt △ABC 中,∠B=90°,∠C=30°,O 为AC 上一点,OA=2,以O 为圆心,OA 为半径的圆与CB 相切于点E,与AB 相交于点F,连接OE 、OF,则图中阴影部分的面积是 .10.(2018临沂,23,9分)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与☉O相切于点D, OB与☉O相交于点E.(1)求证:AC是☉O的切线;(2)若BD=3,BE=1,求阴影部分的面积.考点二圆柱与圆锥的侧面展开图1.(2017东营,8,3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为 ( )A.60°B.90°C.120°D.180°2.(2019聊城,14,3分)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为.3.(2018聊城,15,3分)用一块圆心角为216°的扇形铁皮做一个高为40 cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.4.(2016聊城,15,3分)如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,圆锥的侧面积为 .考点三 正多边形和圆1.(2017滨州,5,3分)若正方形的外接圆半径为2,则其内切圆半径为 ( )A.2 B.22 C.22 D.1 2.(2017莱芜,12,3分)如图,正五边形ABCDE 的边长为2,连接AC 、AD 、BE,BE 分别与AC 和AD 相交于点F,G,连接DF,给出下列结论:①∠FDG=18°;②FG=53-;③529CDEF 2+=四边形S ;④52722-=-DG DF .其中正确结论的个数是 ( )A.1B.2C.3D.43.(2019枣庄,16,4分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC= .4.(2019滨州,17,5分)若正六边形的内切圆半径为2,则其外接圆半径为 .B 组 2015—2019年全国中考题组考点一 弧长、扇形的面积1.(2018湖北黄石,8,3分)如图,AB 是☉O 的直径,点D 为☉O 上一点,且∠ABD=30°,BO=4,则 ⌒BD 的长为 ( ) A.π32B.π34C.π2D.π382.(2018四川广安,9,3分)如图,已知☉O 的半径是2,点A,B,C 在☉O 上,若四边形OABC 是菱形,则图中阴影部分的面积为 ( )A.3232-πB.332-πC.3234-πD.334-π 3.(2018湖南益阳,7,4分)如图,正方形ABCD 内接于圆O,AB=4,则图中阴影部分的面积是 ( )A.164-πB.168-πC.3216-πD.1632-π4.(2018黑龙江龙东,17,3分)如图,在△ABC 中,AB=5,AC=3,BC=4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE,点B 经过的路径为弧BD,则图中阴影部分的面积为 ( )A.634-πB.π925C.3833-π D.π+33 5.(2017四川攀枝花,8,3分)如图,△ABC 内接于☉O,∠A=60°,BC=36,则⌒BC 的长为 ( )A.π2B.π4C.π8D.π126.(2017浙江丽水,9,3分)如图,点C 是以AB 为直径的半圆O 的靠近点A 的三等分点,AC=2,则图中阴影部分的面积是 ( ) A.334-π B.3234-π C.332-π D.2332-π 7.(2019贵州贵阳,14,4分)如图,用等分圆的方法,在半径为OA 的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是 .8.(2019重庆A 卷,16,4分)如图,在菱形ABCD 中,对角线AC,BD 交于点O,∠ABC=60°,AB=2.分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)9.(2018浙江湖州,21,8分)如图,已知AB 是☉O 的直径,C,D 是☉O 上的点,OC ∥BD,交AD 于点E,连接BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求⌒AC 的长.10.(2018江苏扬州,25,10分)如图,在△ABC 中,AB=AC,AO ⊥BC 于点O,OE ⊥AB 于点E,以点O 为圆心,OE 的长为半径作半圆,交AO 于点F.(1)求证:AC 是☉O 的切线;(2)若点F 是AO 的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE+PF 取最小值时,直接写出BP 的长.考点二 圆柱与圆锥的侧面展开图1.(2018江苏南通,8,3分)一个圆锥的主视图是边长为4 cm 的正三角形,则这个圆锥的侧面积等于 ( )A.π16 2cmB.π12 2cmC.π8 2cmD.π4 2cm2.(2018湖北仙桃,7,3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是 ( )A.120°B.180°C.240°D.300°3.(2017湖南永州,17,4分)如图,这是某同学用纸板做成的一个底面直径为10 cm ,高为12 cm 的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是 2cm (结果保留π).考点三 正多边形和圆1.(2019贵州贵阳,6,3分)如图,正六边形ABCDEF 内接于☉O,连接BD,则∠CBD 的度数是 ( )A.30°B.45°C.60°D.90°2.(2019陕西,12,3分)若正六边形的边长为3,则其较长的一条对角线长为 .3.(2018内蒙古呼和浩特,12,3分)同一个圆的内接正方形和正三角形的边心距的比为 .4.(2018河北,19,6分)如图1,作∠BPC 平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC 为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如:若以∠BPC 为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而2900=45°是360°(多边形外角和)的81,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .图1 图25.(2017四川宜宾,15,3分)如图,☉O 的内接正五边形ABCDE 的对角线AD 与BE 相交于点G,AE=2,则EG 的长是 .C 组 教师专用题组考点一 弧长、扇形的面积1.(2018广西南宁,10,3分)如图,分别以等边三角形ABC 的三个顶点为圆心,以其边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为 ( ) A.3+π B.3-π C.32-π D.322-π 2.(2018辽宁沈阳,10,2分)如图,正方形ABCD 内接于☉O,AB=22,则⌒AB 的长是 ( )A.πB.π23C.π2D.π21 3.(2018四川成都,9,3分)如图,在 ABCD 中,∠B=60°,☉C 的半径为3,则图中阴影部分的面积是 ( )A.πB.π2C.π3D.π64.(2017湖北咸宁,7,3分)如图,☉O 的半径为3,四边形ABCD 内接于☉O,连接OB,OD,若 ∠BOD=∠BCD,则 的长为 ( )A.πB.π23C.π2D.π3 5.(2017浙江衢州,10,3分)运用图形变化的方法研究下列问题:如图,AB 是☉O 的直径,CD 、EF 是☉O 的弦,且AB ∥CD ∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是 ( )A.π225 B.π10 C.π424+ D.π524+ 6.(2018江苏连云港,13,2分)一个扇形的圆心角是120°,它的半径是3 cm ,则扇形的弧长为 cm .7.(2018黑龙江绥化,16,3分)如图,△ABC 是半径为2的圆的内接正三角形,则图中阴影部分的面积是 .(结果用含π的式子表示)8.(2018河南,14,3分)如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△'''C B A ,其中点B 的运动路径为⌒'BB ,则图中阴影部分的面积为 .9.(2018湖北恩施,15,3分)在Rt △ABC 中,AB=1,∠A=60°,∠ABC=90°,如图,将Rt △ABC 沿直线l 无滑动地滚动至Rt △DEF,则点B 所经过的路径与直线l 所围成的封闭图形的面积为 .(结果不取近似值)10.(2016青海,8,2分)如图,AC是汽车挡风玻璃前的雨刷器.如果AO=45 cm,CO=5 cm,当cm(结果保留 ). AC绕点O顺时针旋转90°时,雨刷器AC扫过的面积为211.(2016德州,16,4分)将半径为1的半圆形纸片按如图方式折叠,使对折后半圆弧的中点M 与圆心O重合,则图中阴影部分的面积是.12.(2018云南,22,9分)如图,已知AB是☉O的直径,C是☉O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是☉O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.13.(2017浙江湖州,21,8分)如图,O为Rt△ABC的直角边AC上一点,以OC为半径的☉O与斜边AB相切于点D,交OA于点E,已知BC=3,AC=3.(1)求AD的长;(2)求图中阴影部分的面积.14.(2016河北,25,10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在⌒AQ上且不与A点重合,但Q点可与B点重合.发现⌒AP的长与⌒QB的长之和为定值l,求l;思考点M与AB的最大距离为,此时点P,A间的距离为;点M与AB 的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究当半圆M与AB相切时,求⌒AP的长.(注:结果保留3355cos,3635cos,00==π)考点二圆柱与圆锥的侧面展开图1.(2017贵州遵义,8,3分)已知圆锥的底面面积为π92cm,母线长为6 cm,则圆锥的侧面积是 ( )A.π18 2cmB.π27 2cmC.18 2cmD.27 2cm2.(2017四川南充,8,3分)如图,在Rt △ABC 中,AC=5 cm ,BC=12 cm ,∠ACB=90°,把Rt △ABC 绕BC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为 ( ) A.π60 2cmB.π65 2cmC.π120 2cmD.π130 2cm3.(2017四川达州,9,3分)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,依此类推,这样连续旋转2 017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为 ( ) A.π2017B.π2034C.π3024D.π30264.(2017云南,13,4分)正如我们小学学过的圆锥体积公式h r V 231π=(π表示圆周率,r 表示圆锥的底面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后第7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1 000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝对不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于π39,则这个圆锥的高等于 ( ) A.π35 B.35 C.π33 D.335.(2018湖北鄂州,13,3分)一圆锥的侧面展开图是一个圆心角为120°的扇形,若该圆锥的底面圆的半径为4 cm ,则圆锥的母线长为 .6.(2018新疆乌鲁木齐,14,4分)将半径为12,圆心角为120°的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为 .7.(2017湖南郴州,14,3分)已知圆锥的母线长为5 cm ,高为4 cm ,则该圆锥的侧面积为 2cm (结果保留π). 考点三 正多边形和圆1.(2017四川达州,7,3分)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是 ( )A.22 B.23 C.2 D.3 2.(2018云南昆明,6,3分)如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF,则图中阴影部分的面积为 (结果保留根号和π).3.(2015四川眉山,16,3分)已知☉O 的内接正六边形周长为12 cm ,则这个圆的半径是 cm .4.(2018陕西,12,3分)如图,在正五边形ABCDE 中,AC 与BE 相交于点F,则∠AFE 的度数为 .三年模拟A 组2017-2019年模拟基础题组一、选择题(共3分)1.(2018泰安中考样题,10)工人师傅用一张半径为24 cm ,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为 ( ) A.119 cm B.1192 cm C.64 cm D.11921 cm 二、填空题(每小题3分,共18分)2.(2019德州适应性考试模拟,17)60°的圆心角所对的弧长为 2 cm ,则此弧所在圆的半径为 .3.(2019曹县一模,10)如图,已知正五边形ABCDE,1l ∥2l ,则∠1-∠2的度数为 .4.(2019临清模拟,16)一个圆锥形漏斗,某同学用三角板测得其高度的尺寸(单位:cm )如图所示,则该圆锥形漏斗的侧面积为 .5.(2019聊城莘县一模,15)已知圆锥的底面半径为3 cm ,母线长为9 cm ,PA 、PB 为圆锥的两条相对的母线,AB 为底面圆的直径,C 为母线PB 的中点,在圆锥的侧面上,从A 到C 的最短距离是cm.6.(2018德州禹城等五县一模,17)如图,在矩形ABCD中,CD=2,以点C为圆心,CD长为半径画弧,交AB边于点E,且E为AB中点,则图中阴影部分的面积为.7.(2018泰安新泰一模,15)如图,从直径为4 cm的圆形纸片中剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.三、解答题(共9分)10cm.8.(2019聊城模拟,23)如图,圆锥的底面半径为10 cm,高为15(1)求圆锥的全面积;(2)若一只蚂蚁从底面上一点A出发绕圆锥侧面一周回到SA上的点M处,且SM=3AM,求它所走的最短距离.B组2017-2019年模拟提升题组一、选择题(共3分)1.(2018滨州阳信模拟,10)如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是 ( )A.面积为2-πB.面积为121-πC.面积为42-πD.面积随扇形位置的变化而变化二、填空题(每小题3分,共6分)2.(2019菏泽牡丹二模,12)如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是 .3.(2018潍坊寿光模拟,18)如图,半径为1、圆心角为60°的扇形纸片OAB 沿直线l 向右滚动至扇形'''B A O 处,则点O 经过的路线总长为 .4.(2017济南槐荫一模,20)手机上常见的WiFi 标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为321,,S S S ,…,则=+++20321S S S S .。

中考数学-热点01 与圆有关的计算问题(四川成都专用)(原卷版)

中考数学-热点01 与圆有关的计算问题(四川成都专用)(原卷版)

热点01与圆有关的计算问题圆得计算是四川成都中考数学的必考考点,常见以选填的形式,主要是求角、长度、面积等问题,一般出现在中考的第7或8题,偶尔也会出现在A 卷填空题中,以简单题为主,但除了常规考法以外,日常练习中多注意新颖题目的考向。

【题型1与圆有关的角度问题】【例1】(2023·四川成都·统考二模)如图,BC 是O 的直径,点,A D 在O 上,若30,ADC ∠=︒则ACB ∠的度数为()A .30°B .40°C .50°D .60°【变式1-1】(2023·四川成都·统考二模)如图,正五边形ABCDE 内接于O ,连接OA AC 、,则OAC ∠的大小是()A .18︒B .24︒C .30︒D .36︒【变式1-2】(2023·四川成都·统考二模)如图,在O 中,弦AB CD ∥,若82BOD ∠=︒,则ABC ∠的度数为()A .41︒B .52︒C .68︒D .82︒【变式1-3】(2023·四川成都·统考模拟预测)如图,正六边形ABCDEF 和正方形AGDH 都内接于O ,连接BG ,则弦BG 所对圆周角的度数为()A .15︒B .30︒C .15︒或165︒D .30︒或150︒【变式1-4】(2023·四川成都·模拟预测)如图,已知正五边形ABCDE ,AB BC CD DE AE ====,A 、B 、C 、D 、E 均在O 上,连接AC ,则ACD ∠的度数是()A .72︒B .70︒C .60︒D .45︒【题型2与圆有关的长度问题】【变式2-1】(2022·四川成都则正六边形的边长为()A .3B .A .cos36r R =︒C .2tan36a r =︒【变式2-3】(2023·的外切正六边形的边长为(A .233R【题型3与圆有关的面积问题】【例3】(2023·四川成都·统考中考真题)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是【变式3-1】(2021·的长为半径画圆,则图中阴影部分的面积为(A.16πB.12πA .23π【变式3-4】(2021·(建议用时:30分钟)1.(2023·四川成都·成都实外校考一模)如图,CD 是O 的直径,弦AB CD ⊥,若28CDB ∠=︒,则AOC ∠的度数为()A .28︒B .56︒C .58︒D .62︒2.(2023·四川成都·模拟预测)如图,ABC 中,3AC =,4BC =,90C ∠=︒,O 为ABC 的内切圆,与三边的切点分别为D 、E 、F ,则O 的面积为___________(结果保留π)()A .πB .2πC .3πD .4πA.22︒B.6.(2022·四川成都·模拟预测)A.5 3π9.(2022·四川成都·模拟预测)如图,已知⊙∠AOB+∠COD=180°,则弦A.610.(2022·四川成都·一模)的面积为()A.24πππ16.(2023·四川成都·统考二模)如图,已知上一点,连接点D,若P为O17.(2023·四川成都·成都七中校考三模)如图,已知18.(2023·四川成都·模拟预测)则扇形BOC的面积为19.(2021·四川成都·成都实外校考一模)则BE=.20.(2023·四川成都·校考三模)如图,多边形∠=.PAB21.(2023·四川成都·成都七中校考三模)如图,分别以边长为边长为半径作弧,三段弧所围成的图形是一个曲边三角形,内的概率为.。

【人教版】2018-2019学年九年级数学下册:全册中考知识点梳理-第23讲 与圆有关的计算

【人教版】2018-2019学年九年级数学下册:全册中考知识点梳理-第23讲 与圆有关的计算
...
第 23 讲
一、 知识清单梳理 知识点一 :正多边形与圆
与圆有关的计算
关键点拨与对应举例
(1)正多边形的有关概念:边长(a)、中心(O)、 中心角(∠AOB)、 半径(R))、 边心距(r),如图所示①. 例: (1) 如果一个正多边形的 中心角为 72° , 那么这个正多 (2)特殊正多边形中各中心角、长度比:
1. 正 多 边
形与圆
边形的边数是 5. (2)半径为 6 的正四边形的边 心距为 3 2 ,中心角等于 90° ,面积为 72.
中心角=120° a:r:R=2:1:2 知识点二:与圆有关的计算公式
中心角=90° a:r:R=△ a:r:R=2:2
2.弧长和
扇形面积 的计算
n r n r 1 扇形的弧长 l= 扇形的面积 S= = lr 360 180 ; 2
2
例:已知扇形的圆心角为 45° ,半径长为 12,则该扇形 的弧长为 3π.
(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧 在求不规则图形的面积时, 长等于圆锥的底面周长. (2)计算公式: 注意利用割补法与等积变化 方法归为规则图形,再利用 规则图形 ,S 侧= =π rl 的公式求 解. 例:如图, 已知一扇形的半径为 3, 圆心 角为 60°,则图中阴影部分
3.圆锥与
侧 面 展 开图
的面积为
...

北京市2019年中考数学总复习题型突破03圆中的有关计算

北京市2019年中考数学总复习题型突破03圆中的有关计算
2 1
解:(1)证明:连接 BE.∵AB 是直径,∴∠AEB=90° ,
∴∠CBE+∠ECB=90° ,∠EBA+∠EAB=90° . ∵点 E 是������������的中点,∴∠CBE=∠EBA, ∴∠ECB=∠EAB.∴AB=BC.
图 Z3-5
类型1 运用勾股定理、三角函数计算线段长度(针对2018 21题,2017 24题,2015 24题)
5 3
解:(1)证明:连接 OC,∵射线 DC 切☉O 于点 C,∴∠OCP=90° ,
∵DE⊥AP,∴∠DEP=90° ,∴∠P+∠D=90° ,∠P+∠COB=90° ,∴∠COB=∠D, ∵OA=OC,∴∠A=∠OCA,∵∠COB=∠A+∠OCA,∴∠COB=2∠A,∴∠D=2∠A.
图 Z3-3
图 Z3-2
类型1 运用勾股定理、三角函数计算线段长度(针对2018 21题,2017 24题,2015 24题)
2.[2018· 房山一模] 如图 Z3-2,AB,BF 分别是☉O 的直径和弦,弦 CD 与 AB,BF 分别相交于点 E,G,过点 F 的切线 HF 与 DC 的延长线相交于点 H,且 HF=HG. (2)若 sin∠HGF= ,BF=3,求☉O 的半径长.
∵C,D 分别为半径 OB,弦 AB 的中点,∴CD 为△ AOB 的中位线. ∴CD∥OA.∴∠E=90° .∴AE⊥CE.
图 Z3-7
类型1 运用勾股定理、三角函数计算线段长度(针对2018 21题,2017 24题,2015 24题)
7.[2018· 朝阳一模] 如图 Z3-7,在☉O 中,C,D 分别为半径 OB,弦 AB 的中点,连接 CD 并延长,交过点 A 的 切线于点 E. (2)若 AE= 2,sin∠ADE= ,求☉O 半径的长.

八种隐圆类最值问题,圆来如此简单(原卷版)

八种隐圆类最值问题,圆来如此简单(原卷版)

八种隐圆类最值问题,圆来如此简单在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。

正所谓:有“圆”千里来相会,无“圆”对面不相逢。

“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏圆”。

一旦“圆”形毕露,则答案手到擒来!知识点梳理题型一定点定长得圆2023年湖北省鄂州市中考数学真题2023·邵阳市中考真题2023·广西南宁市二模2022·辽宁抚顺·中考真题2022·长春·中考真题题型二直角的对边是直径2023·菏泽市中考真题2022·通辽·中考真题2023·汕头市金平区一模2023·广州市天河区三模2022·成都市成华区二诊题型三对角互补得圆2023年·广元市一模题型四定弦定角得圆2023·成都市新都区二模2023·成都市金牛区二模2023·达州·中考真题题型五四点共圆题型六相切时取到最值2023·随州市中考真题2022·江苏无锡·中考真题2022扬州中考真题题型七定角定高面积最小、周长最小问题题型八米勒角(最大张角)模型徐州中考知识点梳理一、定点定长得圆在几何图形中,通过折叠、旋转,滑梯模型得到动点的轨迹为绕定点等于定长的圆,从而画出动点轨迹,并进行计算二、直角的对边是直径前世:在⊙O中,AB为直径,则始终有AB所对的∠C=90°今生:若有AB是固定线段,且总有∠ACB=90°,则C在以AB为直径径的圆上.(此类型本来属于定弦定角,但是因为比较特殊,故单独分为一类)xB三、对角互补前世:在⊙O 上任意四点A ,B ,C ,D 所围成的四边形对角互补 今生:若四边形ABCD 对角互补,则A ,B ,C ,D 四点共圆四、定弦定角模型定角模型是直角模型的一种变形形式,其依据是已知定角,则根据“同弧所对的圆周角相等”得到动点的轨迹为圆弧,再画出对应图形进行计算.前世:在⊙O 中,若弦AB 长度固定则弦AB 所对的圆周角都相等(注意:弦AB 在劣弧AB 上也有圆周角,需要根据题目灵活运用)今生:若有一固定线段AB 及线段AB 所对的∠C 大小固定,根据圆的知识可知C 点并不是唯一固定的点,C 在⊙O 的优弧ACB 上均可(至于是优弧还是劣弧取决于∠C 的大小,小于90°,则C 在优弧上运动;等于90°,则C 在半圆上运动;大于90°则C 在劣弧运动)五、四点共圆模型前世:在⊙O 中,ABCD 是圆的内接四边形,则有∠1=∠2,∠3=∠4,△BPC~△APD(同理△BPA~△CPD) 今生:若四边形ABCD 中有∠1=∠2(通常情况下∠5=∠6对顶角相等,故不需要∠3=∠4,实际应用中长用∠1=∠2,∠5=∠6)则ABCD 四点(某些不能直接使用四点共圆的地区,可以通过证明两次三角形相似也可),选填题可以直接使用六、定角定高(探照灯模型)什么叫定角定高,如右图,直线BC 外一点A ,A 到直线BC 距离为定值(定高),∠BAC 为定角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三十五与圆的有关计算瞄准中考一、选择题1.(2018湖北省江汉油田潜江天门仙桃市,7,3分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°2.(2018辽宁省沈阳市,10,2分)如图,正方形ABCD 内接于O,AB=,则AB的长是()第10题图A.πB.32π C.2π D.12π3.(2018山西省,10题,3分)如图,正方形ABCD内接于⊙O, ⊙O的半径为2。

以点A为圆心,以AC 长为半径画弧交AB的延长线于点E.交AD的延长线于点F.则图中阴影部分的面积是( )A .B .C.D .4.(2018内蒙古包头,7,3分)如图2,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB 长为半径画弧,交BC于点D,则图中阴影部分的面积是( )A.32π-B.62π-C.34π-D.64π-5.(2018内蒙古通辽,5,3分)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是A.18πB.24πC.27πD.42π考点(知识点)讲解考点一、圆的相关概念(3分)1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”考点二、弦、弧等与圆有关的定义(3分)(1)弦连接圆上任意两点的线段叫做弦。

(如图中的AB)(2)直径经过圆心的弦叫做直径。

(如途中的CD)直径等于半径的2倍。

(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论(3分)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

学——科网垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧考点四、圆的对称性(3分)1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。

考点五、弧、弦、弦心距、圆心角之间的关系定理(3分)1、圆心角顶点在圆心的角叫做圆心角。

2、弦心距从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

考点六、圆周角定理及其推论(3~8分)1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

考点七、点和圆的位置关系(3分)设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。

考点八、过三点的圆(3分)1、过三点的圆不在同一直线上的三个点确定一个圆。

2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。

考点九、反证法(3分)先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

考点十、直线与圆的位置关系(3~5分)直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交⇔d<r;直线l与⊙O相切⇔d=r;直线l与⊙O相离⇔d>r;考点十一、切线的判定和性质(3~8分)1、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

2、切线的性质定理圆的切线垂直于经过切点的半径。

考点十二、切线长定理(3分)1、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

考点十三、三角形的内切圆(3~8分)1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

考点十四、圆和圆的位置关系(3分)1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

如果两个圆有两个公共点,那么就说这两个圆相交。

2、圆心距两圆圆心的距离叫做两圆的圆心距。

3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离⇔d>R+r两圆外切⇔d=R+r两圆相交⇔R-r<d<R+r(R≥r)两圆内切⇔d=R-r (R>r )两圆内含⇔d<R-r (R>r )4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

考点十五、正多边形和圆 (3分)1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

考点十六、与正多边形有关的概念 (3分)1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。

2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。

3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

考点十七、正多边形的对称性 (3分)1、正多边形的轴对称性正多边形都是轴对称图形。

一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。

考点十八、弧长和扇形面积 (3~8分)1、弧长公式n °的圆心角所对的弧长l 的计算公式为180r n l π=2、扇形面积公式lR R n S 213602==π扇 其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。

3、圆锥的侧面积rl r l S ππ=∙=221 其中l 是圆锥的母线长,r 是圆锥的地面半径。

补充:(此处为大纲要求外的知识,但对开发学生智力,改善学生数学思维模式有很大帮助)1、相交弦定理⊙O 中,弦AB 与弦CD 相交与点E ,则AE ∙BE=CE ∙DE2、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。

弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。

即:∠BAC=∠ADC3、切割线定理PA 为⊙O 切线,PBC 为⊙O 割线,则PC PB PA ∙=2随机数。

典例1(2018广西南宁,10,3)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,AB =2,则莱洛三角形(即阴影部分面积)为( )A .π+ 3B .π- 3C .2π- 3D .2π-2 3C典例2(2018湖北十堰,9,3分)如图,扇形OAB 中,∠AOB =120°,OA =12,C 是OB 的中点,CD ⊥OA交⌒AB 于点D ,以OC 为半径的⌒CE 交OB 于点E ,则图中阴影部分的面积是() A .12π+183 B .12π+363错误!未找到引用源。

C .6π+183D .6π+363课后练习8. (2018辽宁省抚顺市,题号8,分值3)如图,AB 是O 的直径,CD 是弦,∠BCD=30°,OA=2,则阴影部分的面积是A.3πB.32π C.π D.2π9.(2018·宁夏,6,3)用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10πD.20π二、填空题1.(2018广东省,15,3)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 .(结果保留π)题15图2.(2018黑龙江省龙东地区,7,3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为________.3.(2018山东省东营市,16,3分)已知一个圆锥的三视图如图所示,则这个圆锥体的侧面积为.16.(2018山东省东营市,16,3分)已知一个圆锥的三视图如图所示,则这个圆锥体的侧面积为.4.(2018四川乐山,15,3)如图7,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O'AC',使得点O'的坐标是(1,则在旋转的过程中线段OC 扫过部分(阴影部分)的面积为.图75. (2018甘肃省兰州市,15,4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧AB的长是 .6.(2018黑龙江省齐齐哈尔市,题号12,分值3)已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为________.7.(2018江苏扬州,13,3)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.8.(2018青海,11,2分)如图6,用一个半径为20cm,面积为150πcm2的扇形铁皮,制作一个无底的图锥(不计接头损耗),则圆锥的底面半径r为cm.图4 图5 图69.(2018广西贵港,17,3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′ 恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π)A'10.(2018江苏常州,16,2)如图,△ABC是⊙O的内接三角形,∠BAC=60°,⋂BC的长是34π,则⊙O 的半径是_______.11. (2018江苏苏州,16,3分)如图,8×8的正方形网格纸上有扇形OAB 和扇形OCD ,点O ,A ,B ,C ,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为r 1;若用扇形OCD 围成另一个圆锥的侧面,记这个圆锥的底面半径为r 2,则12r r 的值为 .12. (2018江苏徐州,16,3分)如图,扇形的半径为6,圆心角 为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .13. (2018江苏徐州,18,3分)如图,AB 为⊙O 的直径,AB =4,C 为半圆AB 的中点.P 为»AC 上一动点,延长BP 至点Q ,使BP •BQ =AB 2.若点P 由A 运动到C ,则点Q 的运动路径长为.14. (2018江苏镇江,7,2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为________.15. (2018云南省昆明市,6,3分)如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为 (结果保留根号和π).16.(2018黑龙江大庆,17,3) 17. 如图,在RtΔABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到RtΔADE,点B经过的路径为弧BD,则图中阴影部分的面积为____________.17.(2018黑龙江哈尔滨,18,3)一个扇形的圆心角为135°,弧长为3π cm,则此扇形的面积是_________________cm2.18.(2018湖北恩施州,15,3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图5所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为_________.(结果不取近似值∙∙∙∙∙)19.(2018四川眉山,16,3分)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC 绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是.20.(2018云南曲靖,14,3分)如图,图像①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北、正南、西北方向同时平移,每次移动一个单位长度;第一次移动后图形①②③的圆心P P=依次为P1、P2、P3,第二次移动后图形①②③的圆心依次为P4、P5、P6,…………,依此规律,02018____________个单位长度.三、解答题1. (2018黑龙江省龙东地区,22,6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画△ABC 关于x 轴对称的△A 1B 1C 1;(2)画△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π). xyC AO B2. (2018黑龙江省齐齐哈尔市,题号20,分值8)如图,以△ABC 的边AB 为直径画O ,交AC 于点D ,半径OE//BD ,连接BE ,DE ,BD ,设 BE 交 AC 于点 F ,若∠DEB = ∠DBC .(1)求证:BC 是O 的切线; (2)若BF=BC=2,求图中阴影部分的面积.3. (2018黑龙江绥化,22,6分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标为A (-4,1),B(-1,-1),C(-3,3).(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC先向上平移2个单位长度,再向右平移4个单位长度得出△A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出平移后的△A1B1C1;(2)将△A1B1C1绕着坐标原点O顺时针旋转90°得到△A2B2C2(点A1、B1、C1的对应点分别为点A2、B2、C2),画出旋转后的△A2B2C2;(3)求△A1B1C1在旋转过程中,点C1旋转到点C2所经过的路径的长.(结果用含π的式子表示)4.(2018吉林省,20, 7分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π)..5.(2018江苏扬州,25,10)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O 为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.6.(2018•徐州,25,8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎么的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求»AD的长.7.(2018贵州贵阳,23,10分)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.8. (2018黑龙江大庆,27,9) 如图AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接C B.(1)求证:AC 平分∠F AB ;(2)求证:BC ²=CE •CP ;(3)当AB =43且CP CF =43时,求劣弧BD 的长度.9.(2018云南曲靖,22)如图,AB 为⊙O 的直径,点C 为⊙O 上一点,将弧BC 沿直线BC 翻折,使弧BC 的中点D .恰好与圆心O 重合,连接OC ,CD ,BD ,过点C 的切线与线段BA 的延长线交于点P ,连接AD ,在PB 的另一侧作∠MPB =∠ADC ,(1)判断PM 与⊙O 的位置关系,并说明理由;(2)若PC,求四边形OCDB 的面积.10. (2018云南,22,9分)如图,已知AB 是⊙O 的直径,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD =∠BAC .(1)求证:CD 是⊙O 的切线;(2)若∠D =30°,BD =2,求图中阴影部分的面积.(第22题图)。

相关文档
最新文档