2019年中考数学复习知识点梳理归纳代数部分第三章方程和方程组
2019年中考数学知识点归纳

2019年中考数学知识点归纳九年级数学上册知识点整理:初三数学有很多知识点,学生们有没有好好的归纳和总结呢?下面,教育中考频道小编为大家带来的九年级数学上册知识点整理,供大家参考。
一.知识框架二.知识概念二次根式:一般地,形如√a?(a≥0)的代数式叫做二次根式。
当a>0时,√a表示a的算数平方根,其中√0=0 对于本章内容,教学中应达到以下几方面要求: 1.理解二次根式的概念,了解被开方数必须是非负数的理由; 2.了解最简二次根式的概念; 3.理解并掌握下列结论:1)是非负数;(2);(3);4.掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
第二十二章一元二次根式一.知识框架二.知识概念一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a=?0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a=?0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想. (2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果qr;P在⊙O上,PO=r;P在⊙O内,PO 8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
中考数学知识点方程与方程组考前复习

中考数学知识点方程与方程组考前复习聪明出于勤奋,天才在于积累。
我们要振作精神,下苦功学习。
小编准备了中考数学知识点方程与方程组,希望能帮助到大家。
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与_轴的交点。
也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根_1={-b+[b2-4ac)]}/2a,_2={-b-[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为_1+_2=-b/a,_1_2=c/a。
中考数学代数知识点总结

中考数学代数知识点总结一、基本代数运算1. 加减乘除加减乘除是代数运算的基本内容,也是中考考查的重点。
在加减乘除的运算中,学生需要掌握整数、分数、小数等相关概念,以及它们在运算中的应用。
2. 整式的加减乘除整式是由字母和数字及其运算符号组成的代数式,整式的加减乘除是中考代数题中的必考内容,需要学生掌握整式的加减乘除法则,例如同类项相加、互化成法等方法。
3. 代数式的计算在代数式的计算中,学生需要掌握二项式和多项式的加减乘除法则,以及含有方程式的复合运算等内容。
二、一元一次方程1. 一元一次方程的概念一元一次方程是解决实际问题中常见的代数问题,学生需要掌握一元一次方程的定义、解法以及应用。
2. 一元一次方程的解法一元一次方程的解法包括整式移项、合并同类项、去括号、去分母、得到等价方程、方程变形、化简、合并同类项、移项、通分、求解等步骤。
3. 一元一次方程的应用一元一次方程是一种常用的数学模型,学生需要学会将实际问题转化为代数方程,并求解出方程的未知数的值。
三、一元一次不等式1. 一元一次不等式的概念一元一次不等式是一元一次方程的推广,学生需要掌握不等式的概念、性质以及解法。
2. 一元一次不等式的解法解一元一次不等式的方法包括整式移项、合并同类项、去括号、去分母、得到等价不等式、不等式变形、化简、合并同类项、移项、通分、求解等步骤。
四、二元一次方程组1. 二元一次方程组的概念二元一次方程组是由两个关于同两个未知数的一次方程组成的代数方程组,解二元一次方程组需要用到方程相加消元的方法。
2. 二元一次方程组的解法解二元一次方程组的方法包括加法、减法、代入法等,学生需要掌握这些解法,并且能够根据实际问题将其转化为方程组进行求解。
五、一元二次方程1. 一元二次方程的概念一元二次方程是一元二次多项式的零点集合,学生需要掌握一元二次方程的定义、性质以及应用。
2. 一元二次方程的解法解一元二次方程的方法包括配方法、因式分解、公式法、求判别式、根的关系、三种情况等。
人教版初中数学中考复习知识点归纳总结全册

人教版初中数学中考复习知识点归纳总结
全册
第一章:有理数
1. 有理数的概念和表示方法
- 有理数是可以表示为两个整数的比例的数,包括整数、分数
和小数。
- 有理数可以用分数的形式表示,也可以用小数的形式表示。
2. 有理数的比较和大小关系
- 有理数可以通过大小关系进行比较,可以使用大小符号(<, >, =)进行表示。
3. 有理数的加法和减法
- 有理数之间可以进行加法和减法运算,运算结果仍为有理数。
...
第二章:代数式及其计算
1. 代数式的概念和性质
- 代数式是由数、字母和运算符号组成的表达式。
- 代数式可以进行加法、减法、乘法和除法运算。
2. 代数式的加法和减法
- 代数式之间可以进行加法和减法运算,运算结果仍为代数式。
...
第三章:方程及其应用
1. 方程的概念和解的概念
- 方程是含有未知数的等式。
- 方程的解是能使方程成立的值。
2. 一元一次方程
- 一元一次方程是一个未知数的一次方程。
- 解一元一次方程的方法包括移项、合并同类项、化简和求解。
...
(继续列举下一章节的内容)
总结
本文档总结了人教版初中数学中考的重点知识点,包括有理数、代数式及其计算、方程及其应用等多个章节的内容。
每个章节介绍
了该主题的概念、性质和解题方法。
这些知识点是中考数学复习的
重点内容,希望能对同学们的复习提供帮助。
初中数学代数知识点梳理

初中数学代数知识点梳理代数是数学中一个重要的分支,它以符号和变量为基础,研究数字和运算规则之间的关系。
代数在初中数学中占据着重要的地位,它涉及到方程、函数、多项式等许多重要的概念和技巧。
下面将对初中数学代数知识点进行梳理和总结。
一、方程与不等式1. 一元一次方程:一元一次方程是代数中最基础的方程形式,它的一般形式为ax + b = 0,其中a和b为已知常数,x为未知数。
解一元一次方程可以通过移项、合并同类项等方法,最终得到x的值。
2. 一元一次不等式:一元一次不等式是一元一次方程的扩展,其形式为ax + b < c或ax + b > c。
解一元一次不等式与解方程类似,可以通过移项、合并同类项等方法,最终得到x的取值范围。
3. 二元一次方程组:二元一次方程组是由两个一元一次方程组成的方程组,其一般形式为{ax + by = cdx + ey = f解二元一次方程组可以通过消元、代入等方法,最终得到x和y的值。
4. 二元一次不等式组:二元一次不等式组是由两个一元一次不等式组成的不等式组,其形式为{ax + by < cdx + ey > f解二元一次不等式组可以通过图像法、代入法等方法,最终得到x和y的取值范围。
二、函数与图像1. 函数与自变量、因变量:函数是两个数集之间的一种对应关系,其中一个数集称为自变量集合,另一个数集称为因变量集合。
自变量的取值范围决定了函数的定义域,因变量的取值范围决定了函数的值域。
2. 一元函数的图像:一元函数的图像是自变量和因变量之间的对应关系在坐标系中的表示形式。
在直角坐标系中,通常将自变量表示为x轴坐标,将因变量表示为y轴坐标,然后将所有点的坐标连成曲线,即为函数的图像。
3. 二元函数的图像:二元函数的图像是两个自变量和因变量之间的对应关系在三维坐标系中的表示形式。
在三维坐标系中,通常将两个自变量表示为x轴和y轴的坐标,将因变量表示为z轴的坐标,然后将所有点的坐标连成曲面,即为函数的图像。
中考数学知识点总结(完整版)

中考数学知识点总结(完整版)中考数学总复习资料代数部分第⼀章:实数基础知识点:⼀、实数的分类:1、有理数:任何⼀个有理数总可以写成的形式,其中p、q是互质的整数,这是有理数的重要特征。
2、⽆理数:初中遇到的⽆理数有三种:开不尽的⽅根,如、;特定结构的不限环⽆限⼩数,如1.101001000100001……;特定意义的数,如π、°等。
3、判断⼀个实数的数性不能仅凭表⾯上的感觉,往往要经过整理化简后才下结论。
⼆、实数中的⼏个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a的相反数是 -a;(2)a和b互为相反数a+b=02、倒数:(1)实数a(a≠0)的倒数是;(2)a和b 互为倒数;(3)注意0没有倒数3、绝对值:(1)⼀个数a 的绝对值有以下三种情况:(2)实数的绝对值是⼀个⾮负数,从数轴上看,⼀个实数的绝对值,就是数轴上表⽰这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号⾥⾯的实数进⾏数性(正、负)确认,再去掉绝对值符号。
4、n次⽅根(1)平⽅根,算术平⽅根:设a≥0,称叫a的平⽅根,叫a的算术平⽅根。
(2)正数的平⽅根有两个,它们互为相反数;0的平⽅根是0;负数没有平⽅根。
(3)⽴⽅根:叫实数a的⽴⽅根。
(4)⼀个正数有⼀个正的⽴⽅根;0的⽴⽅根是0;⼀个负数有⼀个负的⽴⽅根。
三、实数与数轴1、数轴:规定了原点、正⽅向、单位长度的直线称为数轴。
原点、正⽅向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每⼀个点都表⽰⼀个实数,⽽每⼀个实数都可以⽤数轴上的唯⼀的点来表⽰。
实数和数轴上的点是⼀⼀对应的关系。
四、实数⼤⼩的⽐较1、在数轴上表⽰两个数,右边的数总⽐左边的数⼤。
2、正数⼤于0;负数⼩于0;正数⼤于⼀切负数;两个负数绝对值⼤的反⽽⼩。
五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值⼤的加数的符号,并⽤较⼤的绝对值减去较⼩的绝对值。
中考数学重点知识总结代数方程与函数的应用

中考数学重点知识总结代数方程与函数的应用代数方程与函数是中学数学的重要内容之一,在中考中占据着相当大的比重。
本文将对代数方程与函数的应用进行总结,帮助学生巩固相关知识点,提高解题能力。
一、代数方程代数方程是指由字母与数字以及基本运算符号组成的等式。
在中考数学中,代数方程主要涉及一元一次方程、一元二次方程以及一些简单的解方程题型。
1. 一元一次方程一元一次方程是指只有一个未知数,并且其次数为1的方程。
解一元一次方程的方法主要有等式法、加减法、代入法等。
例如:已知3x + 5 = 2x + 13,要求解方程的解x。
解法一:等式法将3x + 5 = 2x + 13两边同时减去2x,得到x + 5 = 13。
再将x + 5 = 13两边同时减去5,得到x = 8。
所以方程的解为x = 8。
解法二:加减法将3x + 5 = 2x + 13转化为3x - 2x = 13 - 5。
得到x = 8,方程的解为x = 8。
解法三:代入法将x = 8代入原方程3x + 5 = 2x + 13,两边都等于13。
所以方程的解为x = 8。
2. 一元二次方程一元二次方程是指只有一个未知数,并且其次数为2的方程。
解一元二次方程的方法主要有因式分解法、求根公式法以及配方法。
例如:已知x^2 - 5x + 6 = 0,要求解方程的解x。
解法一:因式分解法将方程进行因式分解,得到(x - 2)(x - 3) = 0。
根据乘法零法知道x - 2 = 0或者x - 3 = 0。
解得x = 2或x = 3,方程的解为x = 2或x = 3。
解法二:求根公式法根据求根公式x = (-b ± √(b^2 - 4ac)) / 2a,代入a = 1,b = -5,c = 6。
解得x = (5 ± √(25 - 24)) / 2。
化简得x = (5 ± √1) / 2,即x = 6 / 2或x = 4 / 2。
所以方程的解为x = 3或x = 2。
中考数学必考点精讲:方程与方程组

中考数学必考点精讲:方程与方程组2019中考数学必考点精讲:方程与方程组学习可以这样来看,它是一个潜移默化、厚积薄发的过程。
查字典数学网2019中考频道编辑了2019中考数学必考点,希望对您有所帮助!一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
........................优质文档..........................
代数部分
第三章:方程和方程组
基础知识点:
一、方程有关概念
1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程
1、一元一次方程
(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a、b 是已知数,a≠0)
(2)一玩一次方程的最简形式:ax=b(其中x 是未知数,a、b 是已知数,a≠0)
(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程
(1)一元二次方程的一般形式:02
=++c bx ax (其中x 是未知数,a、b、c 是已知数,a≠0)
(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法
(3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac
b 42-=∆当Δ>0时⇔方程有两个不相等的实数根;
当Δ=0时⇔方程有两个相等的实数根;
当Δ<0时⇔方程没有实数根,无解;
当Δ≥0时⇔方程有两个实数根
(5)一元二次方程根与系数的关系:
若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a
b x x -=+21,a c
x x =⋅21(6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0
)(21212=++-x x x x x x 三、分式方程
(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:
一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就
是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组
1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组
3、一次方程组:
(1)二元一次方程组:
一般形式:⎩⎨⎧=+=+2
22111c y b x a c y b x a (212121,,,,,c c b b a a 不全为0)解法:代入消远法和加减消元法
解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
(2)三元一次方程组:
解法:代入消元法和加减消元法
4、二元二次方程组:
(1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组。
(2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组。
考点与命题趋向分析
例题:
一、一元二次方程的解法
例1、解下列方程:(1)2)3(2
12=+x ;(2)1322=+x x ;(3)2
2)2(25)3(4-=+x x 分析:(1)用直接开方法解;(2)用公式法;(3)用因式分解法解:略[规律总结]如果一元二次方程形如)0()(2≥=+n n m x ,就可以用直接开方法来解;利用
公式法可以解任何一个有解的一元二次方程,运用公式法解一元二次方程时,一定要把方程化成一般形式。
例2、解下列方程:
(1))(0)23(2为未知数x b a x a x =+--;(2)0
822
2=-+a ax x 分析:(1)先化为一般形式,再用公式法解;(2)直接可以十字相乘法因式分解后可求解。
[规律总结]对于带字母系数的方程解法和一般的方程没有什么区别,在用公式法时要注意判断△的正负。
二、分式方程的解法:
例3、解下列方程:(2)111122-+=-x x ;(2)52
6222=+++x x x x 分析:(1)用去分母的方法;(2)用换元法解:略
[规律总结]一般的分式方程用去分母法来解,一些具有特殊关系如:有平方关系,倒数关系等的分式方程,可采用换元法来解。
三、根的判别式及根与系数的关系
例4、已知关于x 的方程:032)1(2=+++-p px x p 有两个相等的实数根,求p 的值。
分析:由题意可得∆=0,把各系数代入∆=0中就可求出p,但要先化为一般形式。
[规律总结]对于根的判别式的三种情况要很熟练,还有要特别留意二次项系数不能为0例5、已知a、b 是方程0122=--
x x 的两个根,求下列各式的值:(1)22b a +;(2)b
a 11+分析:先算出a+
b 和ab 的值,再代入把(1)(2)变形后的式子就可求出解。
[规律总结]此类题目都是先算出两根之和和两根之积,再把要求的式子变形成含有两根之和和两根之积的形式,再代入计算。
但要注意检验一下方程是否有解。
例6、求作一个一元二次方程,使它的两个根分别比方程052=--x x 的两个根小3分析:先出求原方程的两根之和21x x +和两根之积21x x 再代入求出)2()3(21-+-x x 和)3)(3(21--x x 的值,所求的方程也就容易写出来。
解:略
[规律总结]此类题目可以先解出第一方程的两个解,但有时这样又太复杂,用根与系数的关系就比较简单。
三、方程组
例7、解下列方程组:
(1)⎩⎨⎧=-=+523
32y x y x ;(2)⎪⎩
⎪⎨⎧=++=--=-+435212z y x z y x z y x 分析:(1)用加减消元法消x 较简单;(2)应该先用加减消元法消去y,变成二元一次方程组,较易求解。
解:略
[规律总结]加减消元法是最常用的消元方法,消元时那个未知数的系数最简单就先消那个未知数。
例8、解下列方程组:
(1)⎩⎨⎧==+127xy y x ;(2)⎪⎩⎪⎨⎧=+=+---25
043432222y x y x y xy x 分析:(1)可用代入消远法,也可用根与系数的关系来求解;(2)要先把第一个方程因式分解化成两个二元一次方程,再与第二个方程分别组成两个方程组来解。
解:略
[规律总结]对于一个二元一次方程和一个二元二次方程组成的方程组一般用代入消元法,对于两个二元二次方程组成的方程组,一定要先把其中一个方程因式分解化为两个一次方程再和第二个方程组成两个方程组来求解。