自动驾驶传感器竞争格局解析

自动驾驶传感器竞争格局解析
自动驾驶传感器竞争格局解析

自动驾驶传感器竞争格局解析

自动驾驶汽车作为汽车未来的重要发展方向,成为汽车零部件产业链的重要增长点。国内外的汽车零部件供应商积极布局自动驾驶传感器领域,在车载摄像头、毫米波雷达和激光雷达三大核心部件,以及产业链上下游的拓展为零部件供应商带来增长机遇。国内外部分综合实力较强的汽车零部件公司在自动驾驶汽车传感器上进行多产品布局,可以为下游客户提供综合性的自动驾驶解决方案,形成较强的竞争力。这些公司包括国外的博世、大陆集团、法雷奥、海拉、德尔福、富士通天、奥托立夫等公司和国内的德赛西威、华域汽车和保隆科技等公司。

国际公司中,博世的自动驾驶传感解决方案技术领先,其可以为客户提供包括近距离摄像头、多功能立体摄像头、77/79GHz毫米波雷达等多种产品,同时博世通过投资以及自主开发的方式研制激光雷达产品。

大陆集团是全球排名前五的车载摄像头模组供应商和排名前三的毫米波雷达供应商,同时其规划2020年后将实现激光雷达的量产。

法雷奥是全球排名前三的车载摄像头模组供应商,其毫米波雷达和激光雷达产品稳步发展,其中和Ibeo合作研制的激光雷达已经量产。此外,海拉、德尔福等公司的自动驾驶传感器业务也稳步发展。

国内公司中,德赛西威2017年实现高清车用摄像头的量产,毫米波雷达产品将于2019年实现量产。华域汽车前视摄像头完成综合工况道路验证测试,毫米波雷达产品已经实现量产供货。保隆科技预计将于2019年量产车载摄像头,其毫米波雷达产品也已发布。

竞争格局:国际企业领先,国内企业跟进

摄像头:国际零部件公司市场份额较高

车载摄像头产业链较长,上下游拥有众多环节,每个环节都涉及国内外众多厂商和公司。相较于消费电子等所用的摄像头,车规级的摄像头对

防震、稳定性、持续聚焦特性、热补偿性、杂光强光抗干扰性等都有较高的要求,因此其模组组装工艺复杂,技术堡垒较高。

从全球摄像头供应市场来看,目前国外公司松下、法雷奥、富士通天、大陆、麦格纳等厂商占据较大份额,前五大产商市场份额合计在59%左右,集中度相对较高。

目前车载摄像头市场份额较大的公司均是全球领先的一级零部件供应商,下游客户基本覆盖了全球主要的整车公司。

法雷奥的下游客户包括大众、奔驰、宝马、福特、雷诺、马自达等;

大陆集团的客户包括大众、福特、通用、马自达等;

富士通天的客户则以丰田为主;

麦格纳的客户群体同样广泛,覆盖欧美和日韩的主要车企;

日立则以日本车企为主。

在传统的摄像头产业链公司之外,国内众多汽车零部件公司也开始积极布局车载摄像头领域,上市公司中有德赛西威、华域汽车、保隆科技等。

德赛西威在国内汽车零部件公司中较早布局车载摄像头领域。2017年,公司投资全自动高清摄像头生产线,并在国内率先实现了高清车用摄像头和环视系统的量产。公司在后视摄像头、倒车摄像头、环视系统、自动泊车系统、夜视系统等领域持续投入,发展车载摄像头技术。例如智能倒车摄像头(RVC)项目,可以应用于各种涉及摄像头的驾驶辅助系统;多功能髙清环视平台(AB02A)项目,可以满足未来3-5年内车厂多功能环视项目的获取等。2018年,公司车载摄像头产品实现量产,包括高清摄像头、高清环视系统、基于高清环视系统和超声波雷达融合的全自动泊车系统、驾驶员行为监控和身份识别系统等。

毫米波雷达:国外零部件公司主导,国内企业逐步量产

毫米波雷达技术壁垒较高,从全球市场情况来看,目前市场份额主要由国外零部件巨头所占据。2018年全球毫米波雷达市场前五大供应商分别为博世、大陆、海拉、富士通天、电装(Denso),合计占有了68%的市场份额。此外,TRW、德尔福、Autoliv、法雷奥等公司也是重要的毫米波雷达供应商。

国内毫米波雷达:部分企业已量产

车载毫米波雷达未来发展前景良好,国内有众多公司涉足。从公司类别来看,国内涉足毫米波雷达领域的公司包括上市公司和非上市公司两类。

上市公司中部分公司自主研发生产毫米波雷达,包括德赛西威、华域汽车、保隆科技等,另一部分上市公司通过投资收购的方式进入这一领域,包括海康威视、雷科防务等。

非上市公司主要创业公司,国内目前有十几家较大的毫米波雷达非上市公司,包括北京行易道、安智杰科技等。

从财务实力来看,上市公司经营规模较大,融资便捷,因此研发投入保障充足;非上市公司等通过股权融资的方式募集资金,进行产品研发和市场开拓。

目前较多的非上市毫米波雷达公司均获得了来自PE/VC的机构的投资,例如北京行易道2017年即获得国科嘉禾资本和磐古资本的数千万元级的A 轮融资;通过融资,非上市公司也获得资金投入。非上市公司中,目前国内有众多创业企业参与到毫米雷达波的研制领域,其中较多的公司获得股权融资,其中北京行易道、深圳安智杰、厦门意行半导体等公司的产品已经获得订单或者被国内整车企业所应用。

从客户情况来看,国内部分毫米波雷达公司已经实现产品量产并交付下游客户。

德赛西威24GHz雷达已经获得订单并将于2019年量产,根据披露,其自动驾驶业务客户有吉利汽车等。华域汽车的24GHz后向毫米雷达波已经实现量产,2018年全年生产1.7万套,客户包括上汽荣威等。由海康威视投资的森思泰克的24GHz雷达在猎豹迈途等两款车型上量产。雷科防务旗下的理工雷科的77GHz毫米波汽车防撞雷达产品2018年成为百度Apollo生态合作伙伴。行易道的77GHz毫米波雷达已经在北汽无人驾驶汽车上应用,公司计划在2019年年底给乘用车提供毫米波雷达。

此外,安智杰科技已拿到8家车厂的10余个项目订单,其中部分项目计划在2018年底或2019年初量产上市;厦门意行半导体的基于SiGe工艺的24GHzMMIC套片被国内整车厂应用。

在毫米波雷达等单个产品的基础上,德赛西威往自动驾驶系统集成方向发展,未来融合了高清摄像头、毫米波雷达、超声波雷达等自动驾驶传感器的解决方案将不断出现。公司与英伟达和小鹏汽车联合开发的L3级别自动驾驶系统计划于2020年量产,将使用中央域控制器来处理毫米波雷达产生的感知数据,可以实现低速代客泊车、中速TJP塞车辅助巡航以及高速代驾三大核心L3自动驾驶智能化功能。

激光雷达:零部件企业与创业公司共同竞争

国际比较:形成多家公司竞争格局

激光雷达作为自动驾驶领域技术最前沿的硬件设备之一,目前国际上已经形成多家公司竞争的格局。

Velodyne公司是目前在激光雷达领域最资深的公司之一,2005年推出第一款激光雷达传感器,2007年推出64线高性能激光雷达。目前其3D激光雷达产品种类丰富,16线、32线和64线机械式激光雷达产品均有覆盖。2017年,Velodyne推出固态汽车激光雷达Velarray。Velodyne公司与多个无人驾驶项目有合作关系,主要客户包括福特、谷歌、百度、日产、沃尔沃等主机厂以及众多一级零部件供应商。

Quanergy公司于2012年成立于硅谷,成立后先后获得三星电子、埃隆·马斯克、德尔福和德州仪器等投资。Quanergy公司固态激光雷达技术领先,其主要采用的技术路线是光学相控阵技术。Quanergy的合作企业包括谷歌、苹果、IBM、博世、奥迪、福特、戴姆勒等。

Ibeo公司为一家德国公司,成立于1998年,专注于车载激光雷达的应用研发。Ibeo与法雷奥联合研制的4线激光雷达ScaLa已经实现量产。2016年汽车零部件巨头采埃孚收购了Ibeo的40%股权,并开始合作研制新型固态激光雷达。Ibeo公司合作汽车制造商有宝马、大众、奥迪、通用汽车、丰田等。

此外,以色列公司Innoviz、加拿大公司LeddarTech和PhantomIntelligence以及美国公司TriLumina等都是目前国际上重要的激光雷达制造商。

传统汽车零部件龙头公司也在通过自主研发或者投资的方式全面布局激光雷达领域。

博世在基于MEMS的固态激光雷达领域已有较多的技术积累,2017年推出使用MEMS技术的兼顾激光扫描和投影的BML050方案。同时,博世通过投资积极布局激光雷达,在2017年投资了Flash技术方向的美国固态激光雷达公司TetraVue,在2018年投资了研制全固态芯片激光雷达的ABAXSensing公司,来全面加强其固态激光雷达的研发能力。

大陆集团在2016年收购了美国3DFlash方向的激光雷达公司ASC来加强研发能力。根据大陆集团的规划,其在2020年后将实现激光雷达的量产。

德尔福通过多处布局投资的方式来加强其在激光雷达领域的地位。德尔福在2015年投资了Quanergy公司;2017年德尔福投资了Leddartech 公司,双方将合作开发固态激光雷达解决方案;同年,德尔福投了Innoviz 公司并签署合作协议,未来将Innoviz的激光雷达传感器集成到德尔福的自动驾驶系统中。

此外,采埃孚在2016年通过直接购买Ibeo公司40%的股权的方式进入激光雷达领域;麦格纳在2017年对Innoviz公司进行战略投资,并将携手为宝马提供固态激光雷达;奥托立夫(Autoliv)则在2017年收购瑞典激光雷达公司Fotonic。

在各零部件巨头积极布局激光雷达领域的同时,法雷奥和Ibeo合作研制的激光雷达(ScaLa激光扫描仪)已经实现量产,在2017年开始配备奥迪的量产L3级别自动驾驶汽车奥迪A8。

国内比较:创业公司参与较多在激光雷达领域

国内目前也有众多创业公司参与,大部分公司都获得了大量融资,整车厂商也通过投资的方式进入这个领域。

速腾聚2018年获得来自菜鸟网络、上汽集团和北汽集团的投资,其激光雷达产品包括机械式激光雷达、MEMS固态激光雷达和相控阵固态激光雷达等,目前已经应用于菜鸟网络的无人物流车等。

禾赛科技其产品包括机械激光雷达Pandar64和固态激光雷达PandarGT等。其中无人驾驶激光雷达目前已经应用百度Apollo平台,其他客户还包括京东以及欧美的一些大型OEM厂商。

北醒光子其产品包括CE30固态面阵激光雷达、TF03激光雷达长距离传感器等,目前产品主要用于物流等自动导航小车(AGV)场景,车规级领域已经开始起步。

北科天绘目前已经推出多款面向车辆前装市场的C-Fans系列激光雷达产品,产品已经进入无人物流领域。此外,国内的激光雷达公司还包括镭神智能、飞芯电子和光珀智能等。

自动驾驶汽车硬件系统概述

自动驾驶汽车硬件系统概述 自动驾驶汽车的硬件架构、传感器、线控等硬件系统 如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。 自动驾驶汽车硬件系统概述 从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解: 一、自动驾驶系统的硬件架构 二、自动驾驶的传感器 三、自动驾驶传感器的产品定义 四、自动驾驶的大脑 五、自动驾驶汽车的线控系统

自动驾驶事故分析 根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。 从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。

目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。 自动驾驶研发仿真测试流程 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。 软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。软件在环效率取决于仿真软件可复现场景的程度。对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、自行车、行人等)。采用软件对交通场景、道路、以及传感器模拟仿

自动驾驶传感器竞争格局解析

自动驾驶传感器竞争格局解析 自动驾驶汽车作为汽车未来的重要发展方向,成为汽车零部件产业链的重要增长点。国内外的汽车零部件供应商积极布局自动驾驶传感器领域,在车载摄像头、毫米波雷达和激光雷达三大核心部件,以及产业链上下游的拓展为零部件供应商带来增长机遇。国内外部分综合实力较强的汽车零部件公司在自动驾驶汽车传感器上进行多产品布局,可以为下游客户提供综合性的自动驾驶解决方案,形成较强的竞争力。这些公司包括国外的博世、大陆集团、法雷奥、海拉、德尔福、富士通天、奥托立夫等公司和国内的德赛西威、华域汽车和保隆科技等公司。 国际公司中,博世的自动驾驶传感解决方案技术领先,其可以为客户提供包括近距离摄像头、多功能立体摄像头、77/79GHz毫米波雷达等多种产品,同时博世通过投资以及自主开发的方式研制激光雷达产品。 大陆集团是全球排名前五的车载摄像头模组供应商和排名前三的毫米波雷达供应商,同时其规划2020年后将实现激光雷达的量产。 法雷奥是全球排名前三的车载摄像头模组供应商,其毫米波雷达和激光雷达产品稳步发展,其中和Ibeo合作研制的激光雷达已经量产。此外,海拉、德尔福等公司的自动驾驶传感器业务也稳步发展。 国内公司中,德赛西威2017年实现高清车用摄像头的量产,毫米波雷达产品将于2019年实现量产。华域汽车前视摄像头完成综合工况道路验证测试,毫米波雷达产品已经实现量产供货。保隆科技预计将于2019年量产车载摄像头,其毫米波雷达产品也已发布。 竞争格局:国际企业领先,国内企业跟进 摄像头:国际零部件公司市场份额较高 车载摄像头产业链较长,上下游拥有众多环节,每个环节都涉及国内外众多厂商和公司。相较于消费电子等所用的摄像头,车规级的摄像头对

自动驾驶行业分析之全球篇

2018年自动驾驶行业分析 之全球篇 撰写时间:2018年6月

目录

第1章概述 自动驾驶驾驶的概念与定义 自动驾驶的定义 目前的自动驾驶可分为两类。一类是目前非常火爆的无人驾驶,更强调的是车的自主驾驶以实现舒适的驾驶体验或人力成本的节省,典型的例子为百度和Google的无人车;一类是ADAS(全称为Advanced Driver Assistance System,即高级辅助驾驶系统),发展历史已久,早在1970年就已进入车厂布局中。两者都是利用安装在车上的各式各样传感器收集数据,并结合地图数据进行系统计算,从而实现对行车路线的规划并控制车辆到达预定目标。随着人们对安全、舒适的驾驶体验的不断追求,自动驾驶成为汽车的新方向。 图表1:ADAS与无人驾驶的区别 不过,ADAS也可以视作无人驾驶汽车的前提,随着ADAS实现的功能越来越多,渐进式可实现无人驾驶。 自动驾驶分级

关于汽车智能化的分级,业界统一采用SAE International的标准,即国际汽车工程师协会制定的标准。 SAE的标准把自动驾驶分为了L0~L5,其中L0指的是人工驾驶。标准具体规定如下: 图表2:自动驾驶分级 数据来源:SAE 目前市场上L3级别的自动驾驶汽车已经准备上路,汽车供应链正在投入下一个阶段L4级别自动驾驶汽车的研发。 自动驾驶产业链 产业链结构图 自动驾驶产业链相对较长,主要分为上中下游。上游主要为原材料,包括锂、钴、铜以及半导体等;中游为各种软硬件产品,包括传感器、自动驾驶平台等;下游为整车集成,以及车队管理系统,车载娱乐、车内办公等附加服务。

汽车节气门位置传感器波形分析

线性输出型节气门位置传感器信号波形分析 波形检测方法 1.连接好波形测试设备,探针接传感器信号输出端子,鳄鱼夹搭铁。 2.打开点火开关,发动机不运转,慢慢地让节气门从关闭位置到全开位置,并重新返回至节气门关闭位置。慢慢地反复这个过程几次。这时波形应如图所示铺开在显示屏上。 线性输出型节气门位置传感器信号波形分析如图所示。 1、查阅车型规范手册,以得到精确的电压范围,通常传感器的电压应从怠速时的低于1V到节气门全开时的低于5V。 2、波形上不应有任何断裂、对地尖峰或大跌落。 3、应特别注意在前1/4节气门开度中的波形,这是在驾驶中最常用到传感器碳膜的部分。传感器的前1/8至1/3的碳膜通常首先磨损。 4、有些车辆有两个节气门位置传感器。一个用于发动机控制,另一个用于变速器控制。 5、发动机节气门位置传感器传来的信号与变速器节气门位置传感器操作相对应。 6、变速器节气门位置传感器在怠速运转时产生低于5V电压,在节气门全开时变到低于1V。 7、特别应注意达到2.8V处的波形,这是传感器的碳膜容易损坏或断裂的部分。 8、在传感器中磨损或断裂的碳膜不能向发动机ECU提供正确的节气门位置信息,所以发动机ECU不能为发动机计算正确的混合气命令,从而引起汽车驾驶性能问题。 9、如果波形异常,则更换线性输出型节气门位置传感器。 开关量输出型节气门位置传感器信号波形分析

1、开关量输出型节气门位置传感器的信号波形检测同线性输出型节气门位置传感器。 2、它是由两个开关触点构成的一个旋转开关,一个常闭触点构成怠速开关,节气门处在怠速位置时,它位于闭合状态,将发动机ECU的怠速输入信号端接地搭铁,发动机ECU接到这个信号后,即可使发动机进入怠速控制,或者控制发动机“倒拖”状态时停止喷射燃油,另一个常开触点(构成全功率触点),节气门开度达到全负荷状态时,将发动机ECU的全负荷输入信号端接地搭铁,发动机ECU接到这个信号后,即可使发动机进入全负荷加浓控制状态。 开关量输出型节气门位置传感器的信号波形及其分析如图所示。如果波形异常,则应更换开关量输出型节气门位置传感器。

自动驾驶传感器布置如何布置

前言:无人驾驶汽车的研究越来越多,各环境感知传感器的分布位置也不同,到底这些传感器要遵循一个什么样的布置原则? 智能驾驶汽车环境感知传感器主要有超声波雷达、毫米波雷达、激光雷 达、单/双/三目摄像头、环视摄像头以及夜视设备。目前,处于开发中的典型智能驾驶车传感器配置如表 1所示。 表 1 智能驾驶汽车传感器配置 ?环视摄像头:主要应用于短距离场景,可识别障碍物,但对光照、天气等外在条件很敏感,技术成熟,价格低廉; ?摄像头:常用有单、双、三目,主要应用于中远距离场景,能识别清晰的车道线、交通标识、障碍物、行人,但对光照、天气等条件很敏感,而且需要复杂的算法支持,对处理器的要求也比较高; ?超声波雷达:主要应用于短距离场景下,如辅助泊车,结构简单、体积小、成本低; ?毫米波雷达:主要有用于中短测距的 24 GHz 雷达和长测距的 77 GHz 雷达 2 种。毫米波雷达可有效提取景深及速度信息,识别障碍物,有一定的穿透 雾、烟和灰尘的能力,但在环境障碍物复杂的情况下,由于毫米波依靠声波定位,声波出现漫反射,导致漏检率和误差率比较高; ?激光雷达:分单线和多线激光雷达,多线激光雷达可以获得极高的速度、距离和角度分辨率,形成精确的 3D 地图,抗干扰能力强,是智能驾驶汽车发展的最佳技术路线,但是成本较高,也容易受到恶劣天气和烟雾环境的影响。 ?不同传感器的感知范围均有各自的优点和局限性(见图 1),现在发展的趋势是通过传感器信息融合技术,弥补单个传感器的缺陷,提高整个智能驾驶系统的安全性和可靠性。

图 1 环境感知传感器感知范围示意图 全新奥迪A8配备自动驾驶系统的传感器包括 -12个超声波传感器,位于前后及侧方 -4个广角360度摄像头,位于前后和两侧后视镜 -1个前向摄像头,位于内后视镜后方 -4个中距离雷达,位于车辆的四角 -1个长距离雷达,位于前方 -1个红外夜视摄像头,位于前方

汽车传感器的波形分析

汽车传感器的波形分析 一、热线式空气流量传感器波形分析 空气流量计是用来计量单位时间内进入进气总管中的空气量,发动机ECU根据所测得的进气量及其他一些辅助信号确定喷油量。空气流量传感器是非常重要的传感器,发动机ECU 可以根据此信号测算出发动机负荷、点火正时、怠速控制等参数,不良的空气流量计会造成喘震和怠速不稳的现象。 常见的空气流量计一般有卡门涡旋式、翼板式以及热线式,热线式空气流量计是一种模拟输出电压信号传感器,随着进气流量的增大输出电压随之增大。 启动发动机并预热至正常工作温度,运用汽车专用示波器读取各种工况下的空气流量计波形,将发动机节气门从全关闭状态逐渐打开直至全开并持续2S,再关闭节气门使发动机怠速运转2S,接着再急加速至节气门全开,最终再回到怠速状态并读取波形。 空气流量计波形如图一所示,怠速的时候空气流量计输出信号电压为0.2V左右,随着节气门开度的增大输出电压也随之增大,当节气门全开的时候,输出电压为4V左右,当急减速的时候空气流量计输出电压会比怠速时的电压稍低。如果实测波形与标准波形存在明显差异则表明空气流量计存在故障。 二、节气门位置传感器波形分析 节气门位置传感器是用来检测发动机节气门开度大小的传感器,它一般安装在节气门转轴上,分为模拟式节气门位置传感器和开关式节气门位置传感器。节气门位置传感器是一个非常重要的传感器,发动机ECU根据它检测到的信号可推算得出发动机的负荷、点火正时以及怠速控制等参数,如果节气门位置传感器损坏会引起发动机故障,比如说加速滞后。 节气门位置传感器有三根线,其中一根是ECU提供给它的电源线,另一根为传感器的接地

线。模拟式节气门位置传感器实为一个可变电位计,它由一个与节气门转轴相连的滑动触针构成,所以第三根线是连接到这个可变电位计的可动触点上,输出信号电压是和节气门的开度成正比的。 模拟式节气门位置传感器波形的读取方法如下:打开点火点开,ECU的传感器电源给传感器供电,缓慢地转动节气门转轴使得节气门从全闭到全开再从全开到全闭,反复几次即可读取信号波形,在整个读取过程中发动机是不需要启动运转的。节气门位置传感器信号输出波形如图二所示。当节气门关闭发动机怠速的时候其输出信号电压不足1V,随着节气门开度的增大其输出电压也随之增大,当节气门全开时输出信号电压不足5V整个波形应该是连续的,不应有断裂出现,同时也不应该出现对地尖峰或大的跌落。 节气门位置传感器波形中经常会出现一种异样波形,当节气门开度到达不足一半的时候波形出现了对地大跌落,当节气门从全开后逐渐关闭到同样位置的时候又出现了对地大跌落,由此可以判断触点在该位置的时候出现了故障,经检查发现传感器该位置处的碳膜损坏断裂了,,在日常驾驶过程中节气门开度一般都不超过50% ,所以前段碳膜会更容易磨损,这样就不能向ECU提供正确的节气门位置信息,从而影响发动机的正常运行。 三、进气压力传感器波形分析 进气压力传感器是用来检测进气管真空度的,分为模拟式和数字式进气压力传感器。模拟式进气压力传感器也有三条线,其中一条是ECU提供的5V参考电压线,另一条是搭铁,第三条是输出信号线。在信号读取过程中,应该关闭其他附属电气设备,启动发动机待怠速稳定后方可读取输出信号波形。 具体操作步骤如下:发动机怠速运转逐步缓慢增大节气门开度至全开,并保持全开2秒,然后再逐渐关闭节气门,保持怠速运转2秒,接看急加速至节气门全开,最后再关闭节气门,此刻即可读取进气压力传感器的输出信号波形。不同的进气压力对应不同的输出电压,可以

自动驾驶汽车硬件系统概述

自动驾驶汽车硬件系统概述 如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。 上周,来自百度自动驾驶技术部高级产品经理—王石峰,在Apollo开发者社群内分享了有关自动驾驶汽车硬件系统的内容,让开发者学习Apollo技术的同时,进一步了解自动驾驶汽车的硬件架构、传感器、线控等硬件系统。 这段视频想必大家都看过很多次了,这里就不再播放了。 根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。 目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。 软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世

自动驾驶传感器的选型和布置

无人驾驶属于汽车行业最前沿的研究领域之一。现阶段仅有少量量产车具备L2级别的自动驾驶技术,能够达到L3级别的更是凤毛麟角。但汽车未来的发展方向就是无人驾驶和自动驾驶,而要达到L5级别,仍然需要工程师们付出多年的努力。只是在谈起无人驾驶的时候,你们是否想过,相关的传感器会如何进行布置?需要进行哪些方面的考虑? 来简单讨论一下要量产的自动驾驶在传感器选型和布置上考虑的问题。我们都知道,无人驾驶目前主要采用摄像头、毫米波雷达、超声波雷达、激光雷达等几类传感器。这几类传感器在特性上都有所差异,如下表: 可以看到各种传感器的范围和距离都不同,有些性能强大的传感器成本高、

选择余地相对也很少。 如何合理选择和布置传感器也成为自动驾驶研发,尤其是量产的关键(成本问题)。 01典型区域划分 根据车辆不同方位遇到的情况不同,可以将车辆周边的感知区域划分为以下5类区域:前向A、前侧向B、后侧向E、后向D、侧向C。每个区域在车辆行驶中遇到的情况都会有不同,所以在不同的区域内,感应范围的要求是不同的。例如,前向A区域为最主要区域,应覆盖全速行驶时的纵向安全距离,B、E区域则主要检测相邻车道的情况和转向的情况。 02传感器工作的主要区域 考虑不同使用场景的需求在实现L5完全自动驾驶之前,所有的自动驾驶功能都会对场景进行限制,高速公路or城市道路,低速or高速……不同的场景对传感器的需求肯定也不同。比如高速公路的场景只需要对车辆进行识别,而城市道路还需要对自行车、电动车、行人等进行识别;高速情况下为保证安全,检测的距离一定会比低速远。而就算在同一种使用场景中,不同

的功能对传感器的需求也会不同。例如实现自动泊车,依靠近距离的超声波雷达和全景传感器即可。在高速公路上实现AEB自动紧急制动和ACC自适应巡航的功能,则仅需要对A区域内的车辆进行检测;但如果实现变道的功能可能还需要对B、E区域进行检测。而如果高速变道还涉及到从低速匝道变到行驶道路的场景,考虑的因素就更多。 03特殊场景举例 对于上述的特殊场景,下面进行简单的举例(举例式讨论,不作为实际参考):在下面的场景中,前车在匝道以60km/h的速度行驶,需变道到正常行驶车道,此时目标车道后方有一120km/h行驶的车辆,时距τ=2s,假设变道需要的时间为3s。 则可得到与后方车辆的安全距离为: 因此,E 区域的传感器应当能检测到侧后方83米的距离才比较安全,故24GHz的毫米波雷达(≤60m),无法满足此要求;需选择77GHz的毫米波雷达或中距离摄像头(特斯拉Autopilot 2.0方案)。类似的特殊场景还有很多,因此在

无人驾驶汽车激光雷达传感器方案

一、主流传感器对比 激光雷达: 激光雷达具有高精度、高分辨率的优势,同时具有建立周边3D模型的前景,然而其劣势在于对静止物体如隔离带的探测较弱且目前技术落地成本高昂。由于激光雷达可广泛应用于ADAS系统,例如自适应巡航控制(ACC)、前车碰撞警示(FCW)及自动紧急制动(AEB),因此吸引了不少具有先进技术的初创公司竞争,同时传统供应商也积极布局投资希望能够达成战略合作关系以便快速获得先进技术。 毫米波雷达: 与激光雷达相比,毫米波雷达具有探测距离远,不受天气状况影响以及成本低的优势。由于毫米波雷达采用硅基芯片,不会特别昂贵,也不涉及复杂工艺,同时正处于第二次工艺转型的重要时期,预计成本仍有下降空间。 相比激光雷达暂时高不可攀的成本以及较低的技术壁垒和自身可全天候工作的优势,毫米波雷达可以说是目前初创公司进入自动驾驶市场的一个门槛较低的入口。 摄像头: 车载摄像头是最基本常见的传感器,价格低廉且应用广泛同时具备雷达无法完成的图像识别功能,不仅可以识别路牌,在自动驾驶系统的图像处理方案中也是不可或缺的一部分。 鉴于目前激光雷达的高成本,摄像头配合高精度地图是另一种较低成本的技术路线。除了与高精度地图配合为自动驾驶提供定位服务,摄像头还可以在地图采集过程中作为低成本且数据传输量小(摄像头捕捉的是小尺寸的2D画面)的数据收集器。 二、视觉主导还是激光雷达主导? 据清华大学邓志东教授介绍,自动驾驶环境感知的技术路线主要有两种:一种是以特斯拉为代表的视觉主导的多传感器融合方案,另一种以低成本激光雷达为主导,典型代表如谷歌

Waymo。 1、视觉主导,以特斯拉为代表:摄像头+毫米波雷达+超声波雷达+低成本激光雷达。 摄像头视觉属于被动视觉,受环境光照的影响较大,目标检测与SLAM较不可靠,但成本低。目前,特斯拉已经在其量产车上列装了Autopilot 2.0固件,而且成本较低,只有7000美金左右,8个摄像头组成单目环视,有1个毫米波雷达和12个超声波雷达,希望从L2跳跃到L4。 经过半年的努力,特斯拉近期已经完成了将路测大数据从Mobileye单目视觉技术过渡到基于Nvidia Drive PX2计算硬件平台的特斯拉Vision软件系统上,并且在今年3月底发布了8.1软件版本,它用深度学习的方法在短期内基本达到了Mobileye的技术水平,这是以前很难想象的。特斯拉的自动驾驶技术究竟怎么样,一个重要的观察点就是看它能否在2017年年底,如期从洛杉矶开到纽约,实现全程4500公里且无人工干预的完全自主驾驶。 2、激光雷达主导,以Google Waymo为代表:低成本激光雷达+毫米波雷达+超声波传感器+摄像头。 激光雷达是主动视觉,它的目标检测与SLAM比较可靠,但是却丢失了颜色和纹理且成本高昂。目前谷歌Waymo自己组建团队研发激光雷达的硬件,把成本削减了90%以上,基本上是7000美金左右,同时他们已经开始在美国凤凰城地区对500辆L2级别的车进行社会公测,大大地推进了该类技术路线的落地实践。 激光雷达主导的解决方案未来可以沿如下两个方向继续推进商业化进程: 一个是发展摄像头与激光雷达的硬件模组,把两者结合起来,既有激光雷达,又有彩色摄像头,可以直接获得彩色激光点云数据。 另一个是进一步降低激光雷达的硬件成本,比如研发固态激光雷达并真正实现产业化,届时成本会下降到几百美金。

浅析应用于自动驾驶汽车的传感器解决方案

浅析应用于自动驾驶汽车的传感器解决方案 没有一种解决方案是完美的,每种组合的解决方案都有妥协,尽管如此,这些传感器技术将以不同的方式在不同的车辆价格点组合,从而获得有效的解决方案。 有四种类型的传感器为车辆提供外部和即时信息,每种传感器都有优点和缺点。传感器类型是: 激光雷达 - 一种测量技术,通过用激光照射目标来测量距离。激光雷达是光探测和测距的。雷达 - 一种物体探测系统,使用无线电波来确定物体的范围,角度或速度。 超声波 - 一种发射超声波声音的物体检测系统,可以保存并检测它们的返回以确定距离。被动视觉 - 使用被动相机和复杂的物体检测算法来了解相机可见的内容。 每种技术都有不同的优点和缺点。 激光雷达目前是大而昂贵的系统,必须安装在车辆外面。例如,Google必须安装在车辆顶部,视线无障碍。目前的实施方案已经基本上从早期的30米范围到150米到200米改进了范围,同时分辨率也提高了。目前,具有更高范围和分辨率的生产系统仍然是昂贵的。激光雷达在所有光线条件下都能很好地工作,但由于使用了光谱波长,它们开始因空气中的雪,雾,雨和尘埃颗粒的增加而失效。激光雷达无法检测颜色或对比度,也无法提供光学字符识别功能。 代表制造商包括Continental AG,LeddarTech,Quanergy和Velodyne。 谷歌的自动驾驶汽车解决方案使用激光雷达作为主要传感器,但也使用其他传感器。特斯拉目前的解决方案并未包含激光雷达(虽然姊妹公司SpaceX确实如此)以及过去和现在的声明表明他们认为自动驾驶汽车不需要。 Quanergy展示了一种近乎量产的固态激光雷达系统,该系统预计有150米的范围,250美元的成本和足够的分辨率。该装置仍然比所有其他传感器大得多,而且价格昂贵,但价格和尺寸与预期的性能将使它成为一个非常有竞争力的传感器,如果它生产。这个价格/性能点可能会让它更有可能包含在特斯拉中,并且已经发现了一个安装在顶部的传统激光雷

浅谈自动驾驶当中的关键传感器

浅谈自动驾驶当中的关键传感器 不久前,全球管理咨询公司麦肯锡发布了一份研究报告,估算自动驾驶技术如能实现,将提升个人安全系数,可减少90%以上的事故。不过,报告作者之一表示认,自动驾驶行业整体还处在“诞生期”,90%的数字仅是预测,有很大的不确定性,而且是在所有人都采取自动驾驶的前提下得出的。 就安全系数而言,传感和决策对其意义重大,所以解读传感器信息为当前高级驾驶辅助系统(ADAS)的核心,以及未来全自动驾驶汽车所需要的基本要素,同时也是我们当前面临的一大挑战。 扩展感知能力,超越人眼所及 想象您在开车时一辆迎面而来的汽车不知不觉进入了您的车道,与此同时有一个人在人行道上遛狗。您会刹车以期将碰撞降至最低程度?还是猛打方向盘,撞上行人和狗?抑或猛然转向另一车道,撞上迎面而来的车流?无论如何选择,也不大可能逃过一劫而不造成实质性损害或伤害。即使有能力在一瞬间作出三项决策,对我们所有人来说,这仍会变成一个没有赢家的困境,除非我们能避免其发生。这正是自动驾驶的主要目标之一:车辆中的传感器、通信能力、执行器和人工智能(AI)协同工作,收集并分析信息,从而比最好的人类司机更快、更及时地做出决策。 我们在开车时获得的大部分信息来自于眼睛。这会受到很多因素的限制和影响,例如天气、距离和干扰。因此,我们在开车时作出的很多决策都是反应性的。自动驾驶车辆有望实现预测性驾驶。为此,车辆必须具备远超我们人类的检测感知能力,我们需要检测自动驾驶车辆外部环境的三种关键技术:雷达、激光雷达和高性能惯性MEMS IMU。 微波雷达 雷达目前大量用在高级驾驶员辅助系统中,例如碰撞预警和缓冲刹车、盲点检测、车道变换辅助等,然而高性能雷达技术对传统的微波信号链技术能力有极高的要求。有意思的是,根据ADI 官方数据,新近生产的全部雷达模块中大约50% 含有ADI 公司技术。这家

浅谈自动驾驶三大核心传感器技术

浅谈自动驾驶三大核心传感器技术 据麦姆斯咨询介绍,汽车市场对视觉、雷达和LiDAR(激光雷达)传感器的需求不断增长,因为这些传感器能够实现先进辅助驾驶(ADAS)和自动/无人驾驶功能,不仅如此,汽车制造商还对传感器供应商提出了更加苛刻的新要求。 LiDAR、雷达以及图像传感器是未来自动驾驶汽车的核心支柱,图片引自《汽车MEMS和传感器市场及技术趋势-2017版》 汽车市场对供应商的要求一直很高。OEM厂商为了实现ADAS和自动驾驶技术,希望相关传感器在提升安全性的同时,尺寸能够更小、速度更快且成本更低。通常,ADAS包括多种安全功能,例如自动紧急制动、车道监测以及障碍物警示等。 雷达,是一种障碍物探测技术,用于汽车盲点探测及其它安全功能。“近年来,雷达模组的尺寸获得了大幅缩小,其散热要求也越来越高,”NXP(恩智浦)产品线经理Thomas Wilson说,“市场对雷达性能的要求越来越高,而尺寸要求不断缩小,因此成本压力越来越大。” 目前,汽车中应用的雷达模组是相对比较笨拙的系统,包含了多个基于不同工艺的芯片。因此,为了追求更小的尺寸和更低的成本,Infineon(英飞凌)、NXP(恩智浦)、Renesas (瑞萨)以及TI(德州仪器)正在开发在同一个器件上整合多个元件的集成雷达芯片组。 尽管这些雷达芯片组可以针对多种不同的ADAS应用,但是,它们也代表了一种新的设计趋势。IC制造商将不再采用多种不同的工艺来制造各种芯片,而是采用45nm和28nm的标准CMOS工艺来集成雷达器件。当然,其它可选工艺还包括22nm体硅工艺和FD-SOI(全耗尽型绝缘硅)工艺。 实现ADAS和自动驾驶的另一种核心技术,激光雷达(LiDAR),是一种利用脉冲激光来测量目标距离的技术,也正从笨重的机械旋转扫描系统,向集成更多元件、尺寸更小的固态单元发展,以降低高昂的制造成本。 雷达业界正在开发下一代高分辨率雷达,以期替代昂贵的LiDAR,不过,LiDAR开发商也并没有闲着。 事实上,目前并没有任何一种技术能够满足所有ADAS或自动/无人驾驶要求。如今,有些汽车已经集成了先进的视觉系统和雷达系统。接下来,它们或许还会装配LiDAR,这意味着视觉系统、雷达和LiDAR技术将在一定时期内和谐共存,共同实现汽车ADAS及未来的自动驾驶功能。 每一种技术都有其优势和短板。“LiDAR相比视觉和雷达,是一种昂贵得多的传感器系统,

汽车传感器波形

测试传感器打开点火开关,不运转发动机,慢慢地让节气门从关到全开,并重新返回至节气门,气门全关,反复这个过程几次。慢慢地做,波形像例子中的显示在显示屏上是较好的。波形结果如是传感器是坏的话,翻阅制造商规范手册,以得到精确的电压范围,通常传感器的电压应从怠速时的低于1伏到油门全开的的低于5伏,波形上不应有任何断裂,对地尖峰或大跌落。特别应注意达到的2.8伏处的波形;这是传感器的炭膜容易损坏或断裂的部分。在传感器中磨损或断裂的炭膜不能向电脑提供正确的油门位置信息。所以电脑不能为发动机计算正确的混合气命令,引起驾驶性能问题。 ,

进气温度传感器通常用于检测进气管中的空气温度,当用示波器或万用表测试时,从表中读出的是传感器热敏电阻两端电压降,进气温度低时,传感器电阻值及电压降就高,进气温度高时传感器的电阻值和电压降就低。试验方法:除非发现的故障依赖于温度,否则应在发动机完全冷的情况下开始测试工作,用这种方法,可以更好地从怀疑有故障的温度段开始测试。起动发动机加速至2500rpm,稳住转速看示波器屏幕上波形从左端开始直到右端结束,示波器上时间轴每格5秒钟,总共一次记录传感器工作为50秒钟,将屏幕上的波形定住,停止测试。此时传感器已经通过从完全冷的发动机到全部的工作范围,测试进气温度传感器另一种方法是用喷射清洗剂或水喷雾器喷射传感器,这样会使传感器降温,当打开点火开关,发动机又转动的情况下,喷射传感器其波形电压会向上升。波形结果:按照制造厂的资料确定输出电压范围,通常传感器的电压应在3V-5V(完全冷车状态)之间,在运行温度范围内电压降大约在1V-2V左右,这个直流信号的关键是电压幅度,在各种不温度下传感器必须给出对应的输出电压信号。当IAT电路开路时将出现电压向上直到接地电压值的蜂尖;当IAT电路对地短路时将出现电压向下直到参考电压值为零。

自动驾驶车内惯性导航传感器全面解读

自动驾驶车内惯性导航传感器全面解读 自从汽车制造商开始使用第一台微机电传感器(MEMS)加速计来测量加速的强劲力道以及启动安全气囊已经二十多年了。第一台惯性传感器早已为今日的先进驾驶辅助系统(ADAS)加速计的普及做好万全准备。 微型装置提升汽车安全性和舒适性 目前的ADAS技术还包括陀螺仪、压力传感器和磁力仪等类型的MEMS惯性传感器的运用。事实上,要不是有MEMS的防翻车安全功能,也不会有那么受欢迎的SUV的存在。MEMS陀螺仪侦测围绕行进中车辆X轴的旋转。此为碰撞侦测运算法则的主要依据。 惯性传感器在自动驾驶中扮演举足轻重的角色,跟ADAS应用有着同等重要的零组件不是已经在使用,就是即将被开发出来。在设计ADAS时,工程师需要了解MEMS惯性传感器,以及这些技术在未来10到20年对汽车制造商和消费者代表甚么样的意义呢?首先,让我们来回顾一下传感器在今天和未来在汽车技术中扮演的角色。 AnalogDevices推出的全球第一个启动汽车安全气囊的加速计 翻履感测 属于被动安全防护功能的车辆翻覆感测可检测汽车是否正在翻覆并及时启动安全气囊装置。在车辆翻覆时,惯性传感器可为碰撞侦测运算提供滚动速率、横向和垂直加速度等主要数据。 然而,在各种条件下提供可靠的传感器讯号才是个大挑战:例如在极端的酷热或寒冷的温度下或在碎石路上。此项要求也适用于电子稳定控制系统(ESC)的惯性传感器,ESC属于主动汽车安全防护功能,透过控制和启动汽车剎车来防止车辆打滑。 为因应所面临的挑战,必须谨慎地设计出结合MEMS设计的专业知识以及对汽车系统的理解及要求的产品。这些产品必需根据规格进行设计,样品必须先在实验室进行测试,并与书面规划的内容一致。最后,传感器必须经过更多的实际驾驶测试,例如在冬季或碎石路上的行驶。

关于自动驾驶的传感器 你需要知道这些

关于自动驾驶的传感器你需要知道这些 想要实现自动驾驶,需要通过三个阶段,即感知、决策和控制。感知是基础,没有感知所带来的各种信息也就无所谓控制了。因为车辆对汽车有着部分甚至是全部的控制权,所以自动驾驶汽车对外部情况必须拥有保证达到甚至超过 人类感知的精确性,所以传感器对于自动驾驶汽车的重要性也就不言而喻了。目前,自动驾驶所使用的传感器主要包括:摄像头、激光雷达、毫米波雷达、超声波雷达等。不同厂家会根据自己的产品,选择不同的组合方案,同时又有所偏重,有的偏重激光雷达,有的偏重摄像头等。本文主要介绍一下这几种传感器。摄像头摄像头就像人的视觉一样,主要就是记录图像,然后发送给自动驾驶系统的计算机,计算机通过图像识别技术分析数据,进而判断车辆周围状况。摄像头由于开发较早,开发人员也比较多,现今技术已经比较成熟,成本也降到了相当低的程度。应用中摄像头形式包括单目、双目和三目,根据摄像头安装的位置分为前视、后视、环视和车内监控摄像头。摄像头可以实现众多如预警、识别等ADAS 功能,是视觉影像处理系统的基础,此外,影像信息对于乘客来说更为直观,在处理意外情况时,是必不可少的。 优点:成本低,技术成熟,而且能够识别路牌、交通灯甚至

是一些文字信息。 缺点:难以获取准确的三维信息;受环境光限制比较大,遮挡、强光和黑夜等条件下,识别率比较低。激光雷达激光雷达是目前公认的自动驾驶传感器最佳的技术路线。激光雷达主要通过向目标物体发射激光束,然后通过计算从目标反射回的脉冲飞行时间来测量距离,以此来测算目标的位置、速度等特征量,感知车辆周围环境,并形成精度高达厘米级的3D环境地图,为下一步的车辆操控建立决策依据。 激光雷达多安装在车顶,通过高速旋转,实现360度无死角监控,获得周围空间的点云数据,实时绘制出车辆周边的三维空间地图。 同时,激光雷达还可以测量出周边其他车辆在三个方向上的距离、速度、加速度、角速度等信息,再结合GPS 地图计算出车辆的位置,这些庞大丰富的数据信息传输给ECU 分析处理后,以供车辆快速做出判断。优点:1、分辨率高。激光雷达可以获得极高的角度、距离和速度分辨率,这意味着激光雷达可以利用多普勒成像技术获得非常清晰的图像。 2、精度高。激光直线传播、方向性好、光束非常窄,弥散性非常低,因此激光雷达的精度很高。 3、抗有源干扰能力强。与微波、毫米波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强。缺点:1、激

自动驾驶三大核心传感器技术分享

自动驾驶三大核心传感器技术分享 据麦姆斯咨询介绍,汽车市场对视觉、雷达和LiDAR(共同的目标:安全性更高的汽车为了制造安全性更高的汽车,汽车制造商急需这些专门针对车辆安全性的环境感知技术。据美国国家高速公路交通安全管理局统计,94%的严重车辆事故都是由于驾驶员的操作失误而造成的。为此,近年来汽车产业为车辆配备了越来越多的主被动安全功能。据NXP的Wilson介绍,目前产业正朝着两条殊途同归的路径发展,即新车评价规程(NCAP)和自动驾驶技术。近年来,亚洲、欧洲和美国推出了各自的NCAP指南。在这些新车评价规程中,汽车经过相应你是我的眼据麦姆斯咨询报道,汽车制造商同时采用多种方案来实现ADAS。例如,“雷达波”带你浪雷达也是ADAS和自动驾驶的核心技术之一。简而言之,雷达通过发射毫米波范围的电磁波,电磁波遇到障碍物后发生反射,被雷达系统捕获,由此计算便能确定障碍物的距离、速度和角度。通常,OEM厂商会在车辆中采用短距离和长距离雷达。自适应巡航控制和自动紧急制动功能采用长距离雷达(LRR)。长距离雷达一般装配在车辆前保险杠后方。高大上的LiDARLiDAR技术一直在进步。这项技术可以应用于自动驾驶汽车,但不仅限于该应用。“大家会看到LiDAR和摄像头、雷达一起联合应用于ADAS系统,”全球最知名的汽车LiDAR供应商Velodyne公司首席技术官Anand Gopalan说。LiDAR和雷达不同。“LiDAR通过发射一系列脉冲激光,然后测量激光反射回来的飞行时间,”Gopalan解释道,“再利用这些数据创建周围环境的3D、高分辨率地图。”LiDAR目前还面临很多技术挑战,它包含了很多运动部件,而且价格十分昂贵,但是,这一切都正在改变。根据Yole的数据,一般情况下,汽车摄像头模块的售价大约30美元,而LiDAR系统的售价则高达3000美元以上。但是,现在新开发的LiDAR系统正朝着300美元以下而努力。 《大陆集团最先进的ADAS激光雷达:SRL1》根据著名市场研究机构Frost and Sullivan 研究,现在,主要有三种LiDAR技术方案——机械、MEMS以及混合固态技术。机械LiDAR 主要用于高端工业市场,而基于MEMS技术的LiDAR解决方案刚刚兴起。目前,有许多

传感器波形分析

汽车发动机氧传感器信号波形分析

随着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷”加三元催化器的发动机正成为普遍配置。这种发动机采用了混合气成分的闭环控制和三元催化反应装置的联合使用技术。是汽油机有效的排气净化方法。在这一系统中,氧传感器是进行闭环反馈控制的主要元件之一,必不可少。正常工作时,氧传感器随时测定发动机排气管中的氧含量(浓度),以检测发动机燃烧状况。因此.当发动机出现燃烧故障时,必然引起氧传感器电压信号的变化,这就为通过观察氧传感器的信号波形判断发动机某些故障提供可能。 很多资料显示其效果很好。 1.氧传感器的一般作用 要使三元催化转化器全 面净化CO、HC和NO x这三 种有害气体,必须保证混合 气浓度始终保持在理论空燃 比(14.7)附近的狭小范围内。 一旦混合气浓度偏离了这个 狭小范围,则三元催化转化 器净化能力便急剧下降。保 证混合气浓度在理论空燃比 附近,“电喷”系统和氧传感 器的配合是很好的解决方 案。 氧传感器检测排气中的 氧浓度,并随时向微机控制 装置反馈信号。微机则根据 反馈来的信号及时调整喷油 量(喷油脉宽),如信号反映 混合气较浓,则减少喷油时 间;反之.如信号反映混合 气较稀,则延长喷油时间。 这样使混合气的空燃比始终

保持在理论空燃比附近。这就是燃料闭环控制或称燃 料反馈控制。 2.氧传感器的正常波形 常用的汽车氧传感器有氧化锆式和氧化钛式两 种。以氧化锆式为例,正常情况下当闭环控制时,氧 传感器的电压信号大约在0至1V之间波动,平均值约 450mv。当混合气浓度稍浓于理论空燃比时。氧传感 器产生约800mV的高电压信号;当混合气浓度稍稀于 理论空燃比时,氧传感器产生接近100mY的低电压信 号。当然,不同类型的氧传感器其实际波 形并不完全相同。朱军老师曾总结说:“一 般亚洲和欧洲车氧传感器(博世)信号电压 波形上的杂波要少。尤其是丰田凌志车氧 传感器信号电压波形的重复性好。而且对 称、清楚,美国车(不是采用亚洲的发动机 和电子反馈控制系统)杂波要多。”但需要 指出,氧化钛型氧传感器反馈给发动机电 控单元的电压。一般是1V范围内变化,也 有少数的是5V范围内变化的。

汽车与自动驾驶系统

第十一章汽车与自动驾驶系统 ?第一节概述 ?第二节世界智能车辆的研究与发展 ?第三节智能车辆系统结构与微机测控系统 ?第四节基于视觉导航的智能车辆模糊逻辑控制 ?第五节智能车辆的自主驾驶与辅助导航 ?第六节小结

11.1 概述 ?11.1.1 汽车自动驾驶概念 ?是指借助车载设备及路侧、路表的电子设备来检测周围行驶环境的变化情况,进行部分或完全的自动驾驶控制的系统,目的是提高行车安全和道路通行能力。 ?该系统的本质就是将车辆——道路系统中的现代化的通信技术、控制技术和交通信息理论加以集成,提供一个良好的驾驶环境,在特定条件下,车辆将在自动控制下安全行驶。 ?从当前的发展看,可以分为两个层次: 是车辆辅助安全驾驶系统,或者是先进的车辆控制技术; 是自动驾驶系统,或者称为智能汽车,智能汽车在智能公路上使用才能发挥出全部功能,如果在普通公路上使用,它仅仅是一辆装备了辅助安全驾驶系统的汽车。

11.1 概述 ?11.1.2 车辆自动驾驶系统主要目的 防止部分交通事故的发生; 提高道路利用率; 提高驾驶员方便性; 减轻驾驶员负担; 实现车辆的安全高效行驶

11.2 世界智能车辆的研究与发展 ?11.2.1 智能车辆的产生与发展 它的研究始于20世纪50年代初美国Barrett Electronics公司开发出的世界上第一台自动引导车辆系统(Automated Guided Vehicle System,AGVS) 1974年,瑞典的Volvo Kalmar轿车装配工厂与Schiinder-Digitron公司合作,研制出一种可装载轿车车体的AGVS,并由多台该种AGVS组成了汽车装配线,从而取消了传统应用的拖车及叉车等运输工具。 20世纪80年代,伴随着与机器人技术密切相关的计算机。电子、通信技术的飞速发展,国外掀起了智能机器人研究热潮,其中各种具有广阔应用前景和军事价值的移动式机器人受到西方各国的普遍关注

自动驾驶技术的超声波传感器应用

自动驾驶技术的超声波传感器应用 超声波主要用于泊车测距、辅助刹车等,量程较短等,然而在倒车辅助过程中,超声波传感器通常需同控制器和显示器结合使用,从而以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除视野死角和视线模糊的缺陷,提高驾驶安全性。 使用效果上,超声波雷达穿透性强,测距的方法简单,成本低。不过,由于超声波是一种机械波,其使用效果会受传播介质的影响,例如受天气情况的影响,在不同的天气情况下,超声波的传输速度不同,而且传播速度较慢。另外,当汽车高速行驶时,使用超声波测距无法跟上汽车的车距实时变化,误差较大,影响测量精度。 随着科学技术的快速发展,超声波将在传感器中的应用越来越广。在人类文明的历次产业革命中,传感技术一直扮演着先行官的重要角色,它是贯穿各个技术和应用领域的关键技术,在人们可以想象的所有领域中,它几乎无所不在。如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。 展望未来,超声波传感器作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,超声波传感器在汽车的应用可谓是不可抗拒的存在,总所周知自动驾驶,感知传感器非常关键,目前自动驾驶汽车测距与避障,主要采用传感器超声波、毫米波、摄像头和激光三种方式。这三种方式根据测距场景的不同,可以在自动驾驶中进行融合运用。下面工釆网小编来具体说说超声波传感器在汽车应用中扮演这怎样的角色。 超声波主要用于泊车测距、辅助刹车等,量程较短等,然而在倒车辅助过程中,超声波传感器通常需同控制器和显示器结合使用,从而以声音或者更为直观的显示告知驾驶员周围

汽车自动驾驶系统

汽车自动驾驶系统 姓名: 学号: 班级:

数据采集与模糊控制在自动驾驶汽车的应用 摘要: 自动驾驶汽车是指安装汽车自动驾驶技术的汽车。汽车自动驾驶技术包括可视屏摄像头,雷达传感器,激光雷达,车速传感器,转向角传感器,油门开度传感器和车载计算机等。自动驾驶汽车使用视屏摄像头,雷达传感器,以及激光雷达来了解周围的交通状况,并通过一个详细的地图(通过有人驾驶汽车采集的地图)对前方的道路进行导航。汽车的车速,转向角,油门开度等物理量经相应传感器转化成电信号,摄像头拍摄汽车前方图像并转换成视屏信号,扫描时激光雷达检测汽车下部前方障碍物并转化成电信号,由数据采集器件采集并传至控制器(车载计算机),可以准确的判 断车与障碍物自建的距离,如果遇到紧急情况,车载计算机能够及时的发出警报或者自动刹车进行避让,并且根据道路的状况自己调节行车的速 度,实现对汽车速度的自动控制。 针对车辆动力学控制系统所具有的强非线性特点提出了基于机器视觉的车辆自动驾驶模糊控制方案. 采用车辆系统动力学模型, 通过模糊控制规则的量化划分对车辆在道路上的运动进行了仿真.仿真的结果显示, 本方案可以很好地解决空旷道路上的车辆自动驾驶问题, 并且该控制方法可以保证车辆快速准确地在道路上安全高速行驶, 具有很好的鲁棒性.此外,还可以基于模糊逻辑和滑模控制理论设计一种车辆纵向和横向运动综合控制系统。该控制系统通过对前轮转向角度、发动机节气门开度、制动液压及主动横摆力矩进行协调控制, 使车辆能够以期望速度在理想道路轨迹上行驶, 并提高车辆在行驶过程中的操纵稳定性。 关键字: 车辆自动驾驶机器视觉模糊控制规则模糊逻辑滑膜控制仿真数据采集 引言: 模糊控制是上个世纪诞生的一种基于语义规则的人工智能,是以模糊集合理论为基础的一种新兴控制手段,它是模糊集合理论和模糊技术与自动控制技术相结合的产物。随着时代的发展,科技的创新,模糊理论在控制领域取得了广泛的应用。自动驾驶便是其中一个重要的应用对象。 汽车是现代的主要交通工具,自动驾驶系统是交通体系中最重要的部分之一,一方面它可以推动在机器人自主导航方面的研究进程,在航天和水下机器人的应用中起到重要的作用;另一方面这种技术在未来的智能交通系统中的运用既可以避免驾驶员因判断和交通失误而引起的交通事故,提高交通系统效率,又可以最终实现无人驾驶。汽车自动驾驶是一个比较复杂的问题,难以建立精确的数

相关文档
最新文档