无穷级数知识点介绍
无穷级数总结

无穷级数总结一、概念与性质1. 定义:对数列 u 1,u 2,L ,u n L , u n 称为无穷级数, u n 称为一般项;若部分和 n1数列{&}有极限S ,即limS n S ,称级数收敛,否则称为发散.n2. 性质① 设常数 c 0 ,则 u n 与 cu n 有相同的敛散性;n1n1② 设有两个级数 u n 与 v n ,若 u n s ,v n,则 (u n v n ) s ;n1n1n1n1n1若 u n 收敛,v n 发散,则 (u n v n ) 发散;n1n1n1若 u n ,v n 均发散,则(u n v n ) 敛散性不确定;n1n1n1③ 添加或去掉有限项不影响一个级数的敛散性;④ 设级数 u n 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定. ⑤ 级数 u n 收敛的必要条件: lim u n 0 ;n1n注:①级数收敛的必要条件,常用判别级数发散;③若 u n 发散,则 lim u n 0 未必成立. n1 n 二、常数项级数审敛法 1. 正项级数及其审敛法① 定义:若 u n 0 ,则 u n 称为正项级数 .n1② 审敛法:i ) 充要条件:正项级数 u n 收敛的充分必要条件是其部分和数列有界②若 lim u n0 ,则 u n 未必收敛;n1(ii ) 比较审敛法:设U n①与V n②都是正项级数,且U n %(n 1,2丄),则若②n 1 n 1收敛则①收敛;若①发散则②发散•A.若②收敛,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①收敛;若②发散,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①发散;1B.设U n为正项级数,若有p 1使得u n—p (n 1,2丄),贝U U n收敛;若n 1 n n 11U n (n 1,2,L ),贝U U n 发散•n n 1C.极限形式:设U n①与v n②都是正项级数,若lim l(0 l ),则n 1 n 1 n V nU n与V n有相同的敛散性n 1 n 1注:常用的比较级数:a①几何级数:ar n1 1 r r 1n 1 发散r| 1②p级数:[收敛P 1时.n 1 np发冃攵P 1时,③调和级数:丄1 1 1发散.n 1 n 2 n(iii )比值判别法(达郎贝尔判别法)设a n是正项级数,若n 1①lim也r 1,则a n收敛;②lim也r 1,则a.发散.n a n n 1 n a n n 1注:若lim 也1,或lim :恳1,推不出级数的敛散.例1与2,虽然佃乩1,nan n n 1 n n 1n n a.lim n a n 1,但丄发散,而 $收敛•n' n 1 n n 1 na n是正项级数,lim , a n ,若1,级数收敛,n(iv )根值判别法(柯西判别法)设若 1则级数发散.(v )极限审敛法:设U n 0,且lim n p u n l ,则①lim n p u n l 0且p 1,则级数u n 发nnn 1散;②如果p 1,而limn%. 1(0 l ),则其收敛.(书上P317-2- n(1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法•正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件. 2. 交错级数及其审敛法①定义:设U n 0(n 1,2丄),则 (1)n 1U n 称为交错级数•n 1②审敛法:莱布尼兹定理:对交错级数 (1)n1U n ,若U nn 1收敛.注:比较u n 与u n 1的大小的方法有三种: ① 比值法,即考察是否小于1;u n② 差值法,即考察u n u n 1是否大于0; ③由u n 找出一个连续可导函数f(x),使u n f(n),(n 1,2,)考察f (x)是否小于0.3. 一般项级数的判别法: ①若u n 绝对收敛,则 u n 收敛.n 1n 1②若用比值法或根值法判定 |u n I 发散,则 u n 必发散.n 1n 1三、幕级数 1. 定义: a n x n称为幕级数•n 02. 收敛性① 阿贝尔定理:设幕级数 a n x n在X 。
无穷级数的概念与性质

无穷级数的概念与性质无穷级数(Infinite series)是数学中一个非常重要的概念,它是由无限多个数相加或相减得到的数列。
在数学中,我们经常会遇到各种各样的无穷级数,它们具有丰富的性质和应用。
本文将介绍无穷级数的基本概念,并探讨其性质及应用。
一、无穷级数的概念无穷级数指的是无限多个数按照一定的规律连加(或连减)得到的数列。
一般可以表示为下面的形式:S = a₁ + a₂ + a₃ + ...其中,a₁、a₂、a₃是无穷级数的通项,S是无穷级数的和。
无穷级数的和并不一定存在,它可能是一个有限数值,也可能是无穷大或不存在。
二、常见的无穷级数1.等差数列等差数列是最简单的无穷级数之一。
它的通项公式为:aₙ = a₁ + (n-1)d其中,a₁是首项,d是公差,n表示项数。
等差数列的无穷级数可以通过求和公式来计算:S = a₁ + (a₁+d) + (a₁+2d) + ...通过对等差数列求和,我们可以得到如下公式:S = (a₁ + aₙ) * n / 22.等比数列等比数列也是常见的无穷级数之一,它的通项公式为:aₙ = a₁ * q^(n-1)其中,a₁为首项,q为公比,n表示项数。
等比数列的无穷级数可以通过求和公式来计算:S = a₁ / (1-q)其中,当0<q<1时,S存在且为有限值,当q≥1时,S不存在。
3.调和级数调和级数是指无穷级数的通项是倒数的情况,它的通项公式为:aₙ = 1/n调和级数可以表示为:S = 1/1 + 1/2 + 1/3 + ...调和级数是一个特殊的无穷级数,它的和可以无限增大。
例如,前n项和可以表示为:Sₙ = 1/1 + 1/2 + ... + 1/n当n趋向于无穷大时,Sₙ趋向于无穷大。
三、无穷级数的性质1.收敛与发散无穷级数的和可能是有限的,也可能是无穷大,也有可能不存在。
如果一个无穷级数的和存在并且有限,我们称该级数是收敛的;反之,如果一个无穷级数的和不存在或者无穷大,我们称该级数是发散的。
第十章 无穷级数

第十章 无穷级数一、概念 1.定义无穷数列}{n u 中:∑∞==++++121......n nn uu u u无穷数列}{n u 的各项之和∑∞=1n nu叫无穷级数,简称级数。
n u 叫∑∞=1n nu的一般项(通项);......21++++n u u u 为展开式。
【例】 ①∑∞=++++⨯+⨯=+1...)1(1...321211)1(1n n n n n ②...ln ...3ln 2ln 1ln ln 1+++++=∑∞=n n n③ (323)21++++=∑∞=nn nne e e e ne④......32321++++=∑∞=n x x x x nx nn n 2.级数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧=∑∞=),1x u u u n n n n (其中函数项级数:(数项级数)是具体数字常数项级数:每一项都①两个特殊的数项级数⎪⎪⎩⎪⎪⎨⎧≥⋅-≥∑∑∞=∞=0,1011n n n n n n n u u u u )(交错级数:中,正项级数:②一个特殊的函数项级数∑∞=1)(n nx u中,nn n x a x u ⋅=)((常数乘以x 的幂级数),即∑∞=1n nn xa 称为幂级数。
3.级数∑∞=1n nu的收敛与发散前n 项和n n u u u S +++= (21)数列}{n S 叫∑∞=1n nu的部分和数列。
敛散性:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=→∑∑∑∑∞=→∞∞=∞=∞=→∞→∞发散不存在,则若分和数列的极限)要求级数的和,即求部的和,记为叫收敛,则存在(若1111lim ()lim lim n n n n n n n n n n n n n n u S Su u S u S S S 【例】①∑∞=+1)1(1n n n 111)111(...)3121()211()1(1...321211+-=+-++-+-=+++⨯+⨯=n n n n n S n 1lim =∞→n n S ,∑∞=+∴1)1(1n n n 收敛②∑∞=1ln n n!ln ln ...2ln 1ln n n S n =+++=+∞=∞→n n S lim ,∑∞=∴1ln n n 发散4.几何级数与-p 级数 (1)∑∞=-11n n aq几何级数,首项a ,公比qqq a aq aq a S n n n --=++=-1)1( (1)∞→n 时:⎪⎪⎪⎪⎨⎧∞→⎩⎨⎧=⋅-+-+-=-=∞→∞→===-不存在时时n n n n S n a a a a a S q S n na S q q 0)1(...,1,,11||1Ⅰ:1||<q ,0lim =∞→nn q ,qaS n n -=∞→1limⅡ:1||>q ,∞=∞→nn q lim ,∞=∞→n n S limⅢ:【例】①111)21(2121-∞=∞=⋅=∑∑n n n n 收敛nn n n S 211211)211(2121...21212-=--=+++= ∴1lim =∞→n n S②1111)35(3135-∞=∞=-⋅=∑∑n n n n n ,135>=q 发散(2)-p 级数⇒≤⇒>发散收敛11p p ∑∞=131n n收敛∑∑∞=∞==121111n n n n 发散调和级数 (31)21111+++=∑∞=n n发散二、级数的性质 1.∑∞=1n nu与∑∞=1n nku具有相同敛散性(0≠k )【例】∑∞=14n n 发散,∑∞=-125n n收敛2.在∑∞=1n nu中增加、减少、改变有限项不改变敛散性。
(完整版)无穷级数整理

1无穷级数整理一、数项级数(一) 数项级数的基本性质1•收敛的必要条件:收敛级数的一般项必趋于0.2•收敛的充要条件(柯西收敛原理):对任意给定的正数 ,总存在N 使得对于任何两个 N大于的正整数 m 和n 总有S m S n•(即部分和数列收敛)3•收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛) ,而一个收敛级数和一个发散级数的和与差必发散4•对收敛级数的项任意加括号所成级数仍然收敛,且其和不变 5•在一个数项级数内去掉或添上有限项不会影响敛散性 (二) 数项级数的性质及敛散性判断 1•正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛 (2)比较判别法(放缩法):若两个正项级数U nn 1V n 收敛时,级数 U n 亦收敛;若I ,则当级数1n 1n 散时,级数V n 亦发散•n 1V n 之间自某项以后成立着关系:n 1存在常数c0,使 U n CV n (n 1,2,),那么 (i )当级数V n 收敛时,级数1U n 亦收敛;n 1(ii )当级数U n 发散时,级数 n 1V n 亦发散•推论:设两个正项级数U n 和 n 1V n ,且自某项以后有1U n 1 U n4,那么V n(i )当级数n V n 收敛时,级数1U n 亦收敛;n 1(ii )当级数U n 发散时, n 1V n 亦发散•(3)比较判别法的极限形式 (比阶法):给定两个正项级数Un n 1和 V n ,若 lim U nn 1nV n那么这两个级数敛散性相同(注:可以利用无穷小阶的理论和等价无穷小的内容)另外,若I 0,则当级数U n 发常用度量:①等比级数:q n,当q 1时收敛,当q 1时发散;n 01②P-级数:丄,当p 1时收敛,当p 1时发散(p 1时称调和级数);n 1 n p1③广义P-级数:p,当p 1时收敛,当p 1时发散•n 2 n In n④交错p-级数:(1)n12,当p 1时绝对收敛,当Op 1时条件收敛•n 1 n pu(4)达朗贝尔判别法的极限形式(商值法):对于正项级数u n,当lim 口r 1时n U nn 1级数u n收敛;当1血乩r 1时级数u n发散;当r 1或r 1时需进一步判断• n 1 n U n n 1(5)柯西判别法的极限形式(根值法):对于正项级数u n,设r lim n u n,那么r 1nn 1时此级数必为收敛,r 1时发散,而当r 1时需进一步判断•(6 )柯西积分判别法:设u n为正项级数,非负的连续函数 f (x)在区间[a,)上单调n 1下降,且自某项以后成立着关系:f(U n) U n,则级数U n与积分° f(X)dx同敛散.n 12•任意项级数的理论与性质(1 )绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然;②对于级数U n,将它的所有正项保留而将负项换为0,组成一个正项级数V n,其中n 1 n 1 Un| U nV n 一!-------- ;将它的所有负项变号而将正项换为0,也组成一个正项级数W n ,其中2 n 1U n| U nW n 一!------- ,那么若级数U n绝对收敛,则级数V n和W.都收敛;若级数U n 2n 1 n 1 n 1 n 1条件收敛,则级数V n和W n都发散.n 1 n 1③ 绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同④若级数 U n 和 V n 都绝对收敛,它们的和分别为 U 和V ,则它们各项之积按照任何方n 1n 1式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积 U nV n 也绝对收敛,且和也为UV .n 1n 1注:C nU nV n ,这里C nUN n U 2V n 1U n 1V 2 U n V 1n 1n 1n 1且U n 单调减少(即U n U n J,则 (1)"勺山收敛,其和不超过第一项,且余和的符号n 1与第一项符号相同,余和的值不超过余和第一项的绝对值二、函数项级数(一)幕级数1•幕级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幕级数 a n (x x 0)n 在x x oR 内绝对收敛,在 x x 0 Rn 0内发散,其中R 为幕级数的收敛半径•(2)阿贝尔第一定理:若幕级数a n (xx 0)n 在x 处收敛,则它必在x x 0 x 0n 0内绝对收敛;又若a n (x x 0)n 在x处发散,则它必在 x x 0 x 0也发散•n 0推论1:若幕级数a n x n 在x (0)处收敛,则它必在 x 内绝对收敛;又若幕n 0级数a n X n 在x( 0)处发散,则它必在 x 时发散•n 0推论2:若幕级数a n (x X 0)n 在x处条件收敛,则其收敛半径 R I X 。
无穷级数知识点总结

无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。
一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。
无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。
如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。
二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。
下面我们将详细介绍无穷级数的一些重要性质。
1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。
即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。
2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。
3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。
无穷级数知识点总结简短

无穷级数知识点总结简短
1. 无穷级数的定义
无穷级数是指由无限个数相加而成的级数,通常表示为:
S = a1 + a2 + a3 + ...
其中,a1, a2, a3...表示级数的每一项。
2. 无穷级数的收敛与发散
无穷级数可能收敛也可能发散。
如果无穷级数的部分和S_n在n趋向无穷时收敛于某一有
限数,即lim(S_n) = S,则称该无穷级数收敛;如果无穷级数的部分和S_n在n趋向无穷
时发散至无穷大或者发散至负无穷大,即lim(S_n) = ±∞,则称该无穷级数发散。
3. 无穷级数的收敛性判别法
无穷级数的收敛性判别法有很多种,包括比较判别法、比值判别法、根值判别法、积分判
别法等。
这些判别法可以用来判断无穷级数的收敛性,并且在实际问题中有很多应用。
4. 无穷级数的性质
无穷级数有许多重要的性质,包括级数的线性性质、级数的绝对收敛性、级数的收敛域等。
这些性质在研究无穷级数的收敛性和计算级数的和时非常重要。
5. 无穷级数的应用
无穷级数在物理、工程、计算机科学等领域都有重要的应用。
例如,在物理学中,泰勒级
数可用于近似计算非线性函数的值;在工程学中,级数可以用来描述振动、波动等现象;
在计算机科学中,级数在算法复杂性分析和数值计算中也有广泛的应用。
总之,无穷级数是数学中一个重要的概念,它涉及到收敛与发散、收敛性判别法、性质和
应用等方面,对于理解和应用级数有着重要的意义。
无穷极数知识点总结

无穷极数知识点总结1. 无穷级数的定义无穷级数是指由无穷多个项组成的级数,通常表示为a1 + a2 + a3 + ... + an + ...,其中每一项an是一个实数或复数。
无穷级数可以是收敛的,即其和是一个有限的值,也可以是发散的,即其和不存在或为无穷大。
2. 无穷级数的收敛无穷级数收敛的概念是指无穷级数的和在某个范围内趋于一个有限的值。
收敛的无穷级数在数学分析和实际应用中有着广泛的应用,例如在泰勒级数展开、微积分中的积分计算等方面。
无穷级数的收敛有多种判别法,如比较判别法、根值判别法、积分判别法等。
3. 无穷级数的发散无穷级数发散的概念是指无穷级数的和无法趋向于一个有限的值,而是趋向于无穷大或者根本无法定义。
无穷级数的发散也有多种判别法,例如奇偶项判别法、柯西收敛准则等。
4. 绝对收敛与条件收敛无穷级数的收敛有两种情况,一种是绝对收敛,即该级数每一项的绝对值级数收敛;另一种是条件收敛,即该级数每一项的绝对值级数发散,但级数本身却收敛。
绝对收敛级数在某种程度上更容易处理和计算,而条件收敛级数的性质相对更为复杂,也更有意思。
5. 级数收敛的充分条件对于实数级数来说,级数部分和序列的收敛性与级数本身的收敛性之间是十分紧密的,因此研究级数部分和序列的收敛性可以得到级数收敛的充分条件。
比如级数收敛的柯西准则、级数收敛的柯西——施瓦茨准则、莱布尼茨级数收敛准则等。
6. 无穷级数的运算无穷级数也可以进行加减乘除等运算,不过进行这些运算时需要满足一定的条件,比如级数收敛、级数部分和序列的收敛性等。
无穷级数的运算规则也有许多特殊的性质,如级数的收敛性与绝对收敛性的性质、级数的乘法运算性质、级数的幂级数展开等。
7. 级数收敛的应用无穷级数的研究在数学中有着广泛的应用,比如在分析学中的泰勒级数展开、微积分中的求和、微分方程的求解、数论中的级数和等方面都有不同程度的应用。
无穷级数也在物理学、工程学、经济学等应用领域中有着很多重要的应用。
无穷级数的介绍

n1
un 称为级数的一般项,或通项.
级数的前n 项和称为级数的部分和,记为
n
sn u1 u2 un ui
i 1
当n取1,2,3,···,可得部分和数列
s1 u1 , s2 u1 u2 , s3 u1 u2 u3 ,,
sn u1 u2 un ,
定义2 当n无限增大时,如果级数 un的部分和
1 2n 1
1 2
级数收敛, 和为 1 . 2
其余项为 rn s sn
即 s1 2
1 1 1 1 1 1 2 2 2n 1 2 2n 1
例3
证明级数
n
n1 2n
收敛,并求其和.
证
因为
sn
1 2
2 22
3 23
n 2n
2sn
1
2 2
3 22
n 2n1
后式减前式,得
sn
1
(2n 1)(2n 1)
1 1 1 2 2n 1 2n 1
sn
1 1 3
1 35
(2n
1 1) (2n
1)
1 1 1 1 1 1 1 1 1
2 3 23 5
2 2n 1 2n 1
sn
1 2
1
1 2n
1
lim
n
sn
lim 1 1 n 2
2n
n 1, 2n 2
假设调和级数收敛, 其和为s.
于是lim( s2n sn ) s s 0,
n
便有 0 1 (n ) 2
这是不可能的.
级数发散.
例4 判别下列级数的敛散性
(1)
n1
(2n
n3 2n 5 1)(2n 1)(2n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专转本专题知识点----------无穷级数数项级数定义1 设给定一个数列,...,,...,,,321n u u u u 则和式......321+++++n u u u u (11.1)称为数项级数,简称为级数,简记为∑∞=1n nu,即∑∞=1n nu=......321+++++n u u u u其中,第n 项n u 称为级数的一般项或者通项。
式(11.1)的前n 项和∑==++++=nk k n n u u u u u S 1321...称为式(11.1)的前n 项部分和。
当n 依次取1,2,3,...时,部分和...,..,,,321n S S S S构成一个新的数列{}n S ,数列{}n S 也称为部分和数列定义2 若级数∑∞=1n nu的部分和数列{}n S 有极限SS S n n =∞→lim ,则称级数∑∞=1n nu收敛,称S 是级数∑∞=1n nu的和,即 (3211)+++++==∑∞=n n nu u u u uS如果部分和数列{}n S 没有极限,则称为级数∑∞=1n nu发散数项级数的性质 (1)若级数∑∞=1n nu和级数∑∞=1n nv都收敛,它们的和分别为S 和σ,则级数∑∞=±1)(n n nv u也收敛,且其和为±S σ(2)若级数∑∞=1n nu收敛,且其和为S ,则它的每一项都乘以一个不为零的常数k,所得到的级数∑∞=1n nku也收敛,且其和为kS(3)在一个级数前面加上(或去掉)有限项,级数的敛散性不变 (4)若级数∑∞=1n nu收敛,则将这个级数的项任意加括号后,所成的级数...)...(...)...()...(1211121+++++++++++-+k k n n n n n u u u u u u u 也收敛,且与原级数有相同的和(5)(级数收敛的必要条件)若级数∑∞=1n nu收敛,则0lim =∞→n n u数项级数的敛散性研究对象:正项级数、交错级数、任意项级数 一.正项级数正项级数:若级数∑∞=1n nu=......321+++++n u u u u 满足条件,...)3,2,1(0=≥n u n ,则称此级数为正项级数定理1 正项级数收敛的充要条件是其部分和数列{}n S 有界定理2 (比较判别法)若级数∑∞=1n nu和级数∑∞=1n nv为两个正项级数,且,...)3,2,1(=≤n v u n n ,那么: (1)若级数∑∞=1n nv收敛时,级数∑∞=1n nu也收敛(2)若级数∑∞=1n nu发散时,级数∑∞=1n nv也发散定理3(达朗贝尔比值判别法)若正项级数∑∞=1n nu(,...3,2,1,0=>n u n )满足条件l u u nn n =+∞→1lim则(1)当1<l 时,级数收敛 (2)当1>l 时,级数发撒(3)当1=l 时,无法判断此级数的敛散性二.交错级数级数∑∞=-1)1(n n n u (,...3,2,1,0=>n u n )称为交错级数定理4(莱布尼兹判别法)若交错级数∑∞=-1)1(n nnu (,...3,2,1,0=>n u n )满足下列条件(1)1+≥n n u u (2)0lim =∞→n n u则交错级数∑∞=-1)1(n nnu 收敛,其和,1u S ≤其余项的绝对值1+≤n n u r三.绝对收敛和条件收敛若级数∑∞=-1)1(n nnu 的各项为任意实数,则称级数∑∞=1n nu为任意项级数定义 如果任意项级数∑∞=1n nu的各项绝对值组成的级数∑∞=1n nu收敛,则称级数∑∞=1n nu绝对收敛;如果∑∞=1n nu发散,而∑∞=1n nu收敛,则称级数∑∞=1n nu条件收敛定理5 如果级数∑∞=1n nu绝对收敛,则级数∑∞=1n nu必收敛定理6 如果任意项级数∑=1n nu满足条件l u u nn n =+∞→1lim(1)当1<l 时,级数绝对收敛 (2)当1>l 时,级数发撒 幂级数定义1 如果,...)3,2,1)((=n x u 是定义在某个区间I 上的函数,则称函数...)(...)()()(211++++=∑∞=x u x u x u x u nn n(11.4)为区间I 上的函数项级数定义2 形如...)(...)()()(020201010+-++-+-+=-∑∞=n n n n n x x a x x a x x a a x x a (11.5)的级数称为)(0x x -的幂级数,其中,...,...,,,210n a a a a 均为常数,称为幂级数的系数。
当00=x 时,级数∑∞=+++++=12210......n n n n n x a x a x a a x a (11.6)称为x 的幂级数定义 3 对于形如式(11.6)的幂级数若设l a a nn n =+∞→1lim,则x l x a a x a x a u u nn n n n n n n n n n •=•==+∞→++∞→+∞→1111lim lim lim根据任意项级数判别法可知:(1)当0≠l 时,若1<•x l ,即R l x =<1,式(11.6)绝对收敛 若1>•x l ,即R l x =>1,式(11.6)发散若1=•x l ,即R lx ==1,则比值判别法失效,式(11.6)可能收敛也可能发散(2)当0=l ,由于10<=•x l ,式(11.6)对任何x 都收敛称lR 1=为幂级数式(11.6)的收敛半径 定理1 如果幂级数∑=+++++=12210......n n n nn x a x a x a a xa的系数满足条件l a a nn n =+∞→1lim,则(1)当+∞<<l 0时,lR 1= (2)当0=l 时,+∞=R (3)当+∞=l 时,0=R幂级数的性质 设幂级数∑∞=0n nnxa 与∑∞=0n nnxb 的收敛半径分别是1R 与2R (1R 与2R 均不为0),它们的和函数分别为)(1x S 与)(2x S 1.(加法与减法运算))()()(210x S x S x b ax b x a n n n nn nnn nn±=±=±∑∑∑∞=∞=∞=所得的幂级数∑∞=±0)(n nn nx b a仍收敛,且收敛半径是1R 与2R 中较小的一个2.(乘法运算))()(...)...(...)()()()(21011020211200110000x S x S x b a b a b a x b a b a b a x b a b a b a x b x a n n n n n n n n nn •=+++++++++++=•-∞=∞=∑∑两幂级数相乘所得的幂级数仍收敛,且收敛半径是1R 与2R 中较小的一个 3.(微分运算)若幂级数∑∞=0n nnxa 的收敛半径R ,则在(-R,R )内和函数S(x)可导,且有∑∑∑∞=-∞=∞=='='='010)()()(n n n n nn n nn x na x a xa x S且求导后所得的幂级数的收敛半径仍为R4.(积分运算)若幂级数∑∞=0n nnxa 的收敛半径R ,则和函数S(x)在该区间内可积,且有∑⎰∑⎰⎰∑∞=∞=+∞=+===0011)()(n xn n n nn xxn nn x n a dx x a dx x a dx x S且求导后所得的幂级数仍收敛,且收敛半径仍为R 函数展成幂级数 1.泰勒级数设)(x f 在0x x =处任意阶可导,则幂级数n n n x x n x f )(!)(010)(-∑∞=称为)(x f 在0x x =处的泰勒级数2.麦克劳林公式 当00=x 时,级数nn n x n f ∑∞=0)(!)0(称为)(x f 的麦克劳林级数 3.几个常见的麦克劳林展开式①)1,1(,110-∈=-∑∞=x x x n n ②)1,1(,)1(11-∈-=+∑∞=x x x n n n ③),(,!0+∞-∞∈=∑∞=x n x e n nx④),(,)!12()1(sin 012+∞-∞∈+-=∑∞=+x n x x n n n ⑤),(,)!2()1(cos 02+∞-∞∈-=∑∞=x n x x n nn ⑥)1,1(,)1()1ln(11-∈-=+∑∞=-x n x x n nn ⑦∑∞=-∈•+--=+0)1,1(,!)1)...(1()1(n n x x n n x αααα。