集成运算放大器复习放大
第六章 集成运算放大器

偏置电路是为集成运算放大器的输入级、中间级和输出级电路 提供静态偏置电流,设置合适的静态工作点。 运算放大器的图形符号如图6-2所示,其中反相输入端用“-”号 表示,同相输入端用“+”号表示 。器件外端输入、输出相应 地用N、P和O表示。
图6-2 运算放大器的图形符号
二、集成运算放大器的主要参数 1. 开环差模电压放大倍数 uo 开环差模电压放大倍数A
图6-4 反馈信号在输出端的取样方式 (a)电压反馈 (b)电流反馈
(4)串联反馈和并联反馈—─反馈的方式 如果反馈信号与输 入信号以串联的形式作用于净输入端,这种反馈称为串联反 馈,如图6-5(a)所示。如果反馈信号与输入信号以并联的 形式作用于净输入端,这种反馈称为并联反馈,如图6-5(b) 所示。可用输入端短路法判别,即将放大电路输入端短路, 如短路后反馈信号仍可加到输入端,则为串联反馈,如短路 后反馈信号仍无法到输入端,则为并联反馈。
图6-7 放大电路的传输特性1—闭环特性 2—开环特性
(3)展宽了通频带 放大器引入负反馈后,虽然放大倍数降低了,但放大器的稳定 性得以提高,由于频率不同而引起的放大倍数的变化也随 之减小。在不同的频段放大倍数的下降幅度不同,中频段 下降的幅度较大,而在低频段和高频段下降的幅度较小, 结果使放大器的幅频特性趋于平缓,即展宽了通频带。
(4)改变了输入输出电阻 负反馈对输入电阻的影响取决于反馈信号在输入端的连接方式。 并联负反馈是输入电阻减小,串联负反馈是输入电阻增大。 负反馈对输出电阻的影响取决于反馈信号在输出端的取样方 式。电压负反馈是输入电阻减小,电流负反馈是输入电阻增 大。电压负反馈有稳定输出电压的作用,电流负反馈有稳定 输出电流的作用。 电压串联负反馈使电压放大倍数下降,稳定了输出电压,改善 了输出波形,增大了输入电阻,减小了输出电阻,扩展了通 频带。电压并联负反馈使电压放大倍数下降,稳定了输出电 压,改善了输出波形,减小了输入电阻,减小了输出电阻, 扩展了通频带。电流串联负反馈使电压放大倍数下降,稳定 了输出电流,改善了输出波形,增大了输入电阻,增大了输 出电阻,扩展了通频带。电流并联负反馈使电压放大倍数下 降,稳定了输出电流,改善了输出波形,减小了输入电阻, 增大了输出电阻,扩展了通频带。
集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。
另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。
有的元器件虽然已经坏了,但仅凭肉眼看不出来。
因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。
并记下元器件的实际数值。
否则,实验测得的数值与计算出的数值可能无法进行科学分析。
)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
基本运算电路。
1)反相比例运算电路电路如图8—1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。
U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
集成运算放大器

第7章 集成运算放大器教学提示:本章首先介绍基本运算放大电路的构成、特点及分析方法;然后重点讨论了集成运算放大电路在基本运算、信号测量、信号处理和波形产生方面的应用;最后介绍了有关集成运放在使用时需注意的问题。
教学要求:通过本章学习,应能掌握集成运算放大电路的主要特点及基本分析和计算方法,并对集成运算放大电路在使用时需注意的问题有一定的了解。
7.1 集成运放简介运算放大器(简称运放)是具有高开环放大倍数并带有深度负反馈的多级直接耦合放大电路。
早期的运放是由分立器件(晶体管和电阻等)构成的,其价格昂贵,体积也很大。
在20世纪60年代中期,第一块集成运算放大器问世,其是将相当多的晶体管和电阻集中在一块硅片上而成的。
它的出现标志着电子电路设计进入了一个新时代。
由于集成运算放大器具有十分理想的特性,它不但可以作为基本运算单元完成加减、乘除、微分、积分等数学运算。
还在信号处理及产生等方面都有广泛的应用。
电子工程师们在电子电路设计时需要应用大量的集成运算放大器,这使得各种高性能、低价格的运放应运而生。
7.1.1 运算放大器的端子从处理信号的观点出发,运算放大器有三个端子,即反相输入端(用符号“-”表示)、同相输入端(用符号“+”表示)和输出端,如图7.1所示。
考虑到放大器要有直流电源才能工作,大多数集成运放需要两个直流电源供电,如图7.2所示。
图7.2中7,4两个端子由运放内部引出,分别连接到正电源+CC U 和负电源-EE U 。
运放的参考地点就是两个电源公共端——地。
图7.1 理想运算放大器 图7.2 理想运放的供电方式第7章 集成运算放大器 ·145··145·除了三个信号端和两个电源供给端以外,运算放大器还可能有几个供专门用途的其他端子,如频率补偿端和调零端等,这些端子的功能请读者自行分析。
7.1.2 理想运算放大器为了建立运算放大器的基本概念,下面先来介绍理想运算放大器。
集成运算放大器-复习ppt

R4
当 Rf =R1 =R2 =R3 时
Uo Uo = -(Ui1 + Ui2 +Ui3 )
反相求和
反相加法运算电路
平衡电阻 R4=R1//R2//R3//Rf
Uo(R R1 f Ui1R R2 f Ui2R R3 f Ui3)
(R R 1 f U i1)(R R 2 f U i2)(R R 3 f U i3)
反相比例运算电路
要求掌握: 1、UO的计算 2、平衡电阻的计算
同相比例运算电路
反相加法运算电路
减法运算电路
-
同相加法运算电路
R1
Ui
Rf
_ A
+
R2
反相比例运算电路
※
Uo
Rf R1
Ui
Uo
当 Rf =R1时, Uo = - Ui
反相器
问题:R2=? ∵ 集成运放的输入端是差动放大电路
∴ 要求两个输入端完全对称
被比较电压 门限电压UR
① ui > 0 U+> U- Uo= +Uom
U+
+
-VCC
集成运算放大器
Uo
+VCC
理想运放的特点: Uo 1、 rid→∞ ro→0
※ I+ = I- = 0 2、开环电压放大倍数 Auo→∞
Ui = U+-U① U+> U- Ui > 0 Uo= +Uom=+VCC ② U+< U- Ui < 0 Uo= -Uom=-VCC
-VCC
Ui =U+-U-
※
Uo
(1
Rf R0
高三集成运算电路知识点

高三集成运算电路知识点集成运算电路是电子科学与技术中的重要组成部分,广泛应用于信号处理、自动控制等领域。
在高三阶段,学习集成运算电路的知识是非常重要的。
下面将介绍一些高三阶段常见的集成运算电路知识点。
一、集成运算放大器集成运算放大器(Operational Amplifier,简称OP-AMP)是集成电路中最重要的一类元件。
它具有高增益、高输入阻抗和低输出阻抗等特点。
常见的集成运算放大器有AD741、LM358等。
1. 差分放大器差分放大器是集成运算放大器最常用的电路配置之一。
它具有两个输入端和一个输出端,用于放大两个输入信号的差值。
差分放大器可以通过调节输入电阻和反馈电阻的比例来调节放大倍数。
2. 反馈电路反馈电路是集成运算放大器中常用的一种电路组成方式。
通过将部分输出信号反馈到输入端,可以改变电路的增益、频率响应等特性。
常见的反馈电路有电压反馈、电流反馈和混合反馈等。
3. 运算放大器的频率响应集成运算放大器的频率响应是指在不同频率下输出信号的变化情况。
因为集成运算放大器具有内部补偿电容,所以在高频率下其增益会有所下降。
为了满足不同频率下的应用需求,可以根据实际情况选择合适的运算放大器。
二、比较器比较器是一种将输入信号与参考电压进行比较,并输出相应结果的电路。
常见的比较器有LM311、LM393等。
比较器可以用于模拟电压比较、数字电平判断等应用。
1. 开环比较器开环比较器是指将输入信号直接与参考电压比较的比较器电路。
它可以通过调节反馈电阻的比例来改变输出电平的阈值。
2. 有限增益比较器有限增益比较器是在开环比较器的基础上加入了电压放大器,以提高比较器的灵敏度和电平阈值的可调范围。
三、积分器积分器是一种将输入信号进行积分运算后输出的电路。
它可用于模拟电子滤波器、信号调制等领域。
1. 基本积分器基本积分器是指将输入信号经过电容电压积分后输出的电路。
通过调节电容和电阻的数值可以改变积分器的时间常数。
集成运算放大器的主要知识点

-
THANKS!
大学生活即将结束,在此,我要感谢所有老师和一起成长的同学,是你们 大学生涯给予了极大的帮助。本论文能够顺利完成,要特别感谢我的导师
感谢您的耐心指导,您辛苦了!
建立时间:这是指运放达到稳定输出所需的时间。建立时间对于需要快
集成运算放大器的主要知识点
压摆率:这是指运放在大信号输入时的最大 输出电压变化率。压摆率决定了运放在大信 号应用中的性能
输入阻抗:这是指运放在输入端的电阻抗。 输入阻抗通常很高,可以与传感器等低阻抗 电路直接连接
电源抑制比:这是指运放在电源电压变化时 保持稳定性能的能力。电源抑制比越高,电 源电压变化对运放性能的影响越小
放大级:这一级通常包含一个或多个放大器,用于将差分输入级的微小 。放大级的输出是整个运放的输出信号
集成运算放器的主要知识点
以上就是集成运算放大器的主要知识点。理解和掌握这些知识点有助于深 电子元件的性能和应用 除了上述提到的知识点,集成运算放大器还有一些重要的特性需要理解
频率响应:这是指运放在不同频率下的增益和相位响应。运放的频率响 部电路的RC时间常数决定
集成运算放大器的主要知识点
目录
集成运算放大器的主要知识点
集成运算放大器(通常简称为运放)是一种集成电路,它包含三个基本组成 级、放大级和输出级。以下是对这些组成部分的详细解释
差分输入级:这是运放的两个输入端,通常称为"非反向输入端"(同 反向输入端"(反相输入端)。这两个输入端之间的电压差异是运放的
失调电压漂移:这是指运放在温度变化时失
最大功耗:这是指运放 功耗。超过这个功耗可 降
共模抑制比:这是指运 的共模干扰抑制能力。 放在存在共模干扰时性
集成运算放大器(压控电流源)运用电路及详细解析

微分器的电路结构与积分器类似,包括集成运算放大器、 电容和反馈电阻。
微分器在信号处理、控制系统和电子测量等领域有广泛 的应用。
06 结论与展望
结论总结
01
集成运算放大器(压控电流源)在电路中具有重要作用,能够实现信号的放大、运 算和处理等功能。
02
通过对不同类型集成运算放大器(压控电流源)的特性、应用和电路设计进行比较 ,可以更好地选择适合特定需求的集成运算放大器(压控电流源)。
差分输入电路
总结词
差分输入电路是一种较为特殊的集成运算放大器应用电路,其输出电压与两个输 入电压的差值呈线性关系。
详细描述
差分输入电路的输出电压与两个输入电压的差值呈线性关系,适用于信号比较、 差分信号放大等应用。这种电路具有高输入阻抗和低输出阻抗的特点,能够有效 地减小外界干扰对信号的影响。
03 压控电流源的应用电路
详细描述
反相输入电路的输出电压与输入电压呈反相关系,即当输入 电压增加时,输出电压减小,反之亦然。这种电路具有高输 入阻抗和低输出阻抗的特点,适用于信号放大、减法运算等 应用。
同相输入电路
总结词
同相输入电路是一种较为简单的集成运算放大器应用电路,其输出电压与输入 电压呈同相关系。
详细描述
同相输入电路的输出电压与输入电压保持一致,适用于信号跟随、缓冲等应用。 这种电路具有低输入阻抗和低输出阻抗的特点,能够提高信号的驱动能力。
积分器可以将输入的电压信号 转换成电流信号,再通过负载 电阻转换成电压信号,实现信 号的积分运算。
案例三:微分器的应用
微分器是集成运算放大器的另一种应用可以将输入的电压信号转换成电流信号,再通过 负载电阻转换成电压信号,实现信号的微分运算。
第8章 集成运算放大器

第8章 集成运算放大器
8.1 集成运算放大器简介
两个输入端电位相等,好像短接在一起一样,但并非真的短路,所以称为虚短路, 简称“虚短”。 由理想运放电路可知
两个输入端之间输入电阻无穷大,好像断路一样,但并非真的断路,所以称为虚断 路,简称“虚断”。 当集成运放工作在非线性区时,由集成运放的电压传输特性可知
第8章 集成运算放大器
8.1 集成运算放大器简介
3. 集成运放的电路符号与外形
集成运放的图形符号如图8-2所示,是国际标准符号。三角形表示放大器,三角形 所指方向为信号传输方向,Ao为“∞”时表示开环增益极高。它有两个输入端和一 个输出端。同相输入端标“+”(或P),表示输出端信号与该端输入信号同相;反 相输入端“-”(或N),表示输出端信号与该端输入信号反相。输出端的“+”表示 输出电压为正。
2. 集成运放的电压传输特性 如图8-4所示为表示输出与输入电压关系的特性曲线,称为电压传输特性。
第8章 集成运算放大器
8.1 集成运算放大器简介
当集放输大成入倍运电数放压A工o很u作i在大在A,线、所性B之以区间线时时性,,区输集很入成窄电运。压放要与工使输作集出在成电线运压性放有区在关,较系在大AA的o=、u输uBoi 。入之由电外于压时集下处成于也运非能放工线电作性压区在。 线性区,必须在电路中引入深度负反馈。 集成运放工作在非线性区时,输出只有两种饱和状态±UoM。电压饱和值±UoM略 低于正负电源电压。
3. 理想运算放大器的条件
在分析集成运放的应用电路时,为了简化电路分析,常将集成运放理想化。理想化 的条件是:
第8章 集成运算放大器
8.1 集成运算放大器简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成运算放大器复习
一、理想运放特性
开环差模电压增益A ud→∞;
差模输入电阻R id→∞;
差模输出电阻R od→0;
K CMR→∞;
输入失调电流I IO、失调电压U IO和它们的温漂均为零;
输入偏置电流I IB=0;
3dB带宽BW=∞,等等。
二、理想运放的线性工作区
定义:理想运放的线性工作区是指输出电压u o与输入电u i成正比的输入电压的取值范围。
分析:由于理想集成运放的开环放大倍数为无穷大,所以如果将集成运放开环运用时,很微弱的输入信号,就会使输出信号达到其最大值或最小值,其几乎没有线性工作区。
而要使放大器工作在线性区,显然开环运放不能满足要求,必须将集成运放加上负反馈使整个放大器的放大倍数降下来,这也是
集成运放线性运用的特点,本章集成运放的应用就属于线性应用。
三、线性区域下的两个重要结论
对于工作在线性区的理想运放,下述两条重要结论普遍适用,也是分析运放应用电路的基本出发点。
虚短:即两个输入端之间的电位差即净输入量几乎为零;
虚断:流过两个输入端的电流也几乎为零。
四、理想运放的非线性工作区
集成运故的非线性工作区是指输出电压uo与输入电压ui不成比例时输入电压的取值范
围。
前面提到理想运放的开环放大倍数为无穷大。
,所以只要理想运放开环运用或加正反馈时,即使很微弱的输入信号电压,其输出电压就会立即达到最高电平U OH最低电平U OL,运放工作在非线性区。
五、电压比较器
电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基
本单元
电路。
1、电压比较器的特点
(1)比较器中的运放工作于开环或正反馈状态,输入端的虚短特征不再存在;
(2)输出与输入之间呈现非线性特性,输出不是高电乎就是低电平;
(3)由于运放的输入电阻高,输入电流一般非常小,可以忽略,即仍可认为运放的输入电流为零。
2、电压比较器的特性分析
通常用电压传输特性来描述电压比较器输出电压与输入电压之间的函数关系
特性具有3个要素:
(1)输出高、低电平,它取决于集成运放输出电压的最大幅度或输出端的限幅电路;
(2)阈值电压,它是使集成运放同相输入端和反相输入端电位相等时所对应的输入电压;
(3)输入电压超过阈值电压时输出电压的跃变方向,它决定于输入电压是作用于集成运
放反相输入端,还是同相输入端。
3、常用电压比较器
常用的电压比较器有单门限比较器、滞回比较器、窗口比较器等。
单门限比较器只有一个阈值电压;窗口比较器有两个阈值电压,当输入电压向单一方向变化时,输出电压跃变两
次;滞回比较器具有滞回特性,虽有两个阈值电压,但当输入电压向单一方向变化时,输出
电压仅跃变一次。
六、运算放大器的分析方法
在解运算放大器构成的各种电路之前.首先要观察电路是否引入了深度负反馈。
如
果引入了深度负反馈,且输出电压没有超出线性动态范围,即运放工作在线性状态,那么
可运用虚断、虚短等概念来解题。
碰到电容,用1/jwc或1/sc来代替。
如果电路引入正反馈(或负反馈比正反馈弱),或没有引入反馈(开环工作),则虚短概念不能使用,电路工作在非线性状态.这种电路可能是比较器、振荡器等,而不是运算器、U/I、I/U变换器等。
习题
一、填空题
1、理想集成运放的Aud=_____________,Rid=___________,Ro=____________,输入失调电流为______________,K CMR=_____________。
2.集成运放应用于信号运算时工作在_________区域。
[解答]
1.Aud=∞,Rid=∞,Ro=0,输入失调电流为0,KCMR=∞。
2.线性区。
集成运放应用于信号运算时,加入负反馈使集成运放工作于线性区,只有这样,才可能使之完成模拟信号的运算,否则集成运放的输出为高电平或低电平。