中考数学压轴题函数等腰三角形问题

合集下载

中考数学——等腰三角形问题解题思路与攻略

中考数学——等腰三角形问题解题思路与攻略

中考数学——等腰三角形问题解题思路与攻略等腰三角形是中考数学中常见的一个题型,掌握解题思路和攻略对于中考数学的顺利通过非常重要。

本文将介绍等腰三角形问题的解题思路和攻略,希望能帮助同学们更好地应对这类问题。

一、等腰三角形的定义和性质等腰三角形是指两条边相等的三角形,其性质有以下几点:1. 两底角相等:等腰三角形的两个底角(底边所对的角)相等。

2. 顶角平分底边:等腰三角形的顶角(顶边所对的角)平分底边。

二、解题思路解等腰三角形问题的关键在于利用等腰三角形的性质,找到已知条件和需要求解的未知量之间的关系。

下面将介绍几种常见的解题思路。

1. 使用底角性质解题:如果已知等腰三角形的两个底角相等,可以利用这一性质来解题。

通过已知条件和底角性质,可以建立方程或找到相应的关系式,从而求解未知量。

2. 利用顶角平分底边性质解题:如果已知等腰三角形的顶角平分底边,可以利用这一性质来解题。

可以通过已知条件和顶角平分底边性质,建立方程或找到相应的关系式,进而求解未知量。

3. 利用勾股定理解题:有时候,等腰三角形问题中可能会涉及到与直角三角形相关的内容。

此时,可以尝试利用勾股定理和等腰三角形的性质进行解题。

三、解题攻略除了解题思路外,下面还列举了一些常见的解题攻略,帮助同学们更好地解决等腰三角形问题。

1. 注意题目中给出的条件:在解题时,要仔细阅读题目,将已知条件和需要求解的未知量提取出来,明确问题的要求。

2. 利用图形性质:画图是解决等腰三角形问题的有效方法之一。

合理利用等腰三角形的性质和图形的特点,可以更好地理解和解决问题。

3. 运用代数方法:当图形给出的信息较少或者不便于直接利用几何性质时,可以尝试使用代数方法,建立方程或者列举可能的条件,以求解未知量。

4. 反证法解题:有时候,可以运用反证法来解决等腰三角形问题。

假设某个结论不成立,通过推理推导出矛盾,从而得出正确结论。

四、总结通过上述的解题思路和攻略,相信同学们对于中考数学中的等腰三角形问题能够有更清晰的认识和更高的解题能力。

中考数学压轴题---因动点产生的等腰三角形问题[含答案]

中考数学压轴题---因动点产生的等腰三角形问题[含答案]

因动点产生的等腰三角形问题例1(2011年湖州市中考第24题)如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 所经过的路径长为54π.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2(2011年盐城市中考第28题)如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8AP RA C P P O RCO R A S S SS=--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P在OC上运动时的情形,0≤t<4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,42AB=,所以OB>AB.因此∠OAB>∠AOB>∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠P AQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中,3cos5A∠=为定值,7AP t=-,5520333AQ OA OQ OA OR t=-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例3(2010年上海市闸北区中考模拟第25题)如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N 分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1满分解答(1)如图2,图3,作NQ⊥x轴,垂足为Q.设点M、N的运动时间为t秒.在Rt△ANQ中,AN=5t,NQ=4t,AQ=3t.在图2中,QO=6-3t,MQ=10-5t,所以MN∶NP=MQ∶QO=5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-. (Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=.(Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况. ②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4(2010年南通市中考第27题)如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例5(2009年重庆市中考第26题)已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1 图2满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y . (2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DA DN FA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO . (3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

2024年九年级数学中考专题:二次函数等腰三角形存在性问题+两圆一线课件+

2024年九年级数学中考专题:二次函数等腰三角形存在性问题+两圆一线课件+

做题技巧
1、做题工具: 圆规,直尺
2、做题方法: 两圆一线
3、做题思想: 数形结合,分 类讨论
谢谢
C
二、两圆一线画法
尺规作图
二、两圆一线画法(尺规作图)
1、探究实验:以线段AB为边做一个等腰三角形? 2、作图:如图,在平面直角坐标系找一点P,使得ΔABP为
等腰三角形,则满足要求的点P 有几个?
三、例题解析
二次函数等腰三角形存在性问题 -----两圆一线
三、例题解析
如图,抛物线与x轴交于A. B两点,与y轴交C点,点A的坐标 为(2,0),点C的坐标为(0,3)它的对称轴是直线x=−0.5 (1)求抛物线的解析式; (2)M是坐标轴上任意一点,当△MBC为等腰三角形时, 求M点的坐标。
中考专题: 二次函数等腰三角形存在性问题
-----两圆一线Leabharlann 目录CONTENTS
一、等腰三角形 二、两圆一线画法 三、例题解析 四、方法归纳
一、等腰三角形
一、等腰三角形
等腰三角形 定义:
有两条边相等的三角形为等腰三角 形,相等的两条边叫做腰
如图:ΔABC,AB=AC, 则ΔABC为等腰三角形
A
B
轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件 的所有点P的坐标
2.如图所示,二次函数y=k(x-1)2+2的图像与一次函数y=kx-k+2 的图像交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交 于C、D两点,其中k<0.
(1)求A、B两点的横坐标;
(2)若△OAB是以OA为腰的等腰三角形,求k的值;
四、方法归纳
四、方法归纳
2、分类讨论
4、写结果
1、先作图

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题专题等腰三角形存在性问题题型一:几何图形1、在△ABC中,AB=AC,∠A=36°.求∠ABC的度数。

解析:由AB=AC,可得∠B=∠C,设∠B=∠C=x,则∠A=180°-2x,又已知∠A=36°,所以180°-2x=36°,解得x=72°,所以∠B=∠C=72°,∠ABC=180°-∠A-∠B=72°。

2、如图(2),BD是△ABC中∠ABC的平分线.①找出图中所有等腰三角形(等腰三角形ABC除外),并选其中一个写出推理过程;②在直线BC上是否存在点P,使△CDP是以CD为一腰的等腰三角形?如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠CPD的度数;如果不存在,请说明理由.解析:①等腰三角形有△ABD、△CBD、△ACD,以△ABD为例,由AB=AD,∠BDA=∠BAD=x,∠ABD=180°-2x,所以∠ABD=∠CBD=∠ACD=72°。

②存在点P,满足△CDP是以CD为一腰的等腰三角形。

如图(3),连接DP,由对称性可知∠BDP=∠ADP,又∠BDP=∠ABC/2,∠ADP=∠ACB/2,所以∠ABC=∠ACB,即△ABC是等腰三角形,所以CD=BC,所以∠CPD=∠CDP=90°-x。

变式一:如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm 每秒的速度运动,设运动时间为t秒.1)当t=1时,求△ACP的面积.2)t为何值时,线段AP是∠CAB的平分线?3)当t为何值时,△ACP是以AC为腰的等腰三角形?解析:(1)由勾股定理可得AB=10cm,所以△ABC的面积为24cm²,又由正弦定理可得sinA=3/5,所以AC=3cm,AP=2t,所以△ACP的面积为1/2×3×2t=3t。

中考数学第28题函数压轴题求等腰三角形的点的坐标

中考数学第28题函数压轴题求等腰三角形的点的坐标

中考数学第28题函数压轴题求等腰三角形的点的坐标题目:抛物线y=ax^2+bx+3的图像经过点A(-1,0), 点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2) 点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,作EF交x轴于点F,设点F的横坐标为m,求m的取值范围.答案:分析:(1)建议用韦达定理分别求a,b. 然后化为顶点式,直接得到C点的坐标;(2)设D点坐标,由CD=AD求得D的坐标,然后有两种方法,一种是求CD的解析式,然后求CD与抛物线的交点坐标;另一种是利用斜率公式,因为P,C,D三点中的任意两点都可以求得CD的斜率。

后者更好用,但平时用得比较少。

一定要学会哦!(3)破题的关键是证明△EAF和△PCE相似,再利用相似三角形边成比例的关系,就可以列得m关于E的横坐标的函数关系,由E的横坐标的取值范围,就可能求得m的取值范围.解:(1)由3/a=-3,得a=-1; 由-b/a=-1+3=2,得b=2;∴抛物线的表达式为y=-x^2+2x+3=-(x-1)^2+4, C(1,4).(2)设D(d,0),由CD=AD,有(1-d)^2+16=(d+1)^2, 解得:d=4.设P(p, -p^2+2p+3),由(-p^2+2p+3)/(p-4)=4/(1-4)=-4/3,解得:p=7/3或p=1(舍去),-p^2+2p+3=-49/9+14/3+3=20/9,∴P(7/3,20/9).解:(3)∠CEF=∠CAB+∠AFE, 且∠CEF=∠CEP+∠PEF=∠CEP+∠CAB,∴∠AFE=∠CEP, 又∠EAF=∠PCE, ∴△EAF∽△PCE, ∴AE/CP=AF/CE,直线AC的解析式为:y=2x+2, 可设E(t, 2t+2) -1<t<1,则AE=根号((t+1)^2+(2t+2)^2)=根号5(t+1).CE=根号((t-1)^2+(2t+2-4)^2)=根号5(1-t).CP=根号((1-7/3)^2+(4-20/9)^2)=20/9.∴5(1-t^2)=20(m+1)/9,化得:m=-9t^2/4+5/4∴m的取值范围为:-1<m≤5/4。

初中数学压轴题(等腰三角形问题)

初中数学压轴题(等腰三角形问题)
满分解答
(1)∵C(0, ),∴OC= .
∵tan ACO= ,∴OA=1.∴A(-1,0). ∵点 A,C 在抛物线 y=ax2-2ax+b 上,

,解得

∴此抛物线的解析式为 y= x2-x- ;
∴P(3- ,0), 综上所述,当△MPQ 为等腰三角形时,点 P 的坐标为(1,0)或(3- ,0).
然后解方程并检验. 2.本题中等腰三角形的角度特殊,三种情况的点 P 重合在一起.
满分解答
(3)抛物线的对称轴是直线 x=2,设点 P 的坐标为(2, y). ①当 OP=OB=4 时,OP2=16.所以 4+y2=16.解得 y 2 3 . 当 P 在 (2, 2 3) 时,B、O、P 三点共线(如图 2). ②当 BP=BO=4 时,BP2=16.所以 42 ( y 2 3)2 16 .解得 y1 y2 2 3 . ③当 PB=PO 时,PB2=PO2.所以 42 ( y 2 3)2 22 y2 .解得 y 2 3 . 综合①、②、③,点 P 的坐标为 (2, 2 3) ,如图 2 所示.
满分解答
图2
图3
图4
②我们先讨论 P 在 OC 上运动时的情形,0≤t<4.
如图 1,在△AOB 中,∠B=45°,∠AOB>45°,OB=7, AB 4 2 ,所以 OB>AB.因此∠OAB>∠
AOB>∠B.
如图 4,点 P 由 O 向 C 运动的过程中,OP=BR=RQ,所以 PQ//x 轴.
图2
图3
考点伸展
如图 3,在本题中,设抛物线的顶点为 D,那么△DOA 与△OAB 是两个相似的等腰三角形.
由 y 3 x(x 4) 3 (x 2)2 2 3 ,得抛物线的顶点为 D(2, 2 3 ) .

2024届中考数学压轴题攻略(湘教版)易错易混淆集训:等腰三角形中易漏解或多解的问题(原卷版)

2024届中考数学压轴题攻略(湘教版)易错易混淆集训:等腰三角形中易漏解或多解的问题(原卷版)

专题08易错易混淆集训:等腰三角形中易漏解或多解的问题易错点一求长度时忽略三边关系易错点二当腰和底不明求角度时没有分类讨论易错点三三角形的形状不明时与高线及其他线结合没有分类讨论易错点一求长度时忽略三边关系例题:(2022·河北·石家庄石门实验学校八年级期末)已知等腰三角形的两边长分别为4和8,则它的周长等于____________.【变式训练】1.(2022·新疆·和硕县第二中学八年级期末)等腰三角形的两边长分别是3和7,则它的周长是多少()A .13B .17C .13或17D .13或102.(2022·山东菏泽·八年级期末)已知等腰三角形底边和腰的长分别为6和5,则这个等腰三角形的周长为()A .15B .16C .17D .183.已知实数x ,y 满足2|5|(10)0 x y ,则以x ,y 的值为两边长的等腰三角形的周长是()A .20B .25C .20或25D .以上答案均不对4.(2021·云南·富源县第七中学八年级期中)若等腰三角形的周长为26cm ,一边为8cm ,则腰长为_______.5.(2022·黑龙江·肇东市第十中学八年级期末)已知等腰三角形的两边长分别为5cm ,2cm ,则该等腰三角形的周长是________.6.(1)等腰三角形一腰上的中线把周长分为15和12两部分,求该三角形各边的长.(2)已知一个等腰三角形的三边长分别为21,1,32x x x ,求这个等腰三角形的周长.易错点二当腰和底不明求角度时没有分类讨论例题:(2022·山东烟台·七年级期末)若等腰三角形中有一个角等于35 ,则这个等腰三角形的顶角的度数为________.【变式训练】1.(2022·陕西·西安爱知初级中学八年级阶段练习)若等腰三角形有一个内角为40°,则它的顶角度数为________.典型例题2.(2022·陕西·交大附中分校七年级期末)已知ABC 中,20B ,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ________.3.(2022·福建泉州·七年级期末)“特征值”的定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”,记作“()F △”.若等腰ABC 中,80A ,则它的特征值()ABC F △______.4.(2022·江西赣州·八年级期末)如图,ABC 中,AB AC ,40ABC ,点D 在线段BC 上运动(点D 不与点B ,C 重合),连接AD ,作40ADE ,DE 交线段AC 于点E .当ADE 是等腰三角形时,BAD 的度数为______.5.(2021·福建省泉州实验中学八年级期中)如示意图,在△ABC 中,AC =BC ,AE ⊥BC 于点E ,过点B 作∠ABC 的角平分线BF 交AE 于G ,点D 是射线BF 上的一个动点,且点D 在△ABC 外部,连接AD .∠C =2∠ADB ,当△ADG 为等腰三角形,则∠C 的度数为____________6.(2022·江西吉安·八年级期中)如图,O 是等边△ABC 内一点,连接OA ,OB ,OC ,100AOB ,BOC ,将△BOC 绕点C 顺时针旋转60°,得到△ADC ,连接OD .若△AOD 是等腰三角形,则 的度数为________.7.(2022·江苏·八年级单元测试)如图,在△ABC 中,AB =AC ,∠ABC =30°,D 、E 分别为BC 、AB 边上的动点,且∠ADE =45°,若△ADE 为等腰三角形,则∠DAC 的大小为______.易错点三三角形的形状不明时与高线及其他线结合没有分类讨论例题:若等腰三角形一腰上的高与另一腰的夹角为50 ,则这个等腰三角形的底角的度数为()A .20B .50 或70C .70D .20 或70 【变式训练】5.(2022·陕西·交大附中分校七年级期末)已知ABC 中,20B ,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ________.6.(2021·江西育华学校八年级期末)已知△ABC 中,如果过顶点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的二分割线.如图1,Rt △ABC 中,显然直线BD 是△ABC 的关于点B 的二分割线.在图2的△ABC 中,∠ABC =110°,若直线BD 是△ABC 的关于点B 的二分割线,则∠CDB 的度数是_____.。

中考数学复习:专题3-7 例析一次函数图象截出的等腰三角形问题

中考数学复习:专题3-7 例析一次函数图象截出的等腰三角形问题

例析一次函数图象截出的等腰三角形【专题综述】当一次函数图象与坐标轴围成的三角形是一个等腰直角三角形时,不仅仅考查一次函数的图象和性质,还会涉及等腰三角形一系列性质,的这个特殊的三角形能给我们解题带来许多的精彩. 【方法解读】例1 如图1,直线4y x =-+与两坐标轴分别相交于A 、B 两点,点M 是线段AB 上任意一点(A 、B 两点除外),过点M 分别作MC OA ⊥于点C ,MD OB ⊥于点D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)如图2,3当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为(04)a a <<,正方形OCMD 与AOB ∆重叠部分的面积为S .试求S 与a 的函数关系式,并画出该函数的图象.分析 第(1)问,要想确定四边形的周长在点的运动过程是如何变化的,首先要解决的就是结合图形表示出四边形的周长.根据矩形的性质,已知这里四边形的周长是2()OC MC +,四边形周长的变化规律就取决于线段和OC MC +的变化规律.结合题目条件,我们会有两种基本的思路:一是坐标法表示线段,线段OC 的长恰好是点M 的横坐标的绝对值,MC 的长恰好是点M 的纵坐标的绝对值,这是这一方法的精髓;二是转化线段和法,根据条件知道OAB ∆是一个等腰直角三角形,且腰4OA OB ==,因此MC CA =,所以线段MC OC +就转化成了OC AC OA +=,从而也能将所求化解.第(2)问,在探求周长的基础上,进一步探求四边形的面积变化规律.借鉴第(1)问的思路,解题的关键是先表示出四边形的面积,即OC MC ⨯,利用坐标法就可以将四边形的面积转化成二次函数的,最值自然就可以确定.第(3)问,解答时体现两种数学思想的灵活应用:一是数形结合的思想,初步判定重合部分图形的形状,确定面积的分割法表示;二是分类的思想,抓住a 的变化规律,立足正方形成立的条件,给出a 的正确分类也是解题的重要因素.解 (1)因为直线4y x =-+与两坐标轴分别相交于A 、B 两点,所以点A 的坐标为(4,0),点B 的坐标为(0,4).所以4OA =,4OB =,所以ABO ∆是等腰直角三角形.因为MC OA ⊥,MD OB ⊥,所以四边形OCMD 是矩形,且MCA ∆是等腰直角三角形,所以MC AC =.因为矩形OCMD 的周长为2()2()28OC MC OC CA OA +=+==,所以四边形OCMD 的周长是定值,且为8;(2)设四边形OCMD 的面积为S ,根据题意,得22(4)4(2)4S MC MD x x x x x ==-+=-+=--+所以四边形OCMD 的面积是关于点M 的横坐标(04)x x <<的二次函数,并且当2x =,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4;(3)设两个图形重合部分的面积为S ,正方形OCMD 与直线的交点Q ,如图2,当02a <≤时,2142S a =-. 如图3,当24a <<时,此时a 为正方形的边与直线交点的横坐标,所以交点的纵坐标为4a -+;纵坐标的绝对值恰好是重叠图形的等腰直角三角形的腰长,所以21(4)2s a =-;所以S 与a 函数的图象如图4所示.点评 这道题是知识与方法的盛宴.涉及的知识点广,有几何知识,一次函数知识,二次函数知识等;涉及的数学思想多,有数形结合的思想,转化的思想,分类的思想,平移的思想等,可谓是包罗万象,值得深思与探究.例2 (2013年长沙中考题)如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2.(1)求OAB ∠的度数; (2)求证AOF ∆∽BEO ∆;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为1S ,OEF ∆的面积为2S ,试探究:12S S +是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由.分析 第(1)问的证明是比较容易的;第(2)问的证明抓住一个关键点:两边对应成比例且夹角相等的两个三角形相似;第(3)问的关键在判定三条线段组成的三角形的形状.解 (1)当0x =时,2y =,当0y =时,2x =,所以点A 坐标为(2,0),点B 坐标为(0,2),OA OB =,所以45OAB ∠=︒ ;(2)法 1 因为矩形OMPN 的面积是2,所以点P 坐标为2(,)a a,点E 坐标为(,2)a a -+,点F 坐标为222(,)a a a-22AF a=,2BE a =222OA BE a a==,2222AF a OB ==OA AFBE OB∴= 45OAF EBO ∠=∠=︒∴AOF ∆∽BEO ∆法2:(2,0)A ,(0,2)B2OA OB ∴== 4OA OB ∴=点P 的坐标为(,)a b(,2)E a a ∴-,(2,)F b b -,如图5在等腰直角三角形AFD 中,得2AF b =,在等腰直角三角形BEP 中,2BE a =,222AF BE b a ab ∴==因为矩形的面积是定值2,2ab ∴=4AF BE ∴=AF BE OA OB ∴=OA AFBE OB∴= 45OAF EBO ∠=∠=︒AOF ∴∆∽BEO ∆(3)根据(2)知,以BF EF AE ,,为边的三角形是直角三角形,且斜边是2(2)EF a b =+-,所以三角形的外接圆面积为212(2)(a b S π+-=2(2)2a b π=+-过点O 作EF 边上的高OD ,易求得高为2OD =,2122(2)2S a b ∴=+-2a b =+-212(2)(2)2S S a b a b π∴+=+-++-所以关于2a b +-的二次函数的开口向上,所以12S S +有最小值,当12a b π+-=-时,函数有最小值,但是此值不在取值范围内,因此取不到.因为a ,b 都是正数,222a b ab ∴+≥=12222a b π∴+-≥->-∴当2222a b +-=-时,12S S +的值最小,最小值为2(222)2222π-+-反思 此题可以引申出如下几个独立的新结论:结论1 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,若E ,F 都在直线AB 上,求证:EOF ∠是一个定值.第(2)问的三种证明方法都可以帮助你实现证明.结论2 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,若E ,F 都在直线AB 上,试判断以BF EF AE ,,为边的三角形的形状,并证明你的猜想.相信读者也会轻松解决.结论3 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,若E ,F 都在直线AB 上,设OBF ∆面积为1S ,OEF ∆的面积为2S ,OEA ∆的面积为3S ,试判断1S ,2S ,3S 之间的关系,并证明你的猜想.根据结论2,你同样能轻松解决.结论4 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,若E ,F 都在直线AB 上,设BNF ∆面积为1S ,PEF ∆的面积为2S ,MEA ∆的面积为3S ,试判断1S ,2S ,3S 之间的关系,并证明你的猜想.结论5 如图5,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点(,)P a b 在第一象限,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点(,)P a b 运动时,矩形PMON 的面积为定值2,确定点P 所在函数的解析式. 上述结论的答案分别是: 结论1:45EOF ∠=︒. 结论2:直角三角形.结论3:222213S S S =+.结论4:213S S S =+. 结论5:2y x=. 【强化训练】1.(2016浙江省温州市)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y =x +5B .y =x +10C .y =﹣x +5D .y =﹣x +102.(2016四川省内江市)如图所示,已知点C (1,0),直线y =﹣x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是 .3.(2017丽水)如图,在平面直角坐标系x Oy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C (2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结P A,PC,若∠CP A=∠ABO,则m的值是.4.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A. (A)B. (B)C. (C)D. (D)5.如图,直线l:y=x+1交y轴于点A1,在x轴正方向上取点B1,使OB1=OA1;过点B1作A2B1⊥x轴,交l 于点A2,在x轴正方向上取点B2,使B1B2=B1A2;过点B2作A3B2⊥x轴,交l于点A3,在x轴正方向上取点B3,使B2B3=B2A3;…记△OA1B1面积为S1,△B1A2B2面积为S2,△B2A3B3面积为S3,…则S2017等于()A. 24030B. 24031C. 24032D. 240336.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图①所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OP A的面积是3时,请求出点P的坐标;(2)如图②,坐标系xOy内有一点D(-1,2),点E是直线l上的一个动点.①请求出|BE+DE|的最小值和此时点E的坐标;②若将点D沿x轴翻折到x轴下方,直接写出|BE-DE|的最大值,并写出此时点E的坐标.7.一次函数y=kx+b(k≠0)的图象由直线y=3x向下平移得到,且过点A(1,2).(1)求一次函数的解析式;(2)求直线y=kx+b与x轴的交点B的坐标;(3)设坐标原点为O,一条直线过点B,且与两条坐标轴围成的三角形的面积是12,这条直线与y轴交于点C,求直线AC对应的一次函数的解析式.8.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值9.如图,在平面直角坐标系中,已知直线2y x =+和6y x =-+与x 轴分别相交于点A 和点B ,设两直线相交于点C ,点D 为AB 的中点,点E 是线段AC 上一个动点(不与点A 和C 重合),连结DE ,并过点D 作DF DE ⊥交BC 于点F . (1)判断ABC 的形状,并说明理由.(2)当点E 在线段AC 上运动时,四边形CEDF 的面积是否为定值?若是,请求出这个定值;若不是,请说明理由.(3)当点E 的横坐标为12-时,在x 轴上找到一点P 使得PEF 的周长最小,请直接写出点P 的坐标.10.如图,在平面直角坐标系xOy 中,点A 的坐标为(5,0),点B 的坐标为(3,2),直线111l y k x =:经过原点和点B ,直线222l y k x b =+:经过点A 和点B .(1)求直线1l , 2l 的函数关系式;(2)根据函数图像回答:不等式120y y ⋅<的解集为 ;(3)若点P 是x 轴上的一动点,经过点P 作直线m ∥y 轴,交直线1l 于点C ,交直线2l 于点D ,分别经过点C ,D 向y 轴作垂线,垂足分别为点E , F ,得长方形CDFE .①若设点P 的横坐标为m ,则点C 的坐标为(m , ),点D 的坐标为(m , );(用含字母m 的式子表示)②若长方形CDFE 的周长为26,求m 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012中考数学压轴题函数等腰三角形问题(一) 例1
如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.
(1)求点D的坐标(用含m的代数式表示);
(2)当△APD是等腰三角形时,求m的值;
(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H 所经过的路长(不必写解答过程).
图1 图2
动感体验
请打开几何画板文件名“11湖州24”,拖动点P在OC上运动,可以体验到,△APD的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”,拖动点P由O向C运动,可以体验到,点H在以OM为直径的圆上运动.双击按钮“第(2)题”可以切换.
思路点拨
1.用含m的代数式表示表示△APD的三边长,为解等腰三角形做好准备.
2.探求△APD是等腰三角形,分三种情况列方程求解.
3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C .
满分解答
(1)因为PC //DB ,所以1CP PM MC BD DM MB
===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).
(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32
m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43
m =(如图4)或4m =(不合题意,舍去).
③当DA =DP 时,2(4)m -244(2)m =+-.解得23
m =(如图5)或2m =(不合题意,舍去).
综上所述,当△APD 为等腰三角形时,m 的值为32,43或23

图3 图4 图5
(3)点H 所经过的路径长为54
π.
考点伸展
第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单: ①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以
12PC MB CM BA ==.因此12PC =,32
m =. ②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43
m =. 第(2)题的思路是这样的:
如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.
图6 图7
例2
如图1,已知一次函数y =-x +7与正比例函数43
y x 的图象交于点A ,且与x 轴交于点B .
(1)求点A 和点B 的坐标;
(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y
轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O
—C —A 的路线向点A 运动;同时直线l 从点B 出发,以
相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,
交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P
和直线l 都停止运动.在运动过程中,设动点P 运动的
时间为t 秒.
①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?
②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.
图1
动感体验
请打开几何画板文件名“11盐城28”,拖动点R 由B 向O 运动,从图像中可以看到,△APR 的面积有一个时刻等于8.观察△APQ ,可以体验到,P 在OC 上时,只存在AP =AQ 的情况;P 在CA 上时,有三个时刻,△APQ 是等腰三角形.
思路点拨
1.把图1复制若干个,在每一个图形中解决一个问题.
2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.
3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.
满分解答
(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩
得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).
(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O R C O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222
t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.
因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.
图2 图3 图4
②我们先讨论P 在OC 上运动时的情形,0≤t <4.
如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .
如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.
因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.
我们再来讨论P 在CA 上运动时的情形,4≤t <7.
在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418
t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.
如7,当PA =PQ 时,那么12cos AQ A AP
∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643
t =. 综上所述,t =1或418或5或22643
时,△APQ 是等腰三角形.
图5 图6 图7
考点伸展
当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.。

相关文档
最新文档