2019年中考数学二次函数压轴题专练
2019-2020年中考数学二次函数压轴题汇总训练(50题含答案和解析)

解答题(共50题)1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S=S△ABN﹣S△BMN△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;(3)⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,由d(⊙T,△ABC)=1知此时t=﹣4;②当⊙T在△ABC内部时,当点T与原点重合时,d(⊙T,△ABC)=1,知此时t=0;当点T位于T3位置时,由d(⊙T,△ABC)=1知T3M=2,∵AB=BC=8、∠ABC=90°,∴∠C=∠T3DM=45°,则T3D===2,∴t=4﹣2,故此时0≤t≤4﹣2;③当⊙T在△ABC右边时,由d(⊙T,△ABC)=1知T4N=2,∵∠T4DC=∠C=45°,∴T4D===2,∴t=4+2;综上,t=﹣4或0≤t≤4﹣2或t=4+2.【点评】本题主要考查圆的综合问题,解题的关键是理解并掌握“闭距离”的定义与直线与圆的位置关系和分类讨论思想的运用.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.【分析】(1)求出A、B两点坐标,即可解决问题;(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴交BE于N.构建二次函数利用二次函数的性质求出满足条件的点P坐标,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,因为FK=OF,推出PH+HF+FO=PH+FH+Fk=PH+HK,此时PH+HF+OF的值最小,解直角三角形即可解决问题;(3)分两种情形分别求解即可;【解答】解:(1)由题意A(1,3),B(3,3),∴AB=2.(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴J交BE于N.∵直线BE的解析式为y=x,∴N(m,m),=×2×(﹣m2+3m)=﹣m2+3m,∴S△PEB∴当m=时,△PEB的面积最大,此时P(,),H(,3),∴PH=﹣3=,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,∵FK=OF,∴PH+HF+FO=PH+FH+FK=PH+HK,此时PH+HF+OF的值最小,。
最新中考数学压轴题专项训练:二次函数(有答案)

2019年中考数学压轴题专项训练:二次函数1.如图,已知抛物线y =x 2﹣x ﹣n (n >0)与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C .(1)若AB =4,求n 的值;(2)如图,若△ABC 为直角三角形,求n 的值;(3)如图,在(2)的条件下,若点P 在抛物线上,点Q 在抛物线的对称轴上,是否存在以点B 、C 、P 、Q 为顶点的四边形是平行四边形?若存在,请求P 点的坐标;若不存在,请说明理由.解:(1)当y =0时, x 2﹣x ﹣n =0,解得:x 1=,x 2=,∴点A 的坐标为(,0),点B 的坐标为(,0).∵AB =4,∴﹣=4, 整理,得:9+8n =16,解得:n =.(2)当x =0时,y =x 2﹣x ﹣n =﹣n ,∴点C 的坐标为(0,﹣n ).∵△ABC 为直角三角形,∴∠ACB =90°,∴∠ACO +∠BCO =90°,∠CBO +∠BCO =90°,∴∠ACO =∠CBO .又∵∠AOC =∠COB =90°,∴△AOC ∽△COB ,∴=,∴OA •OB =OC 2,即﹣•=n 2, 整理,得:n 2﹣2n =0,解得:n 1=0(舍去),n 2=2.(3)由(2)可知,点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,﹣2),抛物线的对称轴为直线x =.设点P 的坐标为(m , m 2﹣m ﹣2),分两种情况考虑,如图2所示:①若BC 为边,当四边形BCP 1Q 1为平行四边形时,﹣m =4﹣0,解得:m =﹣,∴点P 1的坐标为(﹣,);当四边形BCQ 2P 2为平行四边形时,m ﹣=4﹣0,解得:m =,∴点P 2的坐标为(,).②若BC 为对角线,设BC ,P 3Q 3的交点为M ,∵点B 的坐标为(4,0),点C 的坐标为(0,﹣2),∴点M 的坐标为(2,﹣1),∴+m =2×2,解得:m =,∴点P 3的坐标为(,﹣).综上所述:存在以点B 、C 、P 、Q 为顶点的四边形是平行四边形,点P 的坐标为(﹣,),(,)或(,﹣).2.如图,抛物线y=ax2+bx+5(a≠0)交直线y=kx+n(k>0)于A(1,1),B两点,交y轴于点C,直线AB交y轴于点D.已知该抛物线的对称轴为直线x=.(1)求a,b的值;(2)记直线AB与抛物线的对称轴的交点为E,连结CE,CB.若△CEB的面积为,求k,n的值.解:(1)由题意,得,解得,故所求a 的值为1,b 的值为﹣5;(2)如图,设点B (m ,m 2﹣5m +5),过A 作AG ⊥y 轴于G ,过B 作BF ⊥x 轴于F ,延长GA 交BF 于H .∵DG ∥BF ,∴=,即=,∴DG =m ﹣4,∴CD =m .∵S △CEB =S △CDB ﹣S △CDE ,∴m 2﹣m ×=,解得m 1=﹣(舍去),m 2=6.把A (1,1),B (6,11)代入y =kx +n ,得,解得.故所求k 的值为2,n 的值为﹣1.3.如图,已知直线=﹣2x +m 与抛物线y =ax 2+bx +c 相交于A ,B 两点,且点A (1,4)为抛物线的顶点,点B 在x 轴上.(1)求m 的值;(2)求抛物线的解析式;(3)若点P是x轴上一点,当△ABP为直角三角形时直接写出点P的坐标.解:(1)将点A坐标代入y=﹣2x+m得:4=﹣2+m,解得:m=6;(2)y=﹣2x+6,令y=0,则x=3,故点B(3,0),则二次函数表达式为:y=a(x﹣1)2+4,将点B的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(3)①当∠ABP=90°时,直线AB的表达式为:y=﹣2x+6,则直线PB的表达式中的k值为,设直线PB的表达式为:y=x+b,将点B的坐标代入上式得:0=3+b,解得:b=﹣,即直线PB的表达式为:y=x﹣,当x=1时,y=﹣1,即点P(1,﹣1);②当∠AP(P′)B=90°时,点P′(1,0);故点P的坐标为(1,﹣1)或(1,0).4.在平面直角坐标系xOy中抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,2),它的顶点为D(1,m)且tan∠COD=(1)求m的值及抛物线的表达式;(2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标.解:(1)顶点为D(1,m),且tan∠COD=,则m=3,则抛物线的表达式为:y=a(x﹣1)2+3,即:a+3=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+2;(2)设:抛物线向上平移n个单位,则函数表达式为:y=﹣x2+2x+2+n,令y=0,则x=1+,令x=0,则y=2+n,∵OA=OB,∴1+=2+n,解得:n=1或﹣2(舍去﹣2),则点A的坐标为(3,0),故点E(3,﹣1).5.如图,抛物线y=ax2﹣bx+3交x轴于B(1,0),C(3,0)两点,交y轴于A点,连接AB,点P为抛物线上一动点.(1)求抛物线的解析式;(2)当点P到直线AB的距离为时,求点P的横坐标;(3)当△ACP和△ABC的面积相等时,请直接写出点P的坐标.解:(1)用交点式抛物线表达式得:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①,则点A(0,3);(2)过点P作PH⊥AB于点H,过点H作HG∥x轴交过点P平行于y轴的直线于点G,则∠ABO=∠HPG=α,在△AOB中,tan ABO==3=tanα,设PG=n,则HG=3n,PH=,即:n2+9n2=()2,解得:n=,则直线直线AB的表达式为:y=﹣3x+3,设点H(m,3﹣3m),则点P(m+,﹣3m),将点P坐标代入①式并整理得:3m2+11m﹣14=0,解得:m=1或﹣,故点P的横坐标为:或﹣;(3)参考(2)作△P′G′H′,过点O作OM⊥AC于点M,∵△AC P和△ABC的面积相等,∴P′H′=OM,∵OA=OB,∴∠ACO=45°,∴OM=,即:P′H′=OM=,按照(2)的方法,同理可得:点P′的坐标为(,)或(,).6.如图1,在平面直角坐标系中,抛物线y=﹣﹣x+2与x轴交于B、C两点,与y 轴交于点A,抛物线的顶点为D.连接AB,点E是第二象限内的抛物线上的一动点,过点E作EP⊥BC于点P,交线段AB于点F.(1)连接EA、EB,取线段AC的中点Q,当△EAB面积最大时,在x轴上找一点R使得|RE 一RQ|值最大,请求出R点的坐标及|RE﹣RQ|的最大值;(2)如图2,在(1)的条件下,将△PED绕E点旋转得△ED′P′,当△AP′P是以AP 为直角边的直角三角形时,求点P′的坐标.解:(1)∵y =0时,﹣x 2﹣x +2=0,解得:x 1=﹣3,x 2=1 ∴B (﹣3,0),C (1,0)∵x =0时,y =2,∴A (0,2)设直线AB 的解析式为y =kx +b∴ 解得:∴直线AB 的解析式为:y =x +2设点E (e ,﹣e 2﹣e +2),则点F (e , e +2)∴EF =﹣e 2﹣e +2﹣(e +2)=﹣e 2﹣2e∴S △EAB =OB •EF =×3•(﹣e 2﹣2e )=﹣e 2﹣3e =﹣(e +)2+ ∵﹣3<e <0∴当e =﹣时,△EAB 的面积最大,∴﹣e 2﹣e +2=∴此时点E 坐标为(,)如图1,连接并延长EQ ,交x 轴于点R ,则此时|RE ﹣RQ |=EQ 值最大 ∵Q 是AC 中点∴Q (,1)设直线EQ 解析式为:y =ax +c∴ 解得:∴直线EQ 解析式为:y =x +当y =0时,x +=0,解得:x =∴R (,0)此时|RE ﹣RQ |的最大值EQ =(2)设点P '坐标为(m ,n )∵EP ⊥x 轴,E (,)∴P (,0),EP =,AP =i )当∠P 'PA =90°时,如图2,过点P '作P 'M ⊥x 轴于点M , ∴∠P 'MP =∠POA =90°,∠PP 'M +∠P 'PM =∠P 'PM +∠APO =90° ∴∠PP 'M =∠APO∴△PP 'M ∽△APO∴ 即:整理得:4n +3m =①∵EP '=EP∴(m +)2+(n ﹣)2=()2②联立①②解方程组得:(舍去)∴P '(,)ii )当∠PAP '=90°时,如图3,过点P '作P 'N ⊥y 轴于点N ,由△P 'AN ∽△APO 得即: 整理得:3m +4n =8①∵EP '=EP∴(m+)2+(n﹣)2=()2②联立①②解方程组得:∴P'(,)或(,)综上所述,当△AP′P是以AP为直角边的直角三角形时,点P′的坐标为(,)或(,)或(,)7.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,过点D作DE⊥x轴于点E,连接BD,求tan∠BDE的值.(1)解:∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)解:如图,过点C作直线CD⊥y轴交抛物线于点D,过点D作DE⊥x轴于点E,连接BD,∵抛物线y=x2﹣2x﹣3的对称轴是直线x=1,C(0,﹣3).∴D(2,﹣3).从而得CD=OE=2,DE=3.∵B(3,0),∴BE=1.在Rt△DEB中,∠DEB=90°.∴tan∠BDE==.8.如图,对称轴为直线x =﹣1的抛物线y =x 2+bx +c 与x 轴相交于A 、B 两点,其中A 点的坐标为(﹣3,0),C 为抛物线与y 轴的交点. (1)求抛物线的解析式;(2)若点P 在抛物线上,且S △POC =2S △BOC ,求点P 的坐标.解:(1)∵抛物线的对称轴为x =﹣1,A 点的坐标为(﹣3,0),∴点B 的坐标为(1,0). 将点A 和点B 的坐标代入抛物线的解析式得: 解得:b =2,c =﹣3,∴抛物线的解析式为y =x 2+2x ﹣3.(2)∵将x =0代y =x 2+2x ﹣3入,得y =﹣3, ∴点C 的坐标为(0,﹣3). ∴OC =3.∵点B 的坐标为(1,0), ∴OB =1.设点P 的坐标为(a ,a 2+2a ﹣3),则点P 到OC 的距离为|a |. ∵S △POC =4S △BOC ,∴OC •|a |=OC •OB ,即×3×|a |=2××3×1,解得a =±2. 当a =2时,点P 的坐标为(2,5); 当a =﹣2时,点P 的坐标为(﹣2,﹣3). ∴点P 的坐标为(2,5)或(﹣2,﹣3).9.定义:若抛物线的顶点和与x 轴的两个交点所组成的三角形为等边三角形时.则称此抛物线为正抛物线. 概念理解:(1)如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点.试证明:以点A 为顶点,且与x 轴交于D 、C 两点的抛物线是正抛物线; 问题探究:(2)已知一条抛物线经过x 轴的两点E 、F (E 在F 的左边),E (1,0)且EF =2若此条抛物线为正抛物线,求这条抛物线的解析式; 应用拓展:(3)将抛物线y 1=﹣x 2+2x +9向下平移9个单位后得新的抛物线y 2.抛物线y 2的顶点为P ,与x 轴的两个交点分别为M 、N (M 在N 左侧),把△PMN 沿x 轴正半轴无滑动翻滚,当边PN 与x 轴重合时记为第1次翻滚,当边PM 与x 轴重合时记为第2次翻滚,依此类推…,请求出当第2019次翻滚后抛物线y 2的顶点P 的对应点坐标.解:(1)证明:∠BAC =90°,点D 是BC 的中点∴AD =BD =CD =BC∵抛物线以A 为顶点与x 轴交于D 、C 两点 ∴AD =AC ∴AD =AC =CD ∴△ACD 是等边三角形∴以A 为顶点与x 轴交于D 、C 两点的抛物线是正抛物线.(2)∵E (1,0)且EF =2,点F 在x 轴上且E 在F 的左边 ∴F (3,0)∵一条经过x 轴的两点E 、F 的抛物线为正抛物线,设顶点为G ∴△EFG 是等边三角形∴x G =,|y G |=①当G (2,)时,设抛物线解析式为y =a (x ﹣2)2+把点E (1,0)代入得:a +=0∴a =﹣∴y =﹣(x ﹣2)2+②当G (2,﹣)时,设抛物线解析式为y =a (x ﹣2)2﹣把点E (1,0)代入得:a ﹣=0∴a =∴y =(x ﹣2)2﹣综上所述,这条抛物线的解析式为y =﹣(x ﹣2)2+或y =(x ﹣2)2﹣(3)∵抛物线y 1=﹣x 2+2x +9=﹣(x ﹣)2+12∴y 1向下平移9个单位后得抛物线y 2=﹣(x ﹣)2+3∴P (,3),M (0,0),N (2,0)∴PM =MN =PN =2∴△PMN 是等边三角形∴第一次翻滚顶点P 的坐标变为P 1(4,0),第二次翻滚得P 2与P 1相同,第三次翻滚得P 3(7,3)即每翻滚3次为一个周期,当翻滚次数n 能被3整除时,点P 纵坐标为3,横坐标为:+n ×2=(2n +1)∵2019÷3=673∴(2×2019+1)×=4039∴当第2019次翻滚后抛物线y 2的顶点P 的对应点坐标为(4039,3).10.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax ﹣3a (a <0)经过点B .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M ′.将直线l 绕点A 按顺时针方向旋转得到直线l ′,当直线l ′与直线AM ′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d 1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax﹣3a,∴3=﹣3a,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),S=S四边形OAMB ﹣S△AOB=S△OBM +S△OAM﹣S△AOB=×m×3+×1×(﹣m2+2m+3)﹣×1×3=﹣(m﹣)2+,∴当m=时,S取得最大值.(3)由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°;方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD=d1,ME=d2,∵S△ABM′=×AC×(d1+d2)当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.根据B(0,3)和M′(,)可得BM′=,∵S△ABM=×AC×BM′=,∴AC=,当AC⊥BM′时,cos∠BAC===,∴∠BAC=45°.11.如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.解:∵一次函数y=x﹣3的图象与x轴、y轴分别交于点A、B两点,∴A(3,0),B(0,﹣3),∵点B关于x轴的对称点是C,∴C(0,3),∵二次函数y=﹣x2+bx+c的图象经过点A、点C,∴∴b=2,c=3,∴二次函数的解析式为:y=﹣x2+2x+3.(2)∵A(3,0),C(0,3),平移线段AC,点A的对应为点D,点C的对应点为E,设E(m,m﹣3),则D(m+3,m﹣6),∵D落在二次函数在第四象限的图象上,∴﹣(m+3)2+2(m+3)+3=m﹣6,m 1=1,m2=﹣6(舍去),∴D(4,﹣5),(3)∵C(0,3),D(4,﹣5),∴解得,∴直线CD的解析式为y=﹣2x+3,令y=0,则x=,∴M(,0),∵一次函数y=x﹣3的图象与x轴交于A(3,0),C(0,3),∴AO=3,OC=3,∴∠OAC=45°,过点P作PF⊥AC,点P作PN⊥OA交AC于点E,连PC,∴△PEF和△AEN都是等腰直角三角形,设P(m,﹣m2+2m+3),E(m,﹣m+3),∴PE=PN﹣EN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴EN=﹣m+3,AE=,FE=,∴CF=AC﹣AE﹣EF=,①当△COM∽△PFC,,∴,解得m=0,舍去,,1②当△COM ∽△CFP 时,,∴,解得m 1=0(舍去),,综合可得P 点的横坐标为或.12.如图1,将抛物线P 1:y 1=x 2﹣3右移m 个单位长度得到新抛物线P 2:y 2=a (x +h )2+k ,抛物线P 1与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线P 2与x 轴交于A 1,B 1两点,与y 轴交于点C 1.(1)当m =1时,a =,h = ﹣1 ,k = ﹣3 ;(2)在(1)的条件下,当y 1<y 2<0时,求x 的取值范围;(3)如图2,过点C 1作y 轴的垂线,分别交抛物线P 1,P 2于D 、E 两点,当四边形A 1DEB 是矩形时,求m 的值.解:(1)∵抛物线P 1:y 1=x 2﹣3右移m 个单位长度得到新抛物线解析式为:y 2=(x ﹣m )2﹣3∴y 2=a (x +h )2+k =(x ﹣m )2﹣3 又∵m =1 ∴h =﹣m =﹣1故答案为:;﹣1,﹣3(2)∵当y 2=(x ﹣1)2﹣3=0时, 解得:x 1=﹣2,x 2=4∴由图象可知,当﹣2<x <4时,y 2<0当y 1=y 2时, x 2﹣3=(x ﹣1)2﹣3 解得:x =,∴由图象可知,当x <时,y 1<y 2∴当y 1<y 2<0时,x 的取值范围是﹣2<x <(3)当y 1=x 2﹣3=0时,解得:x =±3 ∴A (﹣3,0),OA =3 根据平移性质得:AA 1=DC 1=m ∵四边形A 1DEB 是矩形 ∴∠A 1DE =∠DA 1B =90° ∴四边形A 1DC 1O 是矩形 ∴OA 1=DC 1=m ∴OA =AA 1+OA 1=2m =3∴m =13.已知:如图,抛物线的顶点为A (0,2),与x 轴交于B (﹣2,0)、C(2,0)两点.(1)求抛物线的函数表达式;(2)设点P 是抛物线y 上的一个动点,连接PO 并延长至点Q ,使OQ =2OP .若点Q 正好落在该抛物线上,求点P 的坐标;(3)设点P 是抛物线y 上的一个动点,连接PO 并延长至点Q ,使OQ =mOP (m 为常数);①证明点Q 一定落在抛物线上;②设有一个边长为m +1的正方形(其中m >3),它的一组对边垂直于x 轴,另一组对边垂直于y 轴,并且该正方形四个顶点正好落在抛物线和组成的封闭图形上,求线段PQ 被该正方形的两条边截得线段长最大时点Q 的坐标.解:(1)由条件可设抛物线y=ax2+2,将C(2,0)代入1可得抛物线;(2)如图,作PE⊥x轴,FQ⊥x轴设点P(t,),利用△PEO∽△OFQ可求得点Q(﹣2t,t2﹣4).把Q(﹣2t,t2﹣4)代入中,得:t2﹣4=,∴3t2=6,,∴(3)①证明:设点P(t,),利用相似可求得点Q(﹣mt,).将x=﹣mt代入中,得:.∴点Q一定落在抛物线上;②如图所示∵正方形的边长为m+1,由抛物线的对称性可知正方形右边两个顶点横坐标为,将x=代入抛物线解析式可得两点纵坐标分别为:和,∴﹣=m+1,解得:.∵m>3,∴∴正方形右边两个顶点横坐标为==,将x=代入得:=,∴正方形右下顶点的纵坐标为﹣()=.∴正方形右下顶点的坐标为(,),同理,正方形左下顶点的坐标为(,).设PQ与y轴所成的角为α,当PQ与正方形上下两边相交时,PQ被正方形上下两边所截线段的长=,当α增大时,cosα减小,增大,当PQ经过正方形右下顶点时,α最大,PQ被正方形上下两边所截线段最大,此时点Q 与正方形右下或左下顶点重合;当PQ与正方形上右两边(或上左两边)相交时,由图形可知随着α的增大,PQ被正方形上下两边所截线段的长减小,综上所述,当点Q与正方形右下或左下顶点重合时,PQ被正方形上下两边所截线段最长,此时点Q的坐标为(,)或(,).14.如图,已知二次函数的图象经过点A(﹣3,6),并与x轴交于点B(﹣1,0)和点C,顶点为点P.(1)求这个二次函数解析式;(2)设D为x轴上一点,满足∠DPC=∠BAC,求点D的坐标;(3)作直线AP,在抛物线的对称轴上是否存在一点M,在直线AP上是否存在点N,使AM+MN的值最小?若存在,求出M、N的坐标:若不存在,请说明理由.解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故:抛物线的表达式为:y=x2﹣x﹣,令y=0,则x=﹣1或3,令x=0,则y=﹣,故点C坐标为(3,0),点P(1,﹣2);(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,由题意得:AB=2,AC=6,BC=4,PC=2,S=×AC×BH=×BC×y A,△ABC解得:BH=2,sinα===,则tanα=,由题意得:GC=2=PG,故∠PCB=45°,延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,在△PMD中,tanα===,解得:x=2,则CD=x=4,故点P(7,0);(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,直线AP表达式中的k值为:=﹣2,则直线A′N表达式中的k值为,设直线A′N的表达式为:y=x+b,将点A′坐标代入上式并求解得:b=,故直线A′N的表达式为:y=x+…①,当x=1时,y=4,故点M(1,4),同理直线AP的表达式为:y=﹣2x…②,联立①②两个方程并求解得:x=﹣,故点N(﹣,).15.在平面直角坐标系中,已知抛物线的顶点为A(﹣1,4),且经过点B(﹣2,3),与x 轴分別交于C、D两点(点C在点D的左侧).(1)求该抛物线对应的函数表达式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,连接OM.①求MN的最大值;②当△OMN为直角三角形时,直接写出点M的坐标;(3)如图2,过点A的直线交x轴于点E,且AE∥y轴,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分別交于F、G两点.当点P运动时,EF+EG的和是否为定值?若是,试求出该定值;若不是,请说明理由.解:(1)∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y =﹣(x +1)2+4,即y =﹣x 2﹣2x +3. (2)①设直线OB 对应的函数表达式为y =kx (k ≠0), 将B (﹣2,3)代入y =kx ,得:3=﹣2k ,解得:k =﹣,∴直线OB 对应的函数表达式为y =﹣x .联立直线OB 和抛物线的函数表达式成方程组,得:,解得:,.设点M 的坐标为(m ,﹣m 2﹣2m +3)(﹣2<m <),则点N 的坐标为(m 2+m ﹣2,﹣m 2﹣2m +3),∴MN =m ﹣(m 2+m ﹣2)=﹣m 2﹣m +2=﹣(m +)2+.∵﹣<0,∴当m =﹣时,MN 最大,最大值为.②∵MN ∥x 轴, ∴∠ONM ≠90°,∴分两种情况考虑(如图3所述): (i )当∠OMN =90°时,线段OM 在y 轴上. ∵当m =0时,y =﹣m 2﹣2m +3=3, ∴点M 的坐标为(0,3); (ii )当∠MON =90°时,OM ⊥OB , ∵点B 的坐标为(﹣2,3), ∴点(3,2)在直线OM 上,∴直线OM 对应的函数表达式为y =x .联立直线OM和抛物线的函数表达式成方程组,得:,解得:(不合题意,舍去),,∴点M的坐标为(,).综上所述:点M的坐标为(0,3)或(,).(3)当y=0时,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴点C的坐标为(﹣3,0),点D的坐标为(1,0).设点P的坐标为(n,﹣n2﹣2n+3)(﹣1<n<1).∵点C的坐标为(﹣3,0),点D的坐标为(1,0),∴直线CP对应的函数表达式为y=(1﹣n)x+3﹣3n,直线DP对应的函数表达式为y=﹣(n+3)x+n+3(可利用待定系数法求出).∵点A的坐标为(﹣1,4),AE∥y轴,∴直线AE对应的函数表达式为x=﹣1.当x=﹣1时,y=(1﹣n)x+3﹣3n=2﹣2n,y=﹣(n+3)x+n+3=2n+6,∴点F的坐标为(﹣1,2﹣2n),点G的坐标为(﹣1,2n+6),∴EF=2﹣2n,EG=2n+6,∴EF+EG=8.∴EF+EG的和为定值,该定值为8.16.如图1,在平面直角坐标系中,直线与x 轴交于点A ,与y 轴交于点C ,抛物线经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点,①连接BC 、CD 、BD ,设BD 交直线AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2.求:的最大值;②如图2,是否存在点D ,使得∠DCA =2∠BAC ?若存在,直接写出点D 的坐标,若不存在,说明理由.解:(1)根据题意得A (﹣4,0),C (0,2),∵抛物线y =﹣x 2+bx +c 经过A .C 两点,∴,∴b =﹣,c =2,∴y =﹣x 2﹣x +2;(2)①如图1,令y =0,∴﹣x 2﹣x +2=0,∴x 1=﹣4,x 2=1,∴B (1,0),过D 作DM ⊥x 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1:S 2=DE :BE =DM :BN ,设D (a ,﹣a 2﹣a +2),∴M (a , a +2),∵B (1.0),∴N (1,),∴S 1:S 2=DM :BN =(﹣a 2﹣2a ):=﹣(a +2)2+;∴当a =﹣2时,S 1:S 2的最大值是;②∵A (﹣4,0),B (1,0),C (0,2),∴AC =2,BC =,AB =5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P (﹣,0),∴PA =PC =PB =,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC )=,过作x轴的平行线交y轴于R,交AC的延长线于G,如图2,∴∠DCA=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即RC:DR=,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴(﹣a2﹣a):(﹣a)=1:2,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,∴yD=3,∴点D的坐标为(﹣2,3).。
二次函数定值与最值综合问题(函数)-全国各地2019中考数学压轴题函数大题题型分类汇编(解析版)

2019全国各地中考数学压轴大题函数综合七、二次函数定值与最值综合问题1.(2019•黄石)如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)解:(1)函数的表达式为:y=(x+1)(x﹣5)=(x2﹣4x﹣5)=x2﹣x﹣,点M坐标为(2,﹣3);(2)当x=8时,y=(x+1)(x﹣5)=9,即点C(8,9),S四边形AMBC=AB(y C﹣y D)=×6×(9+3)=36;(3)y=(x+1)(x﹣5)=(x2﹣4x﹣5)=(x﹣2)2﹣3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D与动点P之间距离PD==,∵,PD有最小值,当x2=3m﹣时,PD最小值d==.2.(2019•张家界)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=4,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S△PBC=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),∵﹣<0,故S△PBC有最大值,此时x=,故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+QC最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.3.(2019•泰州)已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m ﹣n的值;②过点B作x轴的平行线与函数y1的图象相交与点E.当m﹣n的值取不大于1的任意实数时,点B、C 间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=2+n﹣m,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC,即:2+n﹣m=m﹣n,或m﹣(2+n)=2即:m﹣n=1或4;②点E的横坐标为:,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.4.(2019•宿迁)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ 分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3)∴解得:∴抛物线的函数表达式为y=x2+2x﹣3(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI于点F,过点H作HI⊥BI于点I∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1∴B(﹣3,0)∵A(1,0),C(0,﹣3)∴OA=1,OC=3,AC=,AB=4∴Rt△AOC中,sin∠ACO=,cos∠ACO=∵AB=AH,G为BH中点∴AG⊥BH,BG=GH∴∠BAG=∠HAG,即∠P AB=2∠BAG∵∠P AB=2∠ACO∴∠BAG=∠ACO∴Rt△ABG中,∠AGB=90°,sin∠BAG=∴BG=AB=∴BH=2BG=∵∠HBI+∠ABG=∠ABG+∠BAG=90°∴∠HBI=∠BAG=∠ACO∴Rt△BHI中,∠BIH=90°,sin∠HBI=,cos∠HBI=∴HI=BH=,BI=BH=∴x H=﹣3+=﹣,y H=﹣,即H(﹣,﹣)设直线AH解析式为y=kx+a∴解得:∴直线AH:y=x﹣∵解得:(即点A),∴P(﹣,﹣)②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称∴H'(﹣,)设直线AH'解析式为y=k'x+a'∴解得:∴直线AH':y=﹣x+∵解得:(即点A),∴P(﹣,)综上所述,点P的坐标为(﹣,﹣)或(﹣,).(3)DM+DN为定值∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1∴D(﹣1,0),x M=x N=﹣1设Q(t,t2+2t﹣3)(﹣3<t<1)设直线AQ解析式为y=dx+e∴解得:∴直线AQ:y=(t+3)x﹣t﹣3当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6∴DM=0﹣(﹣2t﹣6)=2t+6设直线BQ解析式为y=mx+n∴解得:∴直线BQ:y=(t﹣1)x+3t﹣3当x=﹣1时,y N=﹣t+1+3t﹣3=2t﹣2∴DN=0﹣(2t﹣2)=﹣2t+2∴DM+DN=2t+6+(﹣2t+2)=8,为定值.5.(2019•淄博)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得△P AM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.解:(1)∵抛物线y=ax2+bx+3过点A(3,0),B(﹣1,0)∴解得:∴这条抛物线对应的函数表达式为y=﹣x2+2x+3(2)在y轴上存在点P,使得△P AM为直角三角形.∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴顶点M(1,4)∴AM2=(3﹣1)2+42=20设点P坐标为(0,p)∴AP2=32+p2=9+p2,MP2=12+(4﹣p)2=17﹣8p+p2①若∠P AM=90°,则AM2+AP2=MP2∴20+9+p2=17﹣8p+p2解得:p=﹣∴P(0,﹣)②若∠APM=90°,则AP2+MP2=AM2∴9+p2+17﹣8p+p2=20解得:p1=1,p2=3∴P(0,1)或(0,3)③若∠AMP=90°,则AM2+MP2=AP2∴20+17﹣8p+p2=9+p2解得:p=∴P(0,)综上所述,点P坐标为(0,﹣)或(0,1)或(0,3)或(0,)时,△P AM为直角三角形.(3)如图,过点I作IE⊥x轴于点E,IF⊥AD于点F,IH⊥DG于点H∵DG⊥x轴于点G∴∠HGE=∠IEG=∠IHG=90°∴四边形IEGH是矩形∵点I为△ADG的内心∴IE=IF=IH,AE=AF,DF=DH,EG=HG∴矩形IEGH是正方形设点I坐标为(m,n)∴OE=m,HG=GE=IE=n∴AF=AE=OA﹣OE=3﹣m∴AG=GE+AE=n+3﹣m∵DA=OA=3∴DH=DF=DA﹣AF=3﹣(3﹣m)=m∴DG=DH+HG=m+n∵DG2+AG2=DA2∴(m+n)2+(n+3﹣m)2=32∴化简得:m2﹣3m+n2+3n=0配方得:(m﹣)2+(n+)2=∴点I(m,n)与定点Q(,﹣)的距离为∴点I在以点Q(,﹣)为圆心,半径为的圆在第一象限的弧上运动∴当点I在线段CQ上时,CI最小∵CQ=∴CI=CQ﹣IQ=∴CI最小值为.6.(2019•滨州)如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠P AD的值.解:(1)当x=0时,y=4,则点A的坐标为(0,4),当y=0时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°,∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0),设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=﹣x+4;(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),∴PN=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+t,∵PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°,作PH⊥AD于点H,则∠PHN=90°,∴PH==(﹣t2+t)=t=﹣(t﹣6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是;②当点P到直线AD的距离为时,如右图②所示,则t=,解得,t1=2,t2=10,则P1的坐标为(2,),P2的坐标为(10,﹣),当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;当P2的坐标为(10,﹣),则P2A==,∴sin∠P2AD==;由上可得,sin∠P AD的值是或.7.(2019•绵阳)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+P A的最小值是3.8.(2019•达州)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.解:(1)由题意把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,得,,解得b=﹣2,c=3,∴y=﹣x2﹣2x+3=﹣(x+1)2+4,∴此抛物线解析式为:y=﹣x2﹣2x+3,顶点C的坐标为(﹣1,4);(2)∵抛物线顶点C(﹣1,4),∴抛物线对称轴为直线x=﹣1,设抛物线对称轴与x轴交于点H,则H(﹣1,0),在Rt△CHO中,CH=4,OH=1,∴tan∠COH==4,∵∠COH=∠CAO+∠ACO,∴当∠ACO=∠CDO时,tan(∠CAO+∠CDO)=tan∠COH=4,如图1,当点D在对称轴左侧时,∵∠ACO=∠CDO,∠CAO=∠CAO,∴△AOC∽△ACD,∴=,∵AC==2,AO=1,∴=,∴AD=20,∴OD=19,∴D(﹣19,0);当点D在对称轴右侧时,点D关于直线x=1的对称点D'的坐标为(17,0),∴点D的坐标为(﹣19,0)或(17,0);(3)设P(a,﹣a2﹣2a+3),将P(a,﹣a2﹣2a+3),A(1,0)代入y=kx+b,得,,解得,k=﹣a﹣3,b=a+3,∴y P A=(﹣a﹣3)x+a+3,当x=0时,y=a+3,∴N(0,a+3),如图2,∵S△BPM=S△BP A﹣S四边形BMNO﹣S△AON,S△EMN=S△EBO﹣S四边形BMNO,∴S△BPM﹣S△EMN=S△BP A﹣S△EBO﹣S△AON=×4×(﹣a2﹣2a+3)﹣×3×3﹣×1×(a+3)=﹣2a2﹣a=﹣2(a+)2+,由二次函数的性质知,当a=﹣时,S△BPM﹣S△EMN有最大值,∵△BMP和△EMN的面积分别为m、n,∴m﹣n的最大值为.9.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF 是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)如图1,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).10.(2019•鞍山)在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.(1)求抛物线的解析式.(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD=2S△APQ时,求点P的坐标.(3)如图2,G是线段OC上一个动点,连接DG,过点G作GM⊥DG交AC于点M,过点M作射线MN,使∠NMG=60°,交射线GD于点N;过点G作GH⊥MN,垂足为点H,连接BH.请直接写出线段BH的最小值.解:(1)将点A(3,4),B(﹣1,0)代入y=ax2+bx+4,得:,解得,∴y=﹣x2+3x+4;(2)如图1,过点P作PE∥x轴,交AB于点E,∵A(3,4),AD⊥x轴,∴D(3,0),∵B(﹣1,0),∴BD=3﹣(﹣1)=4,∵S△AQD=2S△APQ,△AQD与△APQ是等高的两个三角形,∴,∵PE∥x轴,∴△PQE∽△DQB,∴,∴,∴PE=2,∴可求得直线AB的解析式为y=x+1,设E(x,x+1),则P(x﹣2,x+1),将点P坐标代入y=﹣x2+3x+4得﹣(x+2)2+3(x+2)+4=x+1,解得x1=3,x2=3,当x=3时,x﹣2=32=1,x+1=31=4,∴点P(1,4);当x=3时,x﹣2=32=1,x+1=31=4,∴P(1,4),∵点P是直线AB上方抛物线上的一个动点,∴﹣1<x﹣2<3,∴点P的坐标为(1,4)或(1,4);(3)由(1)得,抛物线的解析式为y=﹣x2+3x+4,∴C(0,4),∵A(3,4),∴AC∥x轴,∴∠OCA=90°,∴GH⊥MN,∴∠GHM=90°,在四边形CGHM中,∠GCM+∠GHM=180°,∴点C、G、H、M共圆,如图2,连接CH,则∠GCH=∠GMH=60°,∴点H在与y轴夹角为60°的定直线上,∴当BH⊥CH时,BH最小,过点H作HP⊥x轴于点P,并延长PH交AC于点Q,∵∠GCH=60°,∴∠HCM=30°,又BH⊥CH,∴∠BHC=90°,∴∠BHP=∠HCM=30°,设OP=a,则CQ=a,∴QH a,∵B(﹣1,0),∴OB=1,∴BP=1+a,在Rt△BPH中,HP(a+1),BH2(1+a),∵QH+HP=AD=4,∴a(a+1)=4,解得a,∴BH最小=2(1+a).11.(2019•日照)如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC 面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、P A,当点P运动到某一位置时,PC+P A 的值最小,请求出这个最小值,并说明理由.解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8 ∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18 (可以直接利用点M是抛物线的顶点时,面积最大求解)(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴==,∴PD=AP∴PC+P A=PC+PD∴当点C、P、D在同一直线上时,PC+P A=PC+PD=CD最小∵CD=∴PC+P A的最小值为12.(2019•遵义)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时P A+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),则S△MOC MH×x C(﹣x2+4x﹣x)x2x,∵0,故x,故当点M(,)时,S△MOC最大值为.13.(2019•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.解:(1)将点D、E的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y x2x+2,同理可得直线DE的表达式为:y=x﹣1…①;(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y x+1,设点P(x,x2x+2),则点H(x,x+1),S四边形OBPF=S△OBF+S△PFB4×1PH×BO=2+2(x2x+2x﹣1)=7,解得:x=2或,故点P(2,3)或(,);(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接P A″交直线DE于点M,此时,点Q运动的路径最短,∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线A″P的表达式为:y=﹣3x+9…③,联立①③并解得:x,即点M(,),点M沿ED向下平移2个单位得:N(,).14.(2019•锦州)如图1,在平面直角坐标系中,一次函数y x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交直线AB于点E.(1)求抛物线的函数表达式(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.解:(1)在y x+3中,令x=0,得y=3,令y=0,得x=4,∴A(4,0),B(0,3),将A(4,0),B(0,3)分别代入抛物线y=﹣x2+bx+c中,得:,解得:,∴抛物线的函数表达式为:y=﹣x2x+3.(2)存在.如图1,过点B作BH⊥CD于H,设C(t,0),则D(t,),E(t,),H(t,3);∴EC,AC=4﹣t,BH=t,DH=﹣t2t,DE=﹣t2+4t∵△BDE和△ACE相似,∠BED=∠AEC∴△BDE∽△ACE或△DBE∽△ACE①当△BDE∽△ACE时,∠BDE=∠ACE=90°,∴,即:BD•CE=AC•DE∴t()=(4﹣t)×(﹣t2+4t),解得:t1=0(舍去),t2=4(舍去),t3,∴D(,3)②当△DBE∽△ACE时,∠BDE=∠CAE∵BH⊥CD∴∠BHD=90°,∴tan∠BDE=tan∠CAE,即:BH•AC=CE•DH∴t(4﹣t)=()(﹣t2t),解得:t1=0(舍),t2=4(舍),t3,∴D(,);综上所述,点D的坐标为(,3)或(,);(3)如图2,∵四边形DEGF是平行四边形∴DE∥FG,DE=FG设D(m,),E(m,),F(n,),G(n,),则:DE=﹣m2+4m,FG=﹣n2+4n,∴﹣m2+4m=﹣n2+4n,即:(m﹣n)(m+n﹣4)=0,∵m﹣n≠0∴m+n﹣4=0,即:m+n=4过点G作GK⊥CD于K,则GK∥AC∴∠EGK=∠BAO∴cos∠EGK=cos∠BAO,即:GK•AB=AO•EG∴5(n﹣m)=4EG,即:EG(n﹣m)∴DEGF周长=2(DE+EG)=2[(﹣m2+4m)(n﹣m)]=﹣2∵﹣2<0,∴当m时,∴▱DEGF周长最大值,∴G(,),当E,G互换时,结论也成立,此时G(,).15.(2019•烟台)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)解:(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y x∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时此时圆心N到BD的距离最小,圆心角∠DNB最大,则,∠BPD 的度数最大;∴PN=ND,∴r,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y x,N在中垂线上,∴t r,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵圆N与y轴相切,∴圆心N在D点下方,∴0<t<3,∴t=9﹣2.。
2019年中考专题:二次函数压轴题(精编含解析)

1.在平面直角坐标系中,已知抛物线 y=ax2+bx+c(a≠0)经过点 A(1,0)、B(4,0),C(0,2)三 点,直线 y=kx+t 经过 B、C 两点,点 D 是抛物线上一个动点,过点 D 作 y 轴的平行线,与直线 BC 相 交于点 E. (1)求直线和抛物线的解析式; (2)当点 D 在直线 BC 下方的抛物线上运动,使线段 DE 的长度最大时,求点 D 的坐标; (3)点 D 在运动过程中,若使 O、C、D、E 为顶点的四边形为平行四边形时,请直接写出满足条件的 所有点 D 的坐标.
令 m2﹣2m=2,
解得 m=2
,
∴此时 D(2+2 ,3﹣ )或(2﹣2 ,3+ ),
综上所述,点 D 的坐标是(2,﹣1)或(2+2 ,3﹣ )或(2﹣2 ,3+ )时,都可以使 O、C、D、E 为顶点的四边形为平行四边形.
【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质及 平行四边形的判定与性质等知识点.
,利用二次函数的性质,即可求得当△
(3)直角三角形斜边上的中线等于斜边的一半列出关系式 m=(n﹣ )2﹣ ,然后根据 n 的取值得 到最小值.
【解答】解:(1)由题意得:
,
解得: , ∴抛物线解析式为 y=﹣x2+2x+3;
(2)令﹣x2+2x+3=0, ∴x1=﹣1,x2=3, 即 B(3,0), 设直线 BC 的解析式为 y=kx+b′,
∴
,
解得:
,
∴直线 BC 的解析式为 y=﹣x+3,
设 P(a,3﹣a),则 D(a,﹣a2+2a+3),
2019年中考数学二次函数综合压轴题及答案

2019年中考数学二次函数综合压轴题及答案二次函数是中考数学的必考点,每年的中考数学试题中,二次函数都占了不少的比例,考题或以综合题的形式出现,或以选择题的形式出现,或以填空题的形式出现,不论以哪种形式出现,都旨在考查学生对二次函数的理解,以及应用二次函数解决实际问题的能力,下面我们一起来看中考网为大家带来的"2019年中考数学二次函数综合压轴题及答案",希望通过本题的练习,能加强考生对二次函数性质的理解。
2019年中考数学二次函数综合压轴题及答案:如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。
点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动。
伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E。
点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止。
设点P、Q运动的时间是t秒(t>0)。
(1)当t=2时,AP=________,点Q到AC的距离是________(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值。
分析:(1)先求PC,再求AP,然后求AQ,再由三角形相似求Q到AC的距离;(2)作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式;(3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t;(4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t;②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t. 解答:二次函数的性质是考生必须掌握的考点,在中学数学学习中占有重要的地位,本文为考生提供的2019年中考数学二次函数综合压轴题及答案除了考查学生利用二次函数的相关知识处,同时还考查了学生对相似三角形的判定定理、线段比的知识,做题时考生要注意巧妙利用辅助线的帮助解答,难度较大。
中考压轴题二次函数与周长、面积综合题(解析版)

专题05 二次函数与周长、面积综合题1.(2019年湖北省黄石市中考数学试题)如图,已知抛物线经过点、.(1)求抛物线的解析式,并写出顶点的坐标;(2)若点在抛物线上,且点的横坐标为8,求四边形的面积(3)定点在轴上,若将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线,点在新的抛物线上运动,求定点与动点之间距离的最小值(用含的代数式表示)【答案】(1),;(2)36;(3)【解析】【分析】(1)函数的表达式为:y=(x+1)(x-5),即可求解;(2)S四边形AMBC=AB(y C-y D),即可求解;(3)抛物线的表达式为:y=x2,即可求解.【详解】(1)函数的表达式为:y=(x+1)(x-5)=(x2-4x-5)=,点M坐标为(2,-3);(2)当x=8时,y=(x+1)(x-5)=9,即点C(8,9),S四边形AMBC=AB(y C-y D)=×6×(9+3)=36;(3)y=(x+1)(x-5)=(x2-4x-5)=(x-2)2-3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D 与动点P 之间距离PD =,∵>0,PD 有最小值,当x 2=3m -时, PD 最小值d =.2.(2019年湖南省常德市中考数学试题)如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-. (1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值; (3)当矩形MNHG 周长最大时,能否在二次函数图象上找到一点P ,使PNC ∆的面积是矩形MNHG 面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++ (2)最大值为10(3)故点P 坐标为:315(,)24或或. 【解析】 【分析】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式,即可求解;(2)矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,即可求解;(3)2711sin45822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯94PH HG ==,即可求解. 【详解】(1)二次函数表达式为:()214y a x =-+, 将点B 的坐标代入上式得:044a =+,解得:1a =-,的故函数表达式为:223y x x =-++…①;(2)设点M 的坐标为()2,23x x x -++,则点()22,23N x x x --++, 则222MN x x x =-+=-,223GM x x =-++,矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,∵20-<,故当22bx a=-=,C 有最大值,最大值为10, 此时2x =,点()0,3N 与点D 重合; (3)PNC ∆的面积是矩形MNHG 面积的916, 则99272316168PNCS MN GM ∆=⨯⨯=⨯⨯=, 连接DC ,在CD 得上下方等距离处作CD 的平行线m 、n , 过点P 作y 轴的平行线交CD 、直线n 于点H 、G ,即PH GH =, 过点P 作PK CD ⊥于点K ,将()3,0C 、()0,3D 坐标代入一次函数表达式并解得: 直线CD 的表达式为:3y x =-+,OC OD =,∴45OCD ODC PHK ∠=∠=︒=∠,CD =设点()2,23P x x x -++,则点(),3H x x -+,2711sin45822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯ 解得:94PH HG ==,则292334PH x x x =-+++-=,解得:32x =,故点315,24P ⎛⎫⎪⎝⎭, 直线n 的表达式为:93344y x x =-+-=-+…②,联立①②并解得:32x ±=即点'P 、''P 的坐标分别为⎝⎭、⎝⎭;故点P 坐标为:315,24⎛⎫ ⎪⎝⎭或3324⎛+-- ⎝⎭或3324⎛--+ ⎝⎭. 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.(2019年山东省烟台市中考)如图,顶点为M 的抛物线23y ax bx =++与x 轴交于(1,0)A -,B 两点,与y 轴交于点C ,过点C 作CD y ⊥轴交抛物线于另一点D ,作DE x ⊥轴,垂足为点E .双曲线6(0)y x x=>经过点D ,连接MD ,BD .(1)求抛物线的表达式;(2)点N ,F 分别是x 轴,y 轴上的两点,当以M ,D ,N ,F 为顶点的四边形周长最小时,求出点N ,F 的坐标;【答案】(1)2y x 2x 3=-++;(2)N 5,07⎛⎫ ⎪⎝⎭;F 50,3⎛⎫ ⎪⎝⎭; 【解析】 【分析】(1)先求D 的坐标,再代入二次函数解析式解析式求解;(2)分别作点M ,D 关于y 轴,x 轴的对称点M ','D ,连接MD '交x 轴,y 轴于点N ,F .即M ',F ,N ,'D 在同一直线上时,四边形的周长最小,用待定系数法求直线MD '的表达式,再求N,F 的坐标; 【详解】解:(1)由题意,得点C 的坐标(0,3),3OC =. ∵6k OC CD =⋅=, ∴2CD =.∴点D 的坐标(2,3).将点(1,0)A -,(2,3)D 分别代人抛物线23y ax bx =++,得30,423 3.a b a b -+=⎧⎨++=⎩解得1,2.a b =-⎧⎨=⎩∴抛物线的表达式为2y x 2x 3=-++.(2)分别作点M ,D 关于y 轴,x 轴的对称点M ','D , 连接MD '交x 轴,y 轴于点N ,F .由抛物线的表达式可知,顶点M 的坐标(1,4), ∴点M 的坐标(1,4)-. 设直线MD '为y kx b =+, ∵点'D 的坐标(2,3)-, ∴4,2 3.k b k b -+=⎧⎨+=-⎩解得7,35.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线MD '的表达式为7533y x =-+. 令0y =,则75033x -+=,解得57x =,∴点N 的坐标5,07⎛⎫ ⎪⎝⎭.令0x =,则53y =,∴点F 的坐标50,3⎛⎫ ⎪⎝⎭.4.(广东省深圳市2019年中考数学试题)如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【答案】(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 1;(3)12(4,5),(8,45)P P -- 【解析】 【分析】(1)OB =OC ,则点B (3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3)=ax 2-2ax -3a ,即可求解;(2)CD +AE =A ′D +DC ′,则当A ′、D 、C ′三点共线时,CD +AE =A ′D +DC ′最小,周长也最小,即可求解; (3)S △PCB :S △PCA =12EB ×(y C -y P ):12AE ×(y C -y P )=BE :AE ,即可求解. 【详解】(1)∵OB =OC ,∴点B (3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3)=ax 2-2ax -3a , 故-3a =3,解得:a =-1,故抛物线的表达式为:y =-x 2+2x +3…①; 对称轴为:直线1x =(2)ACDE 的周长=AC +DE +CD +AE ,其中AC 、DE =1是常数, 故CD +AE 最小时,周长最小,取点C 关于函数对称点C (2,3),则CD =C ′D , 取点A ′(-1,1),则A ′D =AE ,故:CD +AE =A ′D +DC ′,则当A ′、D 、C ′三点共线时,CD +AE =A ′D +DC ′最小,周长也最小,四边形ACDE 的周长的最小值=AC +DE +CD +AE +1+A ′D +DC +1+A ′C (3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBP A 的面积分为3:5两部分, 又∵S △PCB :S △PCA =12EB ×(y C -y P ):12AE ×(y C -y P )=BE :AE , 则BE :AE ,=3:5或5:3, 则AE =52或32, 即:点E 的坐标为(32,0)或(12,0), 将点E 、C 的坐标代入一次函数表达式:y =kx +3, 解得:k =-6或-2,故直线CP 的表达式为:y =-2x +3或y =-6x +3…② 联立①②并解得:x =4或8(不合题意值已舍去), 故点P 的坐标为(4,-5)或(8,-45).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A ′点来求最小值,是本题的难点.5.(湖南省益阳市2019年中考数学试题)在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A (1,4),B (3,0). (1)求抛物线对应二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P (m ,n )是抛物线在第四象限的图象上的点,且m +n =﹣1,连接P A 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).的【答案】(1)y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由见解析;(3)点N(43,﹣73).【解析】【分析】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式,即可求解;(2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.【详解】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N 是PQ 的中点, 设直线PC 的解析式为y =kx +b ,将点C (﹣1,0)、P (4,﹣5)的坐标代入得:045k b k b -+=⎧⎨+=-⎩,解得:11k b =-⎧⎨=-⎩,所以直线PC 的表达式为:y =﹣x ﹣1…①, 同理可得直线AC 的表达式为:y =2x +2, 直线DQ ∥CA ,且直线DQ 经过点D (0,3), 同理可得直线DQ 的表达式为:y =2x +3…②, 联立①②并解得:x =﹣43,即点Q (﹣43,13), ∵点N 是PQ 的中点, 由中点公式得:点N (43,﹣73). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N 是PQ 的中点,是本题解题的突破点. 最新模拟试题6.(2020年安徽省阜阳市太和县九年级第二次调研模拟预测试题)如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式; (2)联结AM ,求AOM S △;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果△MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.【答案】(1)2y x =+;(23)抛物线2C 为:2y x =++或23327y x x =-++ 【解析】【分析】(1)根据题意,可以写出点B 和点A 的坐标,从而可以得到该抛物线的表达式;(2)根据(1)中的函数解析式,可以求得点M 的坐标,从而可以求得直线AM 的函数解析式,从而可以求得S △AOM ;(3)根据题意,利用分类讨论的方法和三角形相似的知识可以求得点F 的坐标,从而可以求得抛物线C 2的表达式.【详解】解:(1)过A 作AH x ⊥轴,垂足为H ,∵2OB =,∴0(2)B ,∵120AOB ∠=︒∴60AOH ∠=︒,30HAO ∠=︒.∵2OA =, ∴112OH OA ==. 在Rt AHO 中,222OH AH OA +=,∴AH ==∴(1A --,∵抛物线1C :2y ax bx =+经过点A B 、,∴可得:420a b a b -=⎧⎪⎨-=⎪⎩解得:a b ⎧=⎪⎪⎨⎪=⎪⎩∴这条抛物线的表达式为2y x x =;(2)过M 作MG x ⊥轴,垂足为G ,∵2y x x =+=21)x -∴顶点M是1,3⎛ ⎝⎭,得3MG =设直线AM 为y =kx +b ,把(A -,1,3M ⎛⎫ ⎪ ⎪⎝⎭代入得k b k b =-+=+,解得33k b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴直线AM为y x =-令y =0,解得x =12∴直线AM 与x 轴的交点N 为1,02⎛⎫ ⎪⎝⎭∴111111×××22223223AOM S ON MG ON AH =⋅-⋅=+ (3)∵0(2)B ,、M ⎛ ⎝⎭,∴在Rt △BGM中,tan 3MG MBG BG ∠==, ∴30MBG ∠=︒.∴150MBF ∠=︒.由抛物线的轴对称性得:MO MB =,∴150MBO MOB ∠=∠=︒.∵120AOB ∠=︒,∴150AOM ∠=︒∴AOM MBF ∠=∠.∴当△MBF 与AOM 相似时,有:=OM BM OA BF 或=OM BF OA BM即332BF =或32=, ∴2BF =或23BF =. ∴0(4)F ,或803⎛⎫ ⎪⎝⎭, 设向上平移后的抛物线2C为:2y x x k =++, 当0(4)F ,时,3k =, ∴抛物线2C为:2y =+当803F ⎛⎫ ⎪⎝⎭,时,k =,∴抛物线2C 为:23327y x x =-++综上:抛物线2C 为:2y x =++或2y x x =++ 【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,求出相应的函数解析式,作出合适的辅助线,找出所求问题需要的条件,利用分类讨论和数形结合的思想解答.7.(2019年河南省中原名校中考第三次大联考数学试卷)如图,直线y =﹣x +5与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 与直线y =﹣x +5交于B ,C 两点,已知点D 的坐标为(0,3) (1)求抛物线的解析式;(2)点M ,N 分别是直线BC 和x 轴上的动点,则当△DMN 的周长最小时,求点M ,N 的坐标,并写出△DMN 周长的最小值;(3)点P 是抛物线上一动点,在(2)的条件下,是否存在这样的点P ,使∠PBA =∠ODN ?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2+4x +5;(2)点M 、N 的坐标分别为(85,175)、(34,0),△DMN 周长的最小;(3)点P (﹣23,73). 【解析】(1)求出点B 、C 的坐标、将点B 、C 坐标代入二次函数表达式,即可求解;(2)过点D 分别作x 轴和直线BC 的对称点D ′(0,-3)、D ″,连接D ′D ″交x 轴、直线BC 于点N 、M ,此时△DMN 的周长最小,即可求解;(3)tan∠ODN=13ONOD==tan∠PBA,确定直线BP的表达式,即可求解.【详解】(1)y=﹣x+5,令x=0,则y=5,令y=0,则x=5,故点B、C的坐标分别为(5,0)、(0,5),则二次函数表达式为:y=﹣x2+bx+5,将点B坐标代入上式并解得:b=4,故抛物线的表达式为:y=﹣x2+4x+5…①,令y=0,则x=﹣1或5,故点A(﹣1,0),而OB=OC=2,故∠OCB=45°;(2)过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,∵∠OCB=45°,则CD″∥x轴,则点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,将点D′、D″的坐标代入一次函数表达式:y=mx+n并解得:直线D′D″的坐标代入一次函数表达式为:y=4x﹣3,则点M、N的坐标分别为(85,175)、(34,0),△DMN周长的最小值=DM+DN+MN;(3)如图2,tan∠ODN=13ONOD==tan∠PBA,则直线BP 的表达式为:y =﹣13x +s ,将点B 的坐标代入上式并解得: 直线BP 的表达式为:y =﹣13x +53…②, 联立①②并解得:x =5或﹣23(舍去5) 故:点P (﹣23,73). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性等知识点,其中(2),通过点的对称性确定点M 、N 的位置,是此类题目的基本方法.8.(2019年河南省实验外国语学校中考数学模拟试卷)如图,直线y =-12x -3与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线y =ax 2+bx ﹣3与x 轴的另一个交点为点B (2,0),点D 是抛物线上一点,过点D 作DE ⊥x 轴于点E ,连接AD ,D C .设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在第三象限,设△DAC 的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;(3)连接BC ,若∠EAD =∠OBC ,请直接写出此时点D 的坐标.【答案】(1)y =14x 2+x ﹣3;(2)S △ADC =﹣34(m +3)2+274;△ADC 的面积最大值为274;此时D (﹣3,﹣154);(3)满足条件的点D 坐标为(﹣4,﹣3)或(8,21).【解析】(1)求出A 坐标,再用待定系数法求解析式;(2)设DE 与AC 的交点为点F .设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3),根据S △ADC =S △ADF +S △DFC 求出解析式,再求最值;(3)①当点D 与点C 关于对称轴对称时,D (﹣4,﹣3),根据对称性此时∠EAD =∠AB C . ②作点D (﹣4,﹣3)关于x 轴的对称点D ′(﹣4,3),直线AD ′的解析式为y =32x +9,解方程组求出函数图像交点坐标.【详解】解:(1)在y =﹣12x ﹣3中,当y =0时,x =﹣6, 即点A 的坐标为:(﹣6,0),将A (﹣6,0),B (2,0)代入y =ax 2+bx ﹣3得:366304230a b a b --=⎧⎨+-=⎩, 解得:141a b ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为:y =14x 2+x ﹣3; (2)设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3), 设DE 与AC 的交点为点F .∴DF =﹣12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣32m , ∴S △ADC =S △ADF +S △DFC =12DF •AE +12•DF •OE =12DF •OA =12×(﹣14m 2﹣32m )×6 =﹣34m 2﹣92m =﹣34(m +3)2+274, ∵a =﹣34<0, ∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274, 又∵当m =﹣3时,14m 2+m ﹣3=﹣154, ∴存在点D (﹣3,﹣154),使得△ADC 的面积最大,最大值为274; (3)①当点D 与点C 关于对称轴对称时,D (﹣4,﹣3),根据对称性此时∠EAD =∠AB C .②作点D (﹣4,﹣3)关于x 轴的对称点D ′(﹣4,3),直线AD ′的解析式为y =32x +9, 由2392134y x y x x ⎧=+⎪⎪⎨⎪=+-⎪⎩,解得60x y =-⎧⎨=⎩或821x y =⎧⎨=⎩, 此时直线AD ′与抛物线交于D (8,21),满足条件,综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)【点睛】本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题.. 9.(广东省佛山市南海外国语学校2019-2020学年九年级下学期第一次月考数学试题)如图,已知抛物线2y ax bx c =++经过点0()3,A ﹣、()9,0B 和()0,4C ,CD 垂直于y 轴,交抛物线于点D ,DE 垂直于x 轴,垂足为E ,直线l 是该抛物线的对称轴,点F 是抛物线的顶点.(1)求出该二次函数的表达式及点D 的坐标;(2)若Rt △AOC 沿x 轴向右平移,使其直角边OC 与对称轴l 重合,再沿对称轴l 向上平移到点C 与点F 重合,得到11Rt AO F △,求此时11Rt AO F △与矩形OCDE 重叠部分图形的面积;(3)若Rt △AOC 沿x 轴向右平移t 个单位长度(06t <≤)得到222Rt A O C △,222Rt A O C △与Rt OED △重叠部分图形的面积记为S ,求S 与t 之间的函数表达式,并写出自变量t 的取值范围.【答案】(1)抛物线的解析式为2484279y x x =-++,点D 的坐标为()6,4;(2) 163;(3)221(03)3146(36)3t t S t t t ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩. 【解析】【分析】(1)将点A (-3,0)、B (9,0)和C (0,4)代入y =ax 2+bx +c 即可求出该二次函数表达式,因为CD 垂直于y 轴,所以令y =4,求出x 的值,即可写出点D 坐标;(2)设A 1F 交CD 于点G ,O 1F 交CD 于点H ,求出顶点坐标,证△FGH ∽△F A 1O 1,求出GH 的长,因为Rt △A 1O 1F 与矩形OCDE 重叠部分的图形是梯形A 1O 1HG ,所以S 重叠部分=11A O F S ∆-S △FGH ,即可求出结果; (3)当0<t ≤3时,设O 2C 2交OD 于点M ,证△OO 2M ∽△OED ,求出O 2M =23t ,可直接求出S =2OO M S ∆=12OO 2×O 2M =13t 2;当3<t ≤6时,设A 2C 2交OD 于点M ,O 2C 2交OD 于点N ,分别求出直线OD 与直线A 2C 2的解析式,再求出其交点M 的坐标,证△DC 2N ∽△DCO ,求出C 2N =23(6-t ),由S =S 四边形A 2Q 2NM =2222A O C C MN S S ∆∆-,可求出S 与t 的函数表达式.【详解】(1)∵抛抛线2y ax bx c =++经过点()30A -,、()9,0B 和()0,4C ,∴抛物线的解析式为()()39y a x x =+-,∵点()0,4C 在抛物线上,∴427a =-, ∴427a =-, ∴抛物线的解析式为:2448(3)(9)427279y x x x x =-+-=-++, ∵CD 垂直于y 轴,()0,4C, 令24844279x x -++=, 解得,0x =或6x =,∴点D 的坐标为()6,4;(2)如图1所示,设1A F 交CD 于点G ,1O F 交CD 于点H ,∵点F 是抛物线2484279y x x =-++的顶点, ∴163,3F ⎛⎫ ⎪⎝⎭, ∴164433FH =-=, ∵11GH AO ,∴11FGH FAO △△∽, ∴111GH FH A O FO =, ∴4334GH =, 解得,1GH = ,∵11Rt AO F △与矩形OCDE 重叠部分的图形是梯形11A O HG , ∴11A O F FGH S S S =-△△重叠部分 1111122AO O F GH FH =⋅-⋅ 114341223=⨯⨯-⨯⨯ 163=;(3)①当03t <≤时,如图2所示,设22O C 交OD 于点M , ∵22C O DE ,∴2OO M OED △△∽, ∴22O DE EOO M O =, ∴246O M t =, ∴223O M t =, ∴22221121S 2233OO M S OO O M t t t ==⨯=⨯=△;②当36t <≤时,如图3所示,设22A C 交OD 于点M ,22O C 交OD 于点N ,将点()6,4D 代入y kx =, 得,23k =, ∴23OD y x =, 将点()3,0t -,(),4t 代入y kx b =+,得,(3)04k t b kt b -+=⎧⎨+=⎩, 解得,43k =,443b t =-+, ∴直线22A C 的解析式为:44433y x t =-+, 联立23OD y x =与44433y x t =-+, 得,2444333x x t =-+, 解得,62x t =-+,∴两直线交点M 坐标为462,43t t ⎛⎫-+-+⎪⎝⎭, 故点M 到2O C 2的距离为6t -,∵2C N OC ,∴2DC N DCO △△∽, ∴22DC C N CD OC=, ∴2664C N t -=, ∴22(6)3C N t =-, ∴222222A O C C MN A O NM S S S S ==-△△四边形211(6)22OA OC C N t =⋅-- 11234(6)(6)223t t =⨯⨯-⨯-- 21463t t =-+-; ∴S 与t 的函数关系式为:221(03)3146(36)3t t S t t t ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩.【点睛】本题考查了待定系数法求解析式,相似三角形的判定与性质,三角形的面积等,解题关键是能够根据题意画图,知道有些不规则图形的面积可转化为几个规则图形的面积和或差来求出.。
2019年中考二次函数压轴题整理

2019年中考二次函数压轴题整理1.给定三个点A(-1.a)。
B(3.b)。
C(c。
3),求经过这三个点的抛物线的解析式,以及线段BC上一点M关于抛物线的对称点N到y轴的距离MN的表达式。
进一步地,连接NB、NC,判断是否存在一个点M,使得△BNC的面积最大。
若存在,求出该点的横坐标m,否则说明理由。
2.给定点A、B、C,其中B(4.b)在抛物线y=ax^2+bx+c上,求该抛物线的解析式。
进一步地,探究△ABC的外接圆的圆心位置,求出圆心的坐标。
若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标。
3.给定抛物线y=x+mx+n和点A(3.a)、B(b。
-3),点P是线段AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t。
求出直线AB和抛物线的解析式。
进一步地,当点P在第四象限时,连接AM、BM,求出线段PM最长时△ABM的面积。
然后判断是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形。
若存在,直接给出点P的横坐标;否则说明理由。
4.在平面直角坐标系中放置一直角三角板,其顶点为A(a。
1),B(2.b),O(0.0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O。
给定抛物线经过点A′、B′、B,求该抛物线的解析式。
进一步地,设点P是在第一象限内抛物线上的一动点,判断是否存在点P,使得四边形PB′A′B的面积是△A′B′O面积的4倍。
若存在,求出点P的坐标;否则说明理由。
最后,确定四边形PB′A′B的形状,并给出两条性质。
5.给定抛物线y=x-2x+c的顶点A在直线l:y=x-5上。
求出抛物线顶点A的坐标。
进一步地,设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),判断△ABD的形状。
然后在直线l上判断是否存在一点P,使得以点P、A、B、D为顶点的四边形是平行四边形。
若存在,求出点P的坐标;否则说明理由。
2019-2020年中考数学二次函数压轴题人教新课标版.docx

2019-2020 年中考数学 二次函数压轴题人教新课标版(26) ( 本小题 10 分 )已知二次函数 y = ax 2+bx + c .(Ⅰ)若 a = 2, c =- 3,且二次函数的图象经过点(- 1,- 2),求 b 的值(Ⅱ)若 a = 2, b +c =- 2, b > c ,且二次函数的图象经过点(p ,- 2),求证: b ≥ 0;(Ⅲ)若 a + b +c = 0, a >b > c ,且二次函数的图象经过点( q ,- a ),试问自变量 x = q + 4 时,二次函数y= ax 2+ bx + c 所对应的函数值 y 是否大于 0?并证明你的结论。
26. 本小题满分 10 分 ( 1)当 a2 , c3 时,二次函数为y2x 2bx3∵ 该函数的图象经过点 ( 1 , 2)∴2 2 ( 1) 2 b ( 1) 3解得 b 1 2分( 2)当 a2 , b c2 时,二次函数为y2x 2 bxb 2∵ 该函数的图象经过点 ( p ,2)∴2 2p2bp b 2 ,即 2 p 2bp b 0于是, p 为方程 2x 2 bx b0 的根∴ 判别式 b 28b b(b 8)又 ∵ b c2 , b c∴ b b 2 ,即 b 1 ,有 b 8 0∴b 05 分( 3)∵ 二次函数yax2bxc的图象经过点(q ,a)∴ aq2bq c a 0∴ q为方程 ax 2bx c a 0 的根 于是,判别式b 2 4a(a c) 0又 ∵ a b c 0∴b 2 4ab b(b 4a)b(3a c) 0又 a b c 0 ,且 a b c ,知 a 0 , c 0∴ 3a c 0∴ b0 ∵ q 为方程 ax 2bx ca0 的根qbb 2 4ab qbb 2 4ab2a2a∴或当xq 4时y a(q 4) 2b( q 4) caq 2 8aq 16abq 4b c(aq 2 bqc a) 8aq 15a 4b8aq 15a 4bqbb 2 4ab2a若y8abb 2 4ab 15a 4b 15a4 b 2 4ab则2a∵ ab 0∴ b 24aba 2 4a a 5a 2 ,b 2 4ab 5a4 b24ab4 5a∴y15a4 5a (15 4 5 )aqbb 2 4ab2a若y8a bb 24ab15a 4b 15a4 24ab 02a b 则∴当x q 4时,二次函数y ax2bx c所对应的函数值y大于0 10分2006 年天津市初中毕业生学业考试数学试卷(26) (本小题10分)已知抛物线y= ax 2+ bx+ c 的定点坐标为(2,4).(Ⅰ)试用含 a 的代数式分别表示b, c;(Ⅱ)若直线y= kx + 4( k≠ 0)与 y 轴及该抛物线的交点依次为D、E、F,且SODE=1,其中 O为坐标原点,SOEF3试用含 a 的代数式表示k;(Ⅲ)在(Ⅱ)的条件下,若线段EF 的长 m满足3 2 m 3 5 ,试确定a的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学分类汇编二次函数压轴题1、如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,﹣),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.2、如图1,二次函数2yax bx 的图像过点A (-1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标; (3)如图3,一次函数ykx (k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y轴交OC 于点N 。
若在点T 运动的过程中,2ON OM为常数,试确定k 的值。
xy图3NM OC Tx y图2(备用图)BAOxy13-1图1B AO二、与轴对称和等腰三角形性质有关的综合题3、如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.4、如图,二次函数y =ax 2+bx (a ≠0)的图象经过点A (1,4),对称轴是直线x =-32,线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0,2),直线AC 交抛物线于点B ,连结OA ,OB ,OD ,BD . (1)求该二次函数的解析式;(2)设点F 是BD 的中点,点P 是线段DO 上的动点,将△BPF 沿边PF 翻折,得到△B ′PF ,使△B ′PF 与△DPF 重叠部分的面积是△BDP 的面积的 14 ,若点B ′在OD 上方,求线段PD 的长度;(3)在(2)的条件下,过B ′作B ′H ⊥PF 于H ,点Q 在OD 下方的抛物线上,连接AQ 与B ′H 交于点M ,点G 在线段AM 上,使∠HPN +∠DAQ =135°,延长PG 交AD 于N .若AN + B ′M =52,求点Q 的坐标.xyA D CBOxyA DCBO xyA DCBOKOyxC BA图2三、与图形的平移与旋转变换性质有关的综合题5、如图1,二次函数1x 2-x 21y 2+=的图象与一次函数y =kx +b (k ≠0)的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数y =kx +b (k ≠0)的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且S △AMO ︰S 四边形AONB =1︰48。
(1)求直线AB 和直线BC 的解析式;(2)点P 是线段AB 上一点,点D 是线段BC 上一点,PD //x 轴,射线PD 与抛物线交于点G ,过点P 作PE ⊥x 轴于点E ,PF ⊥BC 于点F ,当PF 与PE 的乘积最大时,在线段AB 上找一点H (不与点A ,点B 重合),使GH +22BH 的值最小,求点H 的坐标和GH +22BH 的最小值;(3)如图2,直线AB 上有一点K (3,4),将二次函数1x 2-x 21y 2+=沿直线BC 平移,平移的距离是t (t ≥0),平移后抛物线上点A ,点C 的对应点分别为点A /,点C /;当△A /C /K 是直角三角形时,求t 的值。
6、如图,直线:33l y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线224(0)y ax ax a a =-++<经过点B . (1)求该地物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM .设点M 的横坐标为m ,△ABM 的面积为S .求S 与m 的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l '与直线AM '重合时停止旋转.在旋转过程中,直线l '与线段BM '交于点C .设点B 、M '到直线l '的距离分别为1d 、2d ,当12d d +最大时,求直线l '旋转的角度(即∠BAC 的度数).四、与直角三角形性质有关的综合题7、如图,已知抛物线y =﹣x 2+bx +c 经过A (3,0),B (0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以个单位/秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.五、与相似三角形性质有关的综合题8、如图,直线l :y =-x +1与x 轴,y 轴分别交于A ,B 两点,点P ,Q 是直线l 上的两个动点,且点P 在第二象限,点Q 在第四象限,∠POQ =135°. (1) 求△AOB 的周长;(2) 设AQ =t >0.试用含t 的代数式表示点P 的坐标;(3) 当动点P ,Q 在直线l 上运动到使得△AOQ 与△BPO 的周长相等时,记作∠AOQ =m ,若过点A 的二次函数y =ax 2+bx +c 同时满足以下两个条件: ① 6a +3b +2c =0;② 当m ≤x ≤m +2时,函数y 的最大值等于m2,求二次项系数a 的值.六、与圆的性质有关的综合题9、如图,在平面直角坐标系中,抛物线y =mx 2+4mx ﹣5m (m <0)与x 轴交于点A 、B (点A 在点B 的左侧),该抛物线的对称轴与直线y =x 相交于点E ,与x 轴相交于点D ,点P 在直线y =x 上(不与原点重合),连接PD ,过点P 作PF ⊥PD 交y 轴于点F ,连接DF .(1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式; (2)求A 、B 两点的坐标;(3)如图②所示,小红在探究点P 的位置发现:当点P 与点E 重合时,∠PDF 的大小为定值,进而猜想:对于直线y =x 上任意一点P (不与原点重合),∠PDF 的大小为定值.请你判断该猜想是否正确,并说明理由.七、与阅读理解有关的综合题10、若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 与顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系,此时,直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1) 若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值; (2) 若某“路线”L 的顶点在反比例函数xy 6的图像上,它的“带线” l 的解析式为y =2x -4,求此“路线”L 的解析式; (3) 当常数k 满足21≤k ≤2时,求抛物线L : y =ax 2+(3k 2-2k +1)x + k 的“带线” l 与x 轴,y 轴所围成的三角形面积的取值范围.11、如图1,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =x 2﹣x +3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图2),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为,设MN 离AB 的距离为m ,抛物线F 2的顶点离地面距离为k ,当2≤k ≤2.5时,求m 的取值范围.八、与方程根和关系的关系、函数值大小比较有关的综合题12、已知二次函数22(21)(0)y x k x k k k =-+++>(1)当12k =时,求这个二次函数的顶点坐标;(2)求证:关于x 的一元二次方程22(21)=0xk x k k -+++有两个不相等的实数根;(3)如图,该二次函数与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于C 点,P 是y 轴负半轴上一点,且OP =1,直线AP 交BC 于点Q ,求证:222111OA AB AQ +=13、已知函数()212,0y ax bx y ax b ab =+=+≠.在同一平面直角坐标系中.(1)若函数1y 的图像过点(-1,0),函数2y 的图像过点(1,2),求a ,b 的值. (2)若函数2y 的图像经过1y 的顶点.①求证:20a b +=;②当312x <<时,比较1y ,2y 的大小.14、已知两个二次函数21y x bx c =++和22y x m =+.对于函数1y ,当x =2时,该函数取最小值.(1) 求b 的值;(2) 若函数y 1的图像与坐标轴只有2个不同的公共点,求这两个公共点间的距离;(3) 若函数y 1、y 2的图像都经过点(1,-2),过点(0,a -3)(a 为实数)作x 轴的平行线,与函数y 1、y 2的图像共有4个不同的交点,这4个交点的横坐标分别是x 1、x 2、x 3、x 4,且x 1<x 2<x 3<x 4,求x 4-x 3+x 2-x 1的最大值.。