河北省中考数学压轴题汇总

合集下载

2021-2022学年河北省石家庄市第九中学中考数学押题卷含解析

2021-2022学年河北省石家庄市第九中学中考数学押题卷含解析

2021-2022学年河北省石家庄市第九中学中考数学押题卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元2.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π- B .2233π- C .433π- D .4233π- 3.如图,点A 是反比例函数y=kx的图象上的一点,过点A 作AB ⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则k 的值是( )A .3B .﹣3C .6D .﹣64.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒5.若正比例函数y=3x 的图象经过A (﹣2,y 1),B (﹣1,y 2)两点,则y 1与y 2的大小关系为( )A.y1<y2B.y1>y2C.y1≤y2D.y1≥y26.如图,将函数y=12(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=12(x﹣2)2-2 B.y=12(x﹣2)2+7C.y=12(x﹣2)2-5 D.y=12(x﹣2)2+47.计算-5+1的结果为()A.-6 B.-4 C.4 D.68.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a等于()A.1B.2C.3D.4 9.下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a210.3-的倒数是()A.13-B.3 C.13D.13±11.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A .90°B .120°C .60°D .30°12.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为( )A .2B .3C .4D .5二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:4a 2﹣1=_____.14.如图,AB 是半圆O 的直径,点C 、D 是半圆O 的三等分点,若弦CD=2,则图中阴影部分的面积为 .15.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.16.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin ∠EAB 的值为 .17.8的立方根为_______.18.因式分解:212x x --= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈2 1.4≈)20.(6分)如图,AB为⊙O的直径,点E在⊙O上,C为BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=6,求AB的长.21.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14 b四 a 0.32五8 0.16请根据表格提供的信息,解答以下问题:本次决赛共有名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.22.(8分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=83m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.23.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).24.(10分)如图,已知正比例函数y=2x与反比例函数y=kx(k>0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=kx(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.25.(10分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.26.(12分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD 于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.27.(12分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(-1,0),B(4,0),∠ACB=90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.图1 备用图参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.2、D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.3、D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.4、B【解析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.5、A【解析】分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y 1=−6,y 1=−3, ∵−3>−6, ∴y 1<y 1. 故选A . 【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式. 6、D 【解析】 ∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m =()211212-+=32,n =()214212-+=3, ∴A (1,32),B (4,3),过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C (4,32), ∴AC =4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分), ∴AC •AA ′=3AA ′=9, ∴AA ′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是()21242y x =-+. 故选D .7、B 【解析】根据有理数的加法法则计算即可. 【详解】解:-5+1=-(5-1)=-1.故选B . 【点睛】本题考查了有理数的加法. 8、A 【解析】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:21233a =++, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A. 9、C 【解析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可. 【详解】A .a +3a =4a ,错误;B .a 5和a 不是同类项,不能合并,故此选项错误;C .(a 2)2=a 4,正确;D .a 8÷a 2=a 6,错误. 故选C . 【点睛】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则. 10、A 【解析】解:3-的倒数是13-. 故选A . 【点睛】本题考查倒数,掌握概念正确计算是解题关键. 11、C 【解析】解:∵A (0,1),B (0,﹣1),∴AB =1,OA =1,∴AC =1.在Rt △AOC 中,cos ∠BAC =OA AC =12,∴∠BAC =60°.故选C .点睛:本题考查了垂径定理的应用,关键是求出AC 、OA 的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.12、C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(2a+1)(2a﹣1)【解析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】4a2﹣1=(2a+1)(2a﹣1).故答案为:(2a+1)(2a-1).【点睛】此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.14、23π.【解析】试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=1204360π⨯=43π,S△OBC=12312⨯⨯=3,S弓形CD=S扇形ODC-S△ODC=6041233602π⨯-⨯⨯=233π-,所以阴影部分的面积为为S=43π-3-(233π-)=23π.考点:扇形的面积计算.15、1 3【解析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【详解】解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为39=13.故答案为:13.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.16、35.【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化简得y=4x,∴sin∠EAB=3355 BE y x xAE y x x-===+.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义17、2.【解析】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.18、()()34x x +-;【解析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】x 2﹣x ﹣12=(x ﹣4)(x +3).故答案为(x ﹣4)(x +3).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1.4米.【解析】过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得BE=CM ,则EM=BC ,在Rt △ABE 、Rt △CDF 中可求出AE 、BE 、DF 、FC 的长度,进而可得出EF 的长度,再在Rt △MEF 中利用勾股定理即可求出EM 的长,此题得解.【详解】过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得BE=CM ,如图所示,∵AB=CD ,AB+CD=AD=2,∴AB=CD=1,在Rt △ABE 中,AB=1,∠A=37°,∴BE=AB•sin ∠A≈0.6,AE=AB•cos ∠A≈0.8,在Rt △CDF 中,CD=1,∠D=45°,∴CF=CD•sin ∠D≈0.7,DF=CD•cos ∠D≈0.7,∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CM ,又∵BE=CM ,∴四边形BEMC 为平行四边形,∴BC=EM ,CM=BE .在Rt △MEF 中,EF=AD ﹣AE ﹣DF=0.5,FM=CF+CM=1.3,∴,∴B 与C 之间的距离约为1.4米.【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC 的长度是解题的关键.20、(1)证明见解析(2)3【解析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到222CD AC AD =-=,根据切割线定理得到2CD AD DE =⋅,根据勾股定理得到223CE CD DE =+=,由圆周角定理得到90ACB ∠=︒,即可得到结论.【详解】()1相切,连接OC ,∵C 为BE 的中点,∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O 相切;()2方法1:连接CE ,∵2AD=,AC=,∵90ADC∠=,∴CD==∵CD是O的切线,∴2CD AD DE=⋅,∴1DE=,∴CE==∵C为BE的中点,∴BC CE==∵AB为O的直径,∴90ACB∠=,∴3 AB==.方法2:∵DCA B∠=∠,易得ADC ACB∽,∴AD AC AC AB=,∴3AB=.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.21、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48% 考点:频数分布直方图22、 3.【解析】利用∠ECA 的正切值可求得AE ;利用∠ECB 的正切值可求得BE ,由AB=AE+BE 可得答案.【详解】在Rt △EBC 中,有BE=EC×tan45°3m , 在Rt △AEC 中,有AE=EC×tan30°=8m , ∴3+8(m ).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.23、 (1)π, 2π;(2)(n ﹣2)π.【解析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【点睛】 本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.24、(1)32;(2)x <﹣4或0<x <4;(3)点P 的坐标是P (﹣;或P (.【解析】分析:(1)先将x=4代入正比例函数y=2x ,可得出y=8,求得点A (4,8),再根据点A 与B 关于原点对称,得出B 点坐标,即可得出k 的值;(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.(3)由于双曲线是关于原点的中心对称图形,因此以A 、B 、P 、Q 为顶点的四边形应该是平行四边形,那么△POA 的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P 点的坐标,然后表示出△POA 的面积,由于△POA 的面积为1,由此可得出关于P 点横坐标的方程,即可求出P 点的坐标.详解:(1)∵点A 在正比例函数y=2x 上,∴把x=4代入正比例函数y=2x ,解得y=8,∴点A (4,8),把点A (4,8)代入反比例函数y=k x ,得k=32, (2)∵点A 与B 关于原点对称,∴B 点坐标为(﹣4,﹣8),由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x 的取值范围,x <﹣8或0<x <8;(3)∵反比例函数图象是关于原点O 的中心对称图形,∴OP=OQ ,OA=OB ,∴四边形APBQ 是平行四边形,∴S △POA =S 平行四边形APBQ ×=14×224=1, 设点P 的横坐标为m (m >0且m≠4),得P (m ,32m), 过点P 、A 分别做x 轴的垂线,垂足为E 、F ,∵点P 、A 在双曲线上,∴S △POE =S △AOF =16,若0<m <4,如图,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=1.∴12(8+32m)•(4﹣m)=1.∴m1=﹣7+37,m2=﹣7﹣37(舍去),∴P(﹣7+37,16+4877);若m>4,如图,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=1.∴12×(8+32m)•(m﹣4)=1,解得m1=7+37,m2=7﹣37(舍去),∴P(7+37,﹣16+4877).∴点P的坐标是P(﹣7+37,16+4877);或P(7+37,﹣16+4877).点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=kx中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.25、详见解析.【解析】先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.【详解】证明:∵四边形ABCD是正方形,∴AD=DC,∵E、F分别是AB、BC边的中点,∴AE =ED =CF =DF .又∠D =∠D ,∴△ADF ≌△CDE (SAS ).∴∠DAF =∠DCE ,∠AFD =∠CED .∴∠AEG =∠CFG .在△AEG 和△CFG 中EAG FCG AE CFAEG CFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEG ≌△CFG (ASA ).∴AG =CG .【点睛】本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.26、 (1) 2;(2)见解析 【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x ,则CD=2x,求得x 的值,可得BD 的长;(2)如图2,连接CM ,先证明△ACE ≌△BCF ,则∠BFC=∠AEC=90°,证明C 、M 、B 、F 四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM .详解:(1)∵∠ACB=90°,AC=BC ,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt △ACE 中,CE=1,∴AC=2CE=2,Rt △CED 中,∠ECD=90°﹣60°=30°,∴CD=2ED ,设ED=x ,则CD=2x ,∴x ,∴3x=1,x=33,∴CD=2x=233,∴BD=BC﹣CD=AC﹣CD=2﹣233;(2)如图2,连接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四点共圆,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.27、见解析【解析】分析:(1)根据OAC OCB∽求出点C的坐标,用待定系数法即可求出抛物线的解析式.(2)分两种情况进行讨论即可.(3)存在. 假设直线l 上存在点M ,抛物线上存在点N ,使得以A 、O 、M 、N 为顶点的四边形为平行四边形.分当平行四边形AOMN '是平行四边形时,当平行四边形AONM 是平行四边形时,当四边形AMON 为平行四边形时,三种情况进行讨论.详解:(1)易证OAC OCB ∽,得OA OC OC OB =,2· 4.OC OAOB == ∴OC =2,∴C (0,2),∵抛物线过点A (-1,0),B (4,0)因此可设抛物线的解析式为(1)(4),y a x x =+-将C 点(0,2)代入得:42a -=,即1,2a =- ∴抛物线的解析式为213 2.22y x x =-++ (2)如图2,当1CDP CAO ∽时,1CP l ⊥,则P 1(32,2), 当2P DC CAO ∽ 时,2P ACO ,∠=∠ ∴OC ∥l,∴225OC OA P H AH ==, ∴P 2H =52·OC =5, ∴P 2 (32,5) 因此P 点的坐标为(32,2)或(32,5). (3)存在.假设直线l 上存在点M ,抛物线上存在点N ,使得以A 、O 、M 、N 为顶点的四边形为平行四边形.如图3,当平行四边形AOMN'是平行四边形时,M(32,218),N'(12,218),当平行四边形AONM是平行四边形时,M(32,218),N(52,218),如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(32,m),则5(,)2N m--,∵点N在抛物线1(1)(4)2y x x=-+-上,∴-m=-12·(-52+1)( -52-4)=-398,∴m=39 8,此时M(32,398),N(-52,-398).综上所述,M(32,218),N(12,218)或M(32,218),N(52,218) 或M(32,398),N(-52,-398).点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.。

河北省邢台市,2020~2021年中考数学压轴题精选解析

河北省邢台市,2020~2021年中考数学压轴题精选解析

河北省邢台市,2020~2021年中考数学压轴题精选解析河北省邢台市中考数学压轴题精选~~第1题~~(2020沙河.中考模拟)如图,在中,,于,且 .点从点出发,沿方向匀速运动,速度为;同时直线由点出发沿方向匀速运动,速度为,运动过程中始终保持,直线交于,交于,连接,设运动时间为 .(1)________, ________, ________;(用含的式子表示)(2)当四边形是平行四边形时,求的值;(3)当点在线段的垂直平分线上时,求的值;(4)是否存在时刻,使以为直径的圆与的边相切?若存在,直接写出的值;若不存在,请说明理由.~~第2题~~(2018宁晋.中考模拟) 某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?(2)若宾馆某一天获利10640元,则房价定为多少元?(3)房价定为多少时,宾馆的利润最大?~~第3题~~(2018广水.中考模拟) 如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.~~第4题~~(2017邢台.中考模拟) 根据题意解答2(1)如图1,已知E 是矩形ABCD 的边AB 上一点,EF ⊥DE 交BC 于点F ,证明:△ADE ∽△BFE .(2)这个相似的基本图形像字母K ,可以称为“K”型相似,但更因为图形的结构特征是一条线上有3个垂直关系,也常被称为“一线三垂直”,那普通的3个等角又会怎样呢?变式一如图2,已知等边三角形ABC ,点D 、E 分别为BC ,AC 上的点,∠ADE=60°.①图中有相似三角形吗?请说明理由.②如图3,若将∠ADE 在△ABC 的内部(∠ADE 两边不与BC 重合),绕点D 逆时针旋转一定的角度,还有相似三角形吗?(3)变式二如图4,隐藏变式1图形中的线段AE ,在得到的新图形中.①如果∠B=∠C=∠ADE=50°,图中有相似三角形吗?请说明理由.②如图5,若∠B=∠C=∠ADE=∠a ,∠a 为任意角,还有相似三角形吗?(4)交式三已知,相邻两条平形直线间的距离相等,若等腰直角△ABC 的三个顶点分别在这三条平行直线上,则cosa 的值是(直接写出结果).~~第5题~~(2016邢台.中考模拟) 如图,在平面直角坐标系中,已知点A (﹣1, ),B (2,0)在抛物线1:y=ax +bx+1(a ,b 为常数,且a≠0)上,直线1经过抛物线1的顶点且与y 轴垂直,垂足为点D.(1)求l 的解析式,并写出它的对称轴和顶点坐标;(2)设l 上有一动点P 从点A 出发,沿抛物线从左向右运动,点P 的纵坐标y 也随之以每秒2个单位长的速度变化,设点P 运动的时间为t (秒),连接OP ,以线段OP 为直径作⊙F .①求y 关于t 的表达式,并写出t 的取值范围;122111p p②当点P 在起点A 处时,直线l 与⊙F 的位置关系是,在点P 从点A 运动到点D 的过程中,直线1与⊙F 是否始终保持着上述的位置关系?请说明理由;(3)在(2)条件下,当点P 开始从点A 出发,沿抛物线从左到右运动时,直线l 同时向下平移,垂足D 的纵坐标y 以每秒3个单位长度速度变化,当直线l 与⊙F 相交时,求t 的取值范围.河北省邢台市中考数学压轴题答案解析~~第1题~~答案:222D 2解析:答案:解析:~~第3题~~答案:解析:~~第4题~~答案:解析:~~第5题~~答案:解析:。

【最新】河北省中考数学历年压轴题(含答案)

【最新】河北省中考数学历年压轴题(含答案)

【最新】河北省中考数学压轴题精选(含答案)一.(中考压轴题)(10分)如图1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于点O.(1)AB的长为;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①求证:△ABE≌△ACF;②判断△AEF是哪一种特殊三角形,并说明理由.二.(中考压轴题)(12分)如图,在平面直角坐标系中,已知点A (5,3),点B(﹣3,3),过点A的直线y=x+m(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△PAB的面积比;(3)若反比例函数y=(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值.三.(中考压轴题)(12分)如图1,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB,已知AB=6,设OA=r.(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图2所示,线段EF的长度是否随r 的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系.四.(中考压轴题)(12分)大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系如表:销售价x(元/…110 115 120 125 130 …件)销售量y(件)…50 45 40 35 30 …若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(其中支出=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?五.(中考压轴题)(9分)已知如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:(1)求k的值;(2)求点A的坐标;(用含m代数式表示)(3)当∠ABD=45°时,求m的值.六.(中考压轴题)(10分)某学校为改善办学条件,计划采购A、B 两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?七.(中考压轴题)(10分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.(3)应用拓展:如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.八.(中考压轴题)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.答案一.(9分)如图1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于点O.(1)AB的长为 2 ;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①求证:△ABE≌△ACF;②判断△AEF是哪一种特殊三角形,并说明理由.【解答】解:(1)∵在菱形ABCD中,AC=2,BD=2,∴∠AOB=90°,OA=AC=1,BO=BD=,在Rt△AOB中,由勾股定理得:AB==2;故答案为:2;(2)①∵由(1)知,菱形ABCD的边长是2,AC=2,∴△ABC和△ACD是等边三角形,∴∠BAC=∠BAE+∠CAE=60°,∵∠EAF=∠CAF+∠CAE=60°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),②△AEF是等边三角形,理由是:∵△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.二.(10分)如图,在平面直角坐标系中,已知点A(5,3),点B(﹣3,3),过点A的直线y=x+m(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△PAB的面积比;(3)若反比例函数y=(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值.【解答】解:(1)∵过点A(5,3),∴3=×5+m,解得m=,∴直线为y=x+,当x=1时,∴∴P(1,1);(2)设直线BP的解析式为y=ax+b根据题意,得∴直线BP的解析式为y=﹣x+,∵p(1,1),A(5,3),B(﹣3,3),∴=()2=;(3)当k<0时,反比例函数在第二象限,函数图象经过B点时,k 的值最小,此时k=﹣9;当k>0时,反比例函数在第一象限,k的值最大,联立得:,消去y得:﹣x+=,整理得:x2﹣3x+2k=0,∵反比例函数与线段BD有公共点,∴△=32﹣4×1×2k≥0,解得:k≤,故当k<0时,最小值为﹣9;当k>0时,最大值为;三.(11分)如图1,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB,已知AB=6,设OA=r.(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图2所示,线段EF的长度是否随r 的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系.【解答】解:(1)∵BP为⊙O的切线,∴OP⊥BP,∵CD⊥BP,∴∠OPB=∠DCB=90°,∴OP∥ED;(2)在Rt△OBP中,∠OPB=90°,∠ABP=30°,∴∠POB=60°,∴∠AOP=120°.在Rt△OBP中,OP=OB,即r=(6﹣r),解得:r=2,S扇形AOP=.∵CD⊥PB,∠ABP=30°,∴∠EDB=60°,∵DE=BD,∴△EDB是等边三角形,∴BD=BE.又∵CD⊥PB,∴CD=CE.∴DE与PB互相垂直平分,∴四边形PDBE是菱形.(3)EF的长度不随r的变化而变化,且EF=3,∵AO=r、AB=6,∴BO=AB﹣AO=6﹣r,∵BP为⊙O的切线,∴∠BPO=90°,∵直线CD垂直平分PB,∴∠DCB=∠OPB=90°,且BC=PC,∵∠DBC=∠OBP,∴△DBC∽△OBP,∴===,则CD=OP=r、BD=OB=(6﹣r)=3﹣,∵DB=DE=3﹣,∴CE=DE﹣CD=3﹣r,∵OF⊥EF,∴∠OFC=∠FCP=∠CPO=90°,∴四边形OFCP为矩形,∴CF=OP=r,则EF=CF+CE=r+3﹣r=3,即EF的长度为定值,EF=3.四.(12分)大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x (元/件)之间存在一次函数关系如表:销售价x(元/…110 115 120 125 130 …件)销售量y(件)…50 45 40 35 30 …若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(其中支出=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?【解答】解:(1)由表可知,y是关于x的一次函数,设y=kx+b,将x=110、y=50,x=115、y=45代入,得:,解得:,∴y=﹣x+160;(2)由已知可得:50×110=50a+3×100+200,解得:a=100,设每天的毛利润为W,则W=(x﹣100)y﹣2×100﹣200=(x﹣100)(﹣x+160)﹣2×100﹣200=﹣x2+260x﹣16400=﹣(x﹣130)2+500,∴当x=130时,W取得最大值,最大值为500,答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大利润为500元;(3)设需t天能还清借款,则500t≥50000+0.0002×50000t解得:t≥102,∵t为整数,∴t的最小值为103,答:该店最少需要103天才能还清集资款.五.【解答】解:(1)由函数y=1,3),则把点(1,3)坐标代入y=中,得:k=3,y=;(2)连接AC,则AC过E,过E作EG⊥BC交BC于G点∵点E的横坐标为m,E在双曲线y=∴E的纵坐标是y=,∵E为BD中点,∴由平行四边形性质得出E为AC中点,∴BG=GC=BC,∴AB=2EG=,即A点的纵坐标是,代入双曲线y=得:A的横坐标是m,∴A(m,);(3)当∠ABD=45°时,AB=AD,则有=m,即m2=6,解得:m1=,m2=﹣(舍去),∴m=.六.【解答】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,[来源:学|科|网Z|X|X|K]答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.七.【解答】解:(1)△ABC是“等高底”三角形;理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即△ABC是“等高底”三角形;(2)如图2,∵△ABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵△ABC关于BC所在直线的对称图形是△A'BC,∴∠ADC=90°,∵点B是△AA′C的重心,∴BC=2BD,设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,∴==(3)①当AB=BC时,Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”为BC,l1∥l2,l1与l2之间的距离为2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴∠DCF=45°,设DF=CF=x,∵l1∥l2,∴∠ACE=∠DAF,∴==,即AF=2x,∴AC=3x=2,∴x=,CD=x=.Ⅱ.如图4,此时△ABC等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴△ACD是等腰直角三角形,∴CD=AC=2.②当AC=BC时,Ⅰ.如图5,此时△ABC是等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴CD=AB=BC=2;Ⅱ.如图6,作AE⊥BC于E,则AE=BC,∴AC=BC=AE,∴∠ACE=45°,∴△ABC绕点C按顺时针方向旋转45°,得到△A'B'C时,点A'在直线l1上,∴A'C∥l2,即直线A'C与l2无交点,综上所述,CD的值为,2,2.八.【解答】解:(1)根据题意设抛物线的解析式为y=a(x﹣1)(x﹣4),代入C(0,3)得3=4a,解得a=,y=(x﹣1)(x﹣4)=x2﹣,所以,抛物线的解析式为y=x2﹣x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC==5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=﹣,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ∥y轴,[来源:学|科|网]∴△MQB∽△COB,∴=,即=,解得b=,代入y=﹣x+3得, =﹣a+3,解得a=,∴M(,);②当∠QMB=90°时,如图3,[来源:学。

河北省唐山市,2020~2021年中考数学压轴题精选解析

河北省唐山市,2020~2021年中考数学压轴题精选解析

河北省唐山市,2020~2021年中考数学压轴题精选解析河北省唐山市中考数学压轴题精选~~第1题~~(2020遵化.中考模拟) 如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 、⊙O 、⊙O 、⊙O 均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c.阅读理解:①如图13-1,⊙O 从⊙O 的位置出发,沿AB 滚动到⊙O 的位置,当AB=c 时,⊙O 恰好自转1周.②如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC外部沿A -B -C 滚动,在点B 处,必须由⊙O 的位置旋转到⊙O 的位置,⊙O 绕点B 旋转的角∠O BO = n °,⊙O 在点B 处自转周.(1) 实践应用:在阅读理解的①中,若AB = 2c ,则⊙O 自转周;若AB=1,则⊙O 自转周.在阅读理解的②中,若∠ABC = 120°,则⊙O 在点B 处自转周;若∠ABC = 60°,则⊙O 在点B 处自转周.(2) 如图13-3,∠ABC=90°,AB=BC= c .⊙O 从⊙O 的位置出发,在∠ABC 外部沿A -B -C 滚动到⊙O 的位置,⊙O 自转周.(3) 拓展联想:如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(4) 如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D 的位置,直接写出⊙O 自转的周数.123412121214~~第2题~~(2020迁安.中考模拟) 已知△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、N 不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=D E。

石家庄市精英中学中考数学期末几何综合压轴题易错汇编

石家庄市精英中学中考数学期末几何综合压轴题易错汇编

石家庄市精英中学中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.(操作)如图①,在矩形ABCD 中,E 为对角线AC 上一点(不与点A 重合),将ADE ∆沿射线AB 方向平移到BCF ∆的位置,E 的对应点为F .已知ADE BCF ∆∆≌(不需要证明).(探究)过图①中的点E 作//EG BC 交FB 延长线于点G ,连接AG ,其它条件不变,如图②.求证:EGA BCF ∆∆≌.(拓展)将图②中的BCF ∆沿BC 翻折得到BCF '∆,连接GF ',其它条件不变,如图③.当GF '最短时,若4AB =,2BC =,直接写出FF '的长和此时四边形BFCF '的周长.解析:探究:见解析;拓展:'4,FF = 四边形'BFCF 的周长为4 5. 【分析】探究:证明四边形EGBC 是平行四边形,推出EG=BC ,利用SAS 证明三角形全等即可. 拓展:如图3中,连接BD 交AC 于点O ,作BK ⊥AC 于K ,F′H ⊥BC 于H .由题意四边形AGFC 是平行四边形,推出GF=AC=25,由BF=BF′,可以假设BF=x ,则BG=25,x -利用相似三角形的性质,求出BH ,HF′,利用勾股定理求出GF′,再利用二次函数的性质,求出GF′的值最小时BF′的值,推出BF′=5 此时点F′与O 重合,由此即可解决问题.【详解】解:探究:由平移AE BF =,//AE BF∴//AC GF ,即//CE BG又∵//EG BC ,∴四边形BCEG 为平行四边形∴EG BC =∵//AC FG ,∴∠CBF=∠ACB ,∵//EG BC∴∠AEG=∠ACB ,∴∠AEG=∠CBF∴EGA BCF ∆∆≌.拓展:如图3中,连接BD 交AC 于点O ,作BK ⊥AC 于K ,F′H ⊥BC 于H .∵四边形ABCD 是矩形, ∴∠ABC=90°,AB=4,BC=2, ∴22224225,AC AB BC +=+∵11,22AB CB AC BK •=• ∴45BK = ∴22224535(5)()5OK OB BK -=- 由题意四边形AGFC 是平行四边形, ∴GF=AC=5∵BF=BF′,可以假设BF=x ,则BG=25,x∵AC ∥GF , ∴∠BOK=∠HBF′,∵∠BKO=∠F′HB=90°,∴△F′HB ∽△BKO ,∴ '',F H BH BF BK OK OB== ∴'45355== ∴'4338,,2525,5555F H x BH x GH BG BH x x x ===-=-= ∴''222224816325()(25)20,5555GF F H GH x x x x =++--+ ∵ 165>0, ∴当32555,1625x -=-=⨯ 时,GF′的值最小, 此时点F′与O 重合,由对折得:'',,CF CF BF BF ==由矩形的性质得:'',BF CF ='',BF CF BF CF ∴===∴ 四边形BFCF′是菱形,∴ 四边形BFCF′的周长为45,',FF BC ∴⊥ 且'FF 与BC 互相平分, 由勾股定理得:'222(5)1 4.FF =-=【点睛】本题属于四边形综合题,考查了矩形的性质,翻折变换,平行四边形的判定和性质,相似三角形的判定和性质,二次函数的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会构建二次函数解决最值问题,属于中考压轴题.2.问题背景(1)如图(1),ABD △,AEC 都是等边三角形,ACD △可以由AEB △通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用(2)如图(2).在Rt ABC 中,90ACB ∠=︒,分别以AC ,AB 为边,作等边ACD △和等边ABE △,连接ED ,并延长交BC 于点F ,连接BD .若BD BC ⊥,求DF DE的值. 拓展创新(3)如图(3).在Rt ABC 中,90ACB ∠=︒,2AB =,将线段AC 绕点A 顺时针旋转90︒得到线段AP ,连接PB ,直接写出PB 的最大值.解析:(1)旋转中心是点A ,旋转方向是顺时针,旋转角是60︒;(2)23;(3)51.【分析】(1)由等边三角形得出60BAD ∠=︒,60CAE ∠=︒,AD AB =,AC AE =,证明()ACD AEB SAS ≌,由旋转性质即可得;(2)证明()ADE ACB SAS ≌,由全等三角形的性质得90ADE ACB ∠=∠=︒,DE CB =,得出30BDF ∠=︒,由30直角三角形性质得12BF DF =,则可计算得答案; (3)过点A 作AE AB ⊥,且使AE =AD ,连接PE ,BE ,由直角三角形的性质求出BE 、PE 的长即可得解.【详解】解(1)∵ABD △,AEC 都是等边三角形,∴60BAD ∠=︒,60CAE ∠=︒,AD AB =,AC AE =,BAD BAC CAE BAC ∴∠+∠=∠+∠, DAC BAE ∴∠=∠,()ACD AEB SAS ∴≌, ACD ∴可以由AEB △绕点A 顺时针旋转60︒得到,即旋转中心是点A ,旋转方向是顺时针,旋转角是60︒;(2)ACD 和ABE △都是等边三角形,AC AD ∴=,AB AE =,60CAD BAE ∠=∠=︒,CAB DAE ∴∠=∠,()ADE ACB SAS ∴≌,90ADE ACB ∴∠=∠=︒,DE CB =,90ADE ∠=︒,90ADF ∴∠=︒,60ADC ACD ∠=∠=︒,30DCF CDF ∴∠=∠=︒,CF DF ∴=,BD BC ⊥,30BDF ∴∠=︒,设BF =x ,则CF =DF =2x ,DE =3x , ∴2233DF x DE x ==; (3)90ACB ∠=︒,∴点C 在以AB 为直径的圆上运动,取AB 的中点D ,连接CD ,112CD AB ∴==, 如图,过点A 作AE AB ⊥,且使AE =AD ,连接PE ,BE ,∵将线段AC 绕点A 顺时针旋转90︒得到线段AP ,90PAC ∴∠=︒,PA =AC .90EAD ∠=︒,PAE CAD ∴∠=∠,()CAD PAE SAS ∴≌,∴PE =CD =1.∵AB =2,AE =AD =1,∴BE =22AE AB +=2212+=5,51BP BE PE ∴≤+=+,∴BP 的最大值为5+1.【点睛】本题是几何变换的综合题,考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理、直角三角形的性质、圆周角定理;熟练掌握旋转的性质是本题的关键. 3.(基础巩固)(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△. (尝试应用)(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF 的值. (拓展提高)(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.解析:(1)见解析;(2)54;(3)113AB = 【分析】 (1)由,ABC ACD ACE A ABC α∠=∠=∠=∠+∠证明A DCE ∠=∠,再根据相似三角形的判定方法解题即可;(2)由菱形的性质,得到AB AD =,60A ∠=︒,继而证明ABD △是等边三角形,结合(1)中相似三角形对应边成比例的性质,设,2,,BP a DP a AE PE x AF PF y ======,则3,3DE a x BF a y =-=-可整理得到54x y =,据此解题; (3)在AD 边上取点E ,F ,使得30ABE DCF ∠=∠=︒,由矩形的性质,得到120BEP BPC PFC ∠=∠=∠=︒,结合(1)中相似三角形对应边成比例的性质解题即可.【详解】解:(1)证明:∵,ABC ACD ACE A ABC α∠=∠=∠=∠+∠,∴DCE A αα∠+=∠+,即A DCE ∠=∠,∵ABC CED α∠=∠=,∴ABC CED ∽△△;(2)∵四边形ABCD 是菱形,∴AB AD =,∴60A ∠=︒,∴ABD △是等边三角形,∴60EPF A ADB ABD ∠=∠=∠=∠=︒,由(1)得,EPD PFB ∽, ∴DE PD PE PB BF PF ==, 设,2,,BP a DP a AE PE x AF PF y ======,则3,3DE a x BF a y =-=- ∴323a x a x a a y y -==-, 可得3ay xy ax -=①,32ax xy ay -=②,①-②,得332ay ax ax ay -=-,∴54x y =, ∴AE AF 的值为54; (3)如图,在AD 边上取点E ,F ,使得30ABE DCF ∠=∠=︒,设AB =CD =m , ∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,∴120BEP BPC PFC ∠=∠=∠=︒,60BPE DFC ︒∠=∠=1,sin 60233AB BE CF AE BE ∴====︒= DF , 223PE AE ∴=-= 443PF DF ∴=-= 由(1)可得,BEP PFC ∽,∴BE EP PF FC=, ∴2332433m m -=-22380m m +-=, 解得113m =311m =∴113AB =-.【点睛】本题考查相似三角形的综合题、等边三角形的性质、菱形的性质、矩形的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.4.[问题解决](1)如图1.在平行四边形纸片ABCD (AD >AB )中,将纸片沿过点A 的直线折叠,使点B 落在AD 上的点B '处,折线AE 交BC 于点E ,连接B 'E .求证:四边形ABEB '是菱形.[规律探索](2)如图2,在平行四边形纸片ABCD (AD >AB )中,将纸片沿过点P 的直线折叠,点B 恰好落在AD 上的点Q 处,点A 落在点A ′处,得到折痕FP ,那么△PFQ 是等腰三角形吗?请说明理由.[拓展应用](3)如图3,在矩形纸片ABCD (AD >AB )中,将纸片沿过点P 的直线折叠,得到折痕FP ,点B 落在纸片ABCD 内部点B '处,点A 落在纸片ABCD 外部点A '处,A B ''与AD 交于点M ,且A 'M =B 'M .已知:AB =4,AF =2,求BP 的长.解析:(1)证明见解析;(2)是,理由见解析;(3)422.【分析】(1)由平行线的性质和翻折可推出CEB ABE '∠=∠,即//AB B E '.故四边形ABEB '是平行四边形,再由翻折可知AB AB '=,即证明平行四边形ABEB '是菱形.(2)由翻折和平行线的性质可知BPF QPF ∠=∠,BPF QFP ∠=∠,即得出QPF QFP ∠=∠,即PFQ △是等腰三角形.(3)延长PB '交AD 于点G ,根据题意易证()FA M GB M ASA ''≅,得出结论2A F B G AF ''===,FM GM =.根据(2)同理可知PFG △为等腰三角形,即FG =PG .再在Rt A FM '中,2222FM A M A F ''=+242PG FG FM ===422PB PB PG B G ''==-=.【详解】(1)由平行四边形的性质可知//AD BC ,∴AB E CEB ''∠=∠,由翻折可知AB E ABE '∠=∠,∴CEB ABE '∠=∠,∴//AB B E '.∴四边形ABEB '是平行四边形.再由翻折可知AB AB '=,∴四边形ABEB '是菱形.(2)由翻折可知BPF QPF ∠=∠,∵//AD BC ,∴BPF QFP ∠=∠,∴QPF QFP ∠=∠,∴QF =QP ,∴PFQ △是等腰三角形.(3)如图,延长PB '交AD 于点G ,根据题意可知90FA M GB M ''∠=∠=︒,在FA M '和GB M '中,90FA M GB M A M B M FMA GMB ''''∠=∠''=︒⎧⎪=⎨⎪∠=∠⎩, ∴()FA M GB M ASA ''≅,∴2A F B G AF ''===,FM GM =.根据(2)同理可知PFG △为等腰三角形.∴FG =PG .∵2A F AM '==,∴在Rt A FM '中,2222FM A M A F ''=+=,∴242FG FM ==,∴42PG =,∴422PB PB PG B G ''==-=-.【点睛】本题为矩形的折叠问题.考查矩形的性质,折叠的性质,平行线的性质,菱形的判定,等腰三角形的判定和性质,全等三角形的判定和性质以及勾股定理,综合性强.掌握折叠的性质和正确的连接辅助线是解答本题的关键.5.(1)(问题背景)如图1,在Rt ABC 中,90BAC ∠=︒,AB AC =,D 是直线BC 上的一点,将线段AD 绕点A 逆时针旋转90°至AE ,连接CE ,求证:ABD ACE △≌△; (2)(尝试应用)如图2,在(1)的条件下,延长DE ,AC 交于点G ,BF AB ⊥交DE 于点F .求证:2FG AE ;(3)(拓展创新)如图3,A 是BDC 内一点,45ABC ADB ∠=∠=︒,90BAC ∠=︒,3BD =BDC 的面积为_____________.解析:(1)见解析;(2)见解析;(3)32【分析】(1)【问题背景】如图1,根据SAS 证明三角形全等即可.(2)【尝试应用】如图2,过点D 作DK ⊥DC 交FB 的延长线于K .证明△ECG ≌△DKF (AAS ),推出DF =EG ,再证明FG =DE =2AE 即可.(3)【拓展创新】如图3中,过点A 作AE ⊥AD 交BD 于E ,连接CE .利用全等三角形的性质证明CE =BD ,CE ⊥BD ,再根据三角形面积公式即可求解.【详解】(1)【问题背景】证明:如图1,∵90BAC DAE ∠=∠=︒,∴DAB EAC ∠=∠,在ABD △和ACE 中,AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴()ABD ACE SAS △≌△.(2)【尝试应用】证明:如图2,过点D 作DK DC ⊥交FB 的延长线于K .∵DK CD ⊥,BF AB ⊥,∴90BDK ABK ∠=∠=︒,∵AB AC =,90BAC ∠=︒, ∴45ABC ACB ∠=∠=︒,∴45DBK K ∠=∠=︒,∴DK DB =,∵ABD ACE △≌△,∴135ABD ACE ∠=∠=︒,DB EC DK ==, ∴45ECG ∠=︒,∵BF AB ⊥,CA AB ⊥,∴AG BF ∥,∴G DFK ∠=∠,在ECG 和DKF △中,ECG K G DFK CE KD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ECG DKF AAS ≌△△, ∴DF EG =, ∵2DE AE =,∴2DF EF AE +=,∴2EG EF AE +=,即2FG AE =. (3)【拓展创新】如图3中,过点A 作AE AD ⊥交BD 于E ,连接CE .∵45ADB ∠=︒,90DAE ∠=︒,∴ADE 与ABC 都是等腰直角三角形,同法可证ABD ACE △≌△, ∴3CE BD ==, ∵45AEC ADB ∠=∠=︒,∴90CED CEB ∠=∠=︒, ∴11333222BDC S BD CE =⋅⋅=⨯⨯=△. 故答案为:32. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.6.在ABC 中,点D ,E 分别是AB AC ,边上的点,//DE BC .基础理解:(1)如图1,若43AD BD ==,,求AE AC 的值; 证明与拓展:(2)如图2,将ADE 绕点A 逆时针旋转a 度,得到11AD E △,连接11,BD CE ; ①求证:11BD AD CE AE=; ②如图3,若90,6,BAC AB AC AD ADE ∠=︒<=,在旋转的过程中,点1D 恰好落在DE 上时,连接1113,4BD EE CE =,则11E D E 的面积为________. 解析:(1)47;(2)①见详解;②13.44 【分析】(1)利用平行线分线段定理,直接求解即可;、(2)①先推出11AD AB AE AC=,从而得11ABD ACE ∽,进而即可得到结论;②先推出AE =AE 1 =8,DE =D 1E 1=10,过点A 作AM ⊥DE 于点M ,则DM = 3.6,D 1E =2.8,再证明∠D 1EE 1=90°,进而即可求解.【详解】解:(1)∵//DE BC ,43AD BD ==,, ∴AE AC =44437AD AB ==+; (2)①∵将ADE 绕点A 逆时针旋转a 度,得到11AD E △,∴1AD =AD ,1AE =AE ,∠BAD 1=∠CAE 1,∵//DE BC ,∴AD AE AB AC =,即AD AB AE AC =, ∴11AD AB AE AC =, ∴11ABD ACE ∽, ∴1111BD AD AD CE AE AE==; ②由①可知11ABD ACE ∽, ∴111134BD AD CE AE ==, ∵将ADE 绕点A 逆时针旋转,得到11AD E △,点1D 恰好落在DE 上,∴AD 1=AD =6,∠D 1AE 1=∠DAE =90°,∴AE =AE 1=43AD 1=8,DE =D 1E 1=226810+=, 过点A 作AM ⊥DE 于点M ,则DM =D 1M =AD ×cos ∠ADE = AD ×AD DE =6×610=3.6,∴D 1E =10-3.6 ×2=2.8,∵∠D 1AE 1=∠DAE =90°,∴∠DAD 1=∠EAE 1,又∵AD 1=AD ,AE =AE 1,∴∠ADE =11118018022DAD EAE AEE ︒-∠︒-∠==∠, ∴∠AED +1AEE ∠=∠AED +∠ADE =90°,即:∠D 1EE 1=90°,∴22110 2.89.6EE -,∴11E D E 的面积=12D 1E ∙EE 1=12×2.8×9.6=13.44. 故答案是:13.44.【点睛】本题主要考查相似三角形的判定和性质,解直角三角形,勾股定理,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定和性质,是解题的关键.7.已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G .问题发现()1如图()1,若四边形ABCD 是矩形,且DE CF ⊥于G ,AB m AD n ==,,填空:DE CF =①______;②当矩形ABCD 是正方形时,DE CF=______; 拓展探究()2如图()2,若四边形ABCD 是平行四边形,试探究:当B ∠与EGC ∠满足什么关系时,DE AD CF CD=成立?并证明你的结论; 解决问题()3如图()3,若BA BC 6DA DC 8BAD 90DE CF ∠=====︒⊥,,,于G ,请直接写出DE CF的值.解析:(1)①n m ,②1;(2)当B ∠+EGC ∠=180°时,DE AD CF CD =成立,理由见解析;(3)2524DE CF =. 【分析】(1)根据矩形的性质先一步证明△AED~△DFC ,然后进一步利用相似三角形性质求解即可;(2)在AD 的延长线上取一点M ,使得CM=CF ,则∠CMD=∠CFM ,通过证明△ADE~△DCM 进一步求解即可;(3)过C 点作CN ⊥AD 于N 点,CM ⊥AB 交AB 延长线于M 点,连接BD ,先证明△BAD ≌△BCD ,然后进一步证明△BCM~△DCN ,再结合勾股定理求出CN ,最终通过证明△AED~△NFC 进一步求解即可.【详解】(1)∵四边形ABCD 为矩形,∴∠A=∠FDC=90°,AB=CD ,∵CF ⊥DE ,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED ,∵∠A=∠CDF ,∴△AED~△DFC , ∴DE AD AD CF CD AB ==, ∴①DE n CF m =,②若四边形ABCD 为正方形,1DE AD AD CF CD AB===, 故答案为:①n m,②1; (2)当B ∠+EGC ∠=180°时,DE AD CF CD =成立,理由如下:如图,在AD 的延长线上取一点M ,使得CM=CF ,则∠CMD=∠CFM ,∵四边形ABCD 为平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠A=∠CDM ,∵∠B+∠EGC=180°,∴∠BEG+∠FCB=180°,∵∠BEG+∠AED=180°,∴∠AED=∠FCB ,∵AD ∥BC ,∴∠CFM=∠FCB ,∴∠CMD=∠AED ,∴△ADE~△DCM ,∴DE AD CM DC=, 即:DE AD CF CD=; (3)2524DE CF =,理由如下:过C 点作CN ⊥AD 于N 点,CM ⊥AB 交AB 延长线于M 点,连接BD ,设CN=x , ∵∠BAD=90°,即AB ⊥AD ,∴∠A=∠M=∠CAN=90°,∴四边形AMCN 为矩形,∴AM=CN ,AN=CM ,在△BAD 与△BCD 中,∵AD=CD ,AB=BC ,BD=BD ,∴△BAD ≌△BCD (SSS ),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC ,∵∠CND=∠M=90°,∴△BCM~△DCN , ∴CM BC CN CD =, ∴34CM x =, ∴34CM x =, 在Rt △CMB 中,34CM x =,BM=AM−AB=6x -, 由勾股定理可得:222BM CM BC +=,∴()2223664x x ⎛⎫-+= ⎪⎝⎭, 解得:0x =(舍去)或19225x =, ∴19225CN =, ∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN ,∵∠A=∠CNF ,∴△AED~△NFC , ∴2524DE AD CF CN ==. 【点睛】本题主要考查了相似三角形性质与判定和全等三角形性质与判定及矩形性质的综合运用,熟练掌握相关概念是解题关键.8.如图①,在Rt OAB ∆中,90,,AOB OA OB D ∠=︒=为OB 边上一点,过D 点作DC AB ⊥交AB 于点C ,连接AD ,E 为AD 的中点,连接,OE CE .(观察猜想)(1)①,OE CE 的数量关系是___________②,OEC OAB ∠∠的数量关系是______________(类比探究)(2)将图①中BCD ∆绕点B 逆时针旋转45︒,如图②所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(拓展迁移)(3)将BCD ∆绕点B 旋转任意角度,若2,3BD OB ==,请直接写出点,,O C B 在同一直线上时OE 的长.解析:(1)①OE CE =;②2OEC OAB ∠=∠;(2)成立,证明见解析;(3)OE 的长22【分析】(1)①根据直角三角形斜边上的中线等于斜边的一半,即可得到答案;②由①知OE CE AE ==,利用等边对等角和三角形的外角性质,得到2OED OAE ∠=∠,2DEC EAC ∠=∠,然后即可得到答案;(2)①过点E 作EF AB ⊥交BO 的延长线于点F ,EF 与AO 交于点G ,利用等腰直角三角形的性质,证明EFO EBC ∆≅∆,即可得到结论成立;②由全等三角形的性质,求出∠OEC=90°,即可得到结论成立;(3)根据旋转的性质,点,,O C B 在同一直线上可分为两种情况:①点C 在线段OB 上;②点C 在OB 的延长线上;利用等腰直角三角形的性质,分别求出OE 的长度,即可得到答案.【详解】解:(1)如图,在△AOD 和△ACD 中,∵90AOB ∠=︒,E 为AD 中点, 12OE AD ∴=, 90ACD ∠=︒,E 为AD 中点, 12CE AD ∴=, OE CE ∴=;②90AOB ∠=︒,E 为AD 中点,,OE AE ∴=OAE AOE ∴∠=∠,∴2OED OAE ∠=∠;同理可得:2DEC EAC ∠=∠,2()OED DEC OAE EAC ∴∠+∠=∠+∠,2OEC OAB ∴∠=∠.(2)成立.证明:①如图,过点E 作EF AB ⊥交BO 的延长线于点,F EF 与AO 交于点G ,∵OAB ∆是等腰三角形,∴45ABO ∠=︒∵EF BE ⊥,∴45F ∠=︒,∴EF BE =,∴,,AEG OFG BCD ∆∆∆均为等腰直角三角形,∴,,AE DE GE FG BD OF BC ====,又∵∠=∠F CBD ,∴EFO EBC ∆≅∆,∴OE CE =;②EFO EBC ∆≅∆,∴OEF CEB ∠=∠,90OEC OEB CEB OEB OEF ∴∠=∠+∠=∠+∠=︒,45OAB ∠=︒,2OEC OAB ∴∠=∠;(3)OE 的长为2或22;∵在等腰直角BCD ∆中,2BD =,1BC ∴=, 由(2)可知,OE CE =,90OEC ∠=︒,∴OEC ∆是等腰直角三角形, ∴22OE OC =; 当点,,O C B 在同一直线上时,有①点C 在线段OB 上;如图:∴2OC OB BC =-=,∴222OE OC ==; ②点C 在OB 的延长线上;如图:∴314OC OB BC =+=+=,∴22OE == 综上所述,OE 222【点睛】本题考查了旋转的性质,等腰直角三角形的判定和性质,解直角三角形,全等三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半,以及三角形的外角性质等,综合能力强,知识的运用广泛.解题的关键是熟练掌握所学的性质进行解题,注意运用数形结合的思想和分类讨论的思想进行分析.9.数学课上,李老师出示了如下框中的题目.在等边三角形ABC中,点E在AB上,点D在CB=,如图,试确定线段AE的延长线上,且ED EC与DB的大小关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE_____DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:如图2,题目中,AE与DB的大小关系是:AE____DB(填“>”“<”或“=”).理由如下:(请你完成以下解答过程)(3)拓展结论,设计新题=.若ABC的在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED EC边长为1,2AE=,求CD的长(请你直接写出结果).解析:(1)=;(2)=;(3)3或1【分析】(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;(3)当D 在CB 的延长线上,E 在AB 的延长线式时,由(2)求出CD=3,当E 在BA 的延长线上,D 在BC 的延长线上时,求出CD=1.【详解】解:(1)如图 1 ,过点E 作//EF BC ,交AC 于点F ,ABC ∆为等边三角形,60AFE ACB ABC ∴∠=∠=∠=︒,∠A=60°,∴AEF ∆为等边三角形,120EFC EBD ∴∠=∠=︒,EF AE =,ED EC =,EDB ECB ∴∠=∠,ECB FEC ∠=∠,EDB FEC ∴∠=∠,在BDE ∆和FEC ∆中,EBD EFC EDB FEC ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDE FEC AAS ∴∆≅∆,BD EF ∴=,AE BD ∴=,故答案为:=;(2)如图1,过E 作EF ∥BC 交AC 于F ,∵等边三角形ABC ,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC ,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF 是等边三角形,∴AE=EF=AF ,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC ,∴∠D=∠ECD ,∴∠BED=∠ECF ,在△DEB 和△ECF 中,DEB ECF DBE EFC DE CE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DEB ≌△ECF (AAS ), ∴BD=EF=AE , 即AE=BD , 故答案为:=. (3)CD=1或3,理由是:分为两种情况:①如图2过A 作AM ⊥BC 于M ,过E 作EN ⊥BC 于N , 则AM ∥EN ,∵△ABC 是等边三角形, ∴AB=BC=AC=1, ∵AM ⊥BC , ∴BM=CM=12BC=12, ∵DE=CE ,EN ⊥BC , ∴CD=2CN , ∵AB=1,AE=2, ∴AB=BE=1, ∵EN ⊥DC ,AM ⊥BC , ∴∠AMB=∠ENB=90°, 在△ABM 和△EBN 中,ABM EBN AMB ENB AB BE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△AMB ≌△ENB (AAS ), ∴BN=BM=12, ∴CN=1+12=32, CD=2CN=3;②如图3,作AM ⊥BC 于M ,过E 作EN ⊥BC 于N , 则AM ∥EN ,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=12BC=12,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴AB BMAE MN=,∴1122MN =,∴MN=1,∴CN=1-12=12,∴CD=2CN=1,即CD=3或1.【点睛】本题综合考查了等边三角形的性质和判定,等腰三角形的性质,全等三角形的性质和判定,三角形的外角性质等知识点的应用,解(2)小题的关键是构造全等的三角形后求出BD=EF,解(3)小题的关键是确定出有几种情况,求出每种情况的CD值,注意,不要漏解啊.10.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图3所示,当B ,E ,F 三点在一条直线上时,延长CG 交AD 于点H ,若AG =6,GH =22,求BC 的长.解析:(1)证明见解析;(2)AG =2BE ,理由见解析;(3)BC=35. 【分析】(1)先说明GE ⊥BC 、GF ⊥CD ,再结合∠BCD=90°可证四边形CEGF 是矩形,再由∠ECG=45°即可证明;(2)连接CG ,证明△ACG ∽△BCE ,再应用相似三角形的性质解答即可; (3)先证△AHG ∽△CHA 可得AG GH AHAC AH CH==,设BC =CD =AD =a ,则AC =2a ,求出AH=23a ,DH=13a ,CH=103a ,最后代入AG AH AC CH =即可求得a 的值. 【详解】(1)∵四边形ABCD 是正方形, ∴∠BCD =90°,∠BCA =45°, ∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°, ∴EG =EC ,∴四边形CEGF 是正方形. (2)结论:AG =2BE ; 理由:连接CG ,由旋转性质知∠BCE =∠ACG =α, 在Rt △CEG 和Rt △CBA 中,CE CG =cos45°2,2cos 45CB CA ︒==, ∴2CE CA CG CB=,∴△ACG ∽△BCE ,∴AG CABE CB== ∴线段AG 与BE 之间的数量关系为AG; (3)∵∠CEF =45°,点B 、E 、F 三点共线, ∴∠BEC =135°, ∵△ACG ∽△BCE , ∴∠AGC =∠BEC =135°, ∴∠AGH =∠CAH =45°, ∵∠CHA =∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC =CD =AD =a ,则ACa , 则由AG GH AC AH == ∴AH =23a ,则DH =AD ﹣AH =13a,CH ==,∴AG AH AC CH=2a= , 解得:a =BC =【点睛】本题属于四边形综合题,主要考查相似形的判定和性质、正方形的性质等知识点,解题的关键是正确寻找相似三角形解决问题并利用参数构建方程解决问题. 11.实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表②最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果. 探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果. 归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额. 拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.解析:探究一:(3)7;(4)23n -(3n ≥,n 为整数);探究二:(1)4,(2)38n - ;探究三:415,n -归纳结论:21an a -+ (n 为整数,且3n ≥,1<a <n );问题解决:476;拓展延伸:(1)29个或7个;(2)()211a n a +-+.【分析】 探究一:(3)根据(1)(2)的提示列表,可得答案;(4)仔细观察(1)(2)(3)的结果,归纳出规律,从而可得答案; 探究二:(1)仿探究一的方法列表可得答案; (2)由前面的探究概括出规律即可得到答案; 探究三:根据探究一,探究二,归纳出从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数的和的结果数,再根据上面探究归纳出从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和的结果数;问题解决:利用前面的探究计算出这5张奖券和的最小值与最大值,从而可得答案; 拓展延伸:(1)直接利用前面的探究规律,列方程求解即可, (2)找到与问题等价的模型,直接利用规律得到答案. 【详解】 解:探究一: (3)如下表:是3,最大是9,所以共有7种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和的最小值是3,和的最大值是21,n - 所以一共有()213123n n --+=-种. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,如下表:从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种, (2)从1,2,3,4,5这5个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是12,所以从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和共有7种, 从而从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是33,n - 所以一共有()336138n n --+=-种, 探究三:从1,2,3,4,5这5个整数中任取4个整数, 这4个整数之和最小是10, 最大是14, 所以这4个整数之和一共有5种,从1,2,3,4,5,6这6个整数中任取4个整数, 这4个整数之和最小是10, 最大是18,,所以这4个整数之和一共有9种,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数, 这4个整数之和的最小值是10,和的最大值是46n -, 所以一共有()46101415n n --+=- 种不同的结果. 归纳结论:由探究一,从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有()23n -种.探究二,从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有()38n -种,探究三,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有()415n - 种不同的结果. 从而可得:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数), 一次任意抽取5张奖券,这5张奖券和的最小值是15,和的最大值是490, 共有490151476-+=种不同的优惠金额. 拓展延伸:(1) 从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.∴ 当36,n = 有2361204,a a -+=236203,a a ∴-=-()218121,a ∴-=1811a ∴-=或1811,a -=- 29a ∴=或7.a =从1,2,3,…,36这36个整数中任取29个或7个整数,使得取出的这些整数之和共有204种不同的结果.(2)由探究可知:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,等同于从1,2,3,…,1n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,所以:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有()211a n a ⎡⎤+-+⎣⎦种不同的结果.【点睛】本题考查的是学生自主探究,自主归纳的能力,同时考查了一元二次方程的解法,掌握自主探究的方法是解题的关键.12.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”. (概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求ABBC的值. (拓展提升)(3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.10AB BC =ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________; ②如图4,当点B 落在直线1l 上时,求ADCD的值.解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)32910AB BC =;(3)①125615-;②355AD CD =. 【分析】(1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论;(2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出ABBC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AFAE EC=,然后求出CD 和AD 的长度,即可得到答案. 【详解】解:(1)ABC 是“准黄金”三角形. 理由:如图,过点A 作AD BC ⊥于点D , ∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==. ∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =. ∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =. 不防设3AE k =,5BC k =, ∵点C 为ABD △的重心, ∴:2:1BC CE =. ∴52k CE =,152k BE =. ∴2215329(3)22k AB k k ⎛⎫=+=⎪⎝⎭. ∴329329:5210AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=, ∴156EC =+=, ∴223635AC +=∵∠AEC=∠DFA=90°,∠ACE=∠DAF , ∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =, ∵∠ACD=30°, ∴3CF x =,∴(23)35AC x ==解得:65315DF x ==- ∴2125615CD DF ==-.②如图,过点A 作AE BC ⊥于点E ,则3AE =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =.∵105AB BC =, ∴10AB .∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==.∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△.∴DF AF AE EC =. ∴33543k k -=35k = ∴355CD k ==2222959595102AF DF AD ⎛⎫⎛⎫++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=. ∴9352355AD CD ===【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.13.问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=1AB.2探究结论:小明同学对以上结论作了进一步研究.AB,易得结论:①△ACE为等边三角形;(1)如图1,连接AB边上中线CE,由于CE=12②BE与CE之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A31),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.解析:(1)EC=EB;(2)ED=EB,理由见解析;(3)ED=EB;拓展应用:C(1,3【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题.【详解】探究结论(1),如图1中,。

2022年冀教版九年级数学中考复习几何最值问题压轴题专题突破训练

2022年冀教版九年级数学中考复习几何最值问题压轴题专题突破训练

2022年春冀教版九年级数学中考复习《几何最值问题压轴题》专题突破训练(附答案)1.如图,在边长为6cm的等边△ABC中,点D从A出发沿A→B的方向以1cm/s 的速度运动,点E从B出发沿B→C的方向以2cm/s的速度运动,D,E两点同时出发,当点E到达点C时,D,E两点停止运动,以DE为边作等边△DEF(D,E,F按逆时针顺序排列),点N为线段AB上一动点,点M为线段BC的中点,连MF,NF,当MF+NF取得最小值时,线段BN的长度为()A.5cm B.4.5cm C.4cm D.3cm2.如图,△ABC是等边三角形,E是AC的中点,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当D点运动时,若AF的最小值为2+2,那么等边三角形△ABC的边长为()A.10 B.8 C.6 D.43.如图,边长为9的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M 运动过程中,线段HN长度的最小值是()A.3 B.C.D.4.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,若AB=8,则OE的最小值为()A.2 B.2C.D.25.如图,在矩形ABCD中,AB=2,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转,使旋转角等于∠DAC,且DG⊥PG,即∠DPG=∠DAC.连接CG,则CG最小值为()A.B.C.D.6.如图所示,菱形ABCO的边长为5,对角线OB的长为4,P为OB上一动点,则AP+OP的最小值为()A.4 B.5 C.2D.37.如图,菱形ABCD的边长为2,∠B=60°,E为BC边的中点,F为AB边上一动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.B.1 C.D.8.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.9.如图,△ABC是边长为2的等边三角形,点D为BC边上的中点,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D 旋转一周,当AE取最小值时,AG的长为.10.如图,△ABC是等边三角形,AB=6,E是AB中点,点G在直线BC上运动.将线段EG绕点E顺时针旋转90°,得线段EH,则线段AH的最小值为.11.如图,在平面直角坐标系中,已知A(0,2),△AOB为等边三角形,P是x轴上的一个动点,以线段AP为一边,在其右侧作等边三角形APQ,点P的运动过程中,OQ的最小值为.12.如图,在正方形ABCD中,AB=4,点P为边AB上的一动点,联结PC,以PC为边向下作等边三角形PCQ,联结BQ,则BQ的最小值为.13.如图,正方形ABCD的边长为8,E为BC上一点,且BE=2.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG 的最小值为.14.如图,Rt△ABC中,∠A=30°,BC=1,等边三角形DEF的顶点D,E,F分别在直角三角形的三边上,则EF长的最小值是.15.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD =6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是.16.如图,在等腰三角形ABC中,AC=BC=50,tan A=3,BD为高.M,N分别是BD,CD上的动点,若DN﹣AD=2DM,E是AB的中点,连接EM,MN,则EM+MN的最小值为.17.如图,在Rt△ABC中,∠ABC=90°,BC=4,AB=6,在线段AB上有一点M,且BM=2,在线段AC上有一动点N,连接MN,BN,将△BMN沿BN 翻折得到△BM′N,连接AM′,CM′,则2CM′+AM′的最小值为.18.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则AD+BD的最小值是.19.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D 是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.20.如图,矩形ABCD中,AB=4,AD=6,点E是边CD上一点,EF⊥AE交BC于点F,则CF长的取值范围是.21.如图,在等边△ABC和等边△DEF中,FD在直线AC上,BC=3DE=3,连接BD,BE,则BD+BE的最小值是.22.如图,已知四边形ABCD中,∠A=∠B=90°,AD=5,AB=BC=6,M 为AB边上一个动点,连接CM,以BM为直径的圆交CM于Q,点P为AB 上的另一个动点,连接DP、PQ,则DP+PQ的最小值为.23.如图,已知边长为的等边△ABC,平面内存在点P,则P A+PB+PC的取值范围为.24.如图,在△ABC中,∠BAC=30°,AC=4,AB=8,点D在△ABC内,连接DA、DB、DC,则DC+DB+AD的最小值是.25.如图,在正方形ABCD中,点M,N在CB,CD上运动,且∠MAN=45°,在MN上截取一点G,满足BM=GM,连接AG,取AM,AN的中点F,E,连接GF,GE,令AM,AN交BD于H,I两点,若AB=4,当GF+GE的取值最小时,则HI的长度为.26.如图,△ABC中,AB=4,∠ACB=75°,∠ABC=45°,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则EF 的最小值为.27.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.28.如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则P A是点P 到⊙O上的点的最短距离.(1)如图2,在⊙O上取一点C(不与点A、B重合),连PC、OC.求证:P A<PC.(2)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(3)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.(4)①如图5,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH的最小值是.②如图6,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.29.如图,在等边△ABC中,点D在AC边上,点E为BD延长线上一点,连接CE,过点C作CF∥BD交AE延长线于点F.(1)如图1,若∠BAF=90°,tan∠AEB=,AB=8,求EF的长;(2)如图2,若∠CBE=45°,点F在CE的垂直平分线上,点G在BC边上,连接AG交BE于点H,且∠BHG=60°,求证:AG+AE+ED=AB;(3)如图3,若∠CBE=45°,tan∠BCE=3,BC=4,点K、M、N分别是△BCE三边上的动点,当△KMN周长取得最小值时,取线段BK的中点I,点T为平面内一点,且∠ETI=45°,连接BT、CT,请直接写出的最大值.30.问题提出:(1)如图①,在正方形ABCD中,E为边AB上一点(点E不与点A、B重合),连接DE,过点A作AF⊥DE,交BC于点F,则DE与AF的数量关系是:DE AF;问题探究:(2)如图②,在矩形ABCD中,AB=4,AD=6,点E、F分别在边AB、CD 上,点M为线段EF上一动点,过点M作EF的垂线分别交边AD、BC于点G、点H.若线段EF恰好平分矩形ABCD的面积,且DF=1,求GH的长;问题解决:(3)如图③,在正方形ABCD中,M为AD上一点,且,E、F分别为BC、CD上的动点,且BE=2DF,若AB=4,求ME+2AF的最小值.参考答案1.解:如图,过点E作EH⊥AB于H,连接FC.由题可得:∠BEH=30°,BD=1×t=t(cm),CE=2(t﹣3)=(2t﹣6)(cm),∴BE=6﹣(2t﹣6)=(12﹣2t)(cm),BH=BE•cos B=BE=(6﹣t)(cm),∴DH=t﹣(6﹣t)=(2t﹣6)(cm),∴DH=EC.∵△DEF是等边三角形,∴DE=EF,∠DEF=60°.∵∠HDE+∠HED=90°,∠HED+∠FEC=180°﹣30°﹣60°=90°,∴∠HDE=∠FEC.在△DHE和△ECF中,,∴△DHE≌△ECF(SAS),∴∠DHE=∠ECF=90°,∴F点运动的路径为过点C垂直于BC的一条线段,作点M关于CF的对称点K,连接FK,过点K作KJ⊥AB于J,∵FM+FM=FK+FN≥KJ,∴当点N与J重合,点F在KJ上时,FM+FN的值最小,此时BK=BC+CK =6+3=9(cm),∵∠KJB=90°,∠B=60°,∴BJ=BK•cos60°=9×=4.5(cm),当MF+NF取得最小值时,线段BN的长度为4.5cm.故选:B.2.解:如图,连接BE,延长AC至N,使EN=BE,连接FN,∵△ABC是等边三角形,E是AC的中点,∴AE=EC,∠ABE=∠CBE=30°,BE⊥AC,∴∠BEN=∠DEF=90°,BE=AE,∴∠BED=∠CEF,在△BDE和△NFE中,,∴△BDE≌△NFE(SAS),∴∠N=∠CBE=30°,∴点N在与AN成30°的直线上运动,∴当AF'⊥F'N时,AF'有最小值,∴AF'=AN,∴2+2=(AE+AE),∴AE=4,∴AC=8,故选:B.3.解:如图,取BC的中点,连接MG,∵线段BM绕点B逆时针旋转60°得到BN,∴∠MBH+∠HBN=60°,又∵△ABC是等边三角形,∴∠ABC=60°,即∠MBH+∠MBC=60°,∴∠HBN=∠GBM,∵CH是等边三角形的高,∴BH=AB,∴BH=BG,又∵BM旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,∴CG=BC=×9=,∴MG=CG=,∴HN=.∴线段HN长度的最小值是.故选:B.4.解:∵△ABC的等边三角形,点O是AC的中点,∴OC=AC,∠ABD=30°,∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°,∴OE最小值=OC=AB=2,故选:A.5.解:如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E,∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HF时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=1,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=2,由勾股定理得AC=2,DH=,∴CH==,∴EH=,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故选:C.6.解:如图,过点A作AH⊥OC于点H,过点P作PF⊥OC于点F,连接AC 交OB于点J.∵四边形OABC是菱形,∴AC⊥OB,∴OJ=JB=2,CJ===,∴AC=2CJ=2,∵AH⊥OC,∴OC•AH=•OB•AC,∴AH=×=4,∴sin∠POF===,∴PF=OP,∴AP+OP=AP+PF,∵AP+PF≥AH,∴AP+OP≥4,∴AP+OP的最小值为4,故选:A.7.解:如图1,记AB与CD的中点分别为点M、N,连接MN、EM,则MN∥BC,∵点E是BC的中点,四边形ABCD是菱形,∴BM=BE,∵∠B=60°,∴△BME为等边三角形,∴∠BEM=60°,∵△EFG是等边三角形,∴EF=EG,∠FEG=60°,∴∠BEM+∠MEF=∠FEG+∠MEF,即∠BEF=∠MEG,∴△BEF≌△MEG(SAS),∴∠B=∠GME=60°,∴∠BEM=∠GME=60°,∴GM∥BC,∵MN∥BC,∴点G在MN上运动,∴CG⊥MN时,CG的值最小,如图2所示,∵菱形ABCD的边长为2,CD=2,∴CN=1,∵∠BCD=120°,∠GCB=90°,∴∠GCN=30°,在Rt△GCN中,CG=CN•cos∠GCN=1×=.故选:C.8.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵在Rt△AHD中,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.9.解:连接AD,∵△ABC是边长为2的等边三角形,点D为BC边上的中点,∴BD=CD==1,AD⊥BC,在Rt△ABD中,AD==,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADG中,AG===,故答案为:.10.解:将△AHE绕点E顺时针旋转90°得到△DGE,过D作直线BC垂线交CB延长线于F,过E作EK⊥CB于K,作EM⊥DF于M,在△ABC是等边三角形中,AB=6,E是BA的中点,由旋转性质可得,AE=DE=3,AH=DG,∠DEB=90°,∵G是直线CB上一动点,∴当点G运动时,DG的最小值是DF,∵∠EKF=∠KFM=∠FME=90°,∴四边形EKFM为矩形,∴EK=MF,ME∥FK,∵△ABC为等边三角形,∴∠ABC=60°,∴∠KEB=30°,∠BEM=60°,即∠DEM=30°,∴KB=BE=,DM=DE=,∴EK==,∴DF=DM+MF=+.故答案为:+.11.解:∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠P AQ=∠OAB,∴∠P AO=∠QAB;在△APO与△AQB中,,∴△APO≌△AQB(SAS).∴∠ABQ=∠AOP=90°,∴OQ的最小值为OQ垂直直线BQ时,如图,延长BQ交y轴于点C,∵AB=AO=2,∴AC=4,∴OQ=(AC﹣AO)=1.故答案为1.12.解:如图,以BC为边在正方形ABCD内部作等边三角形BCE,连接PE,过点E作EF⊥AB于F,∵△PCQ和△BCE是等边三角形,∴PC=QC,BC=CE=BE=4,∠ECB=∠PCQ=∠EBC=60°,∴∠PCE=∠BCQ,∠ABE=30°,∵EF⊥AB,∴EF=BE=2,在△PEC和△QBC中,,∴△PEC≌△QBC(SAS),∴BQ=PE,∴当PE有最小值时,BQ有最小值,∴当点P与点F重合时,PE有最小值为2,即BQ有最小值为2,故答案为:2.13.解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,过点C作CM⊥HN,则CM即为CG的最小值,过点E作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=2.5+=,故答案为:.14.解:由题意知,Rt△ABC中,∠A=30°,∠C=90°,∴∠B=60°,延长BC至G,连接FG使∠G=∠B=60°,∵△DEF为等边三角形,∴DE=DF,∠EDF=60°,∴∠BDE+∠FDG=120°,∵∠B=60°,∴∠BDE+∠BED=120°,∴∠FDG=∠BED,在△GFD和△BED中,,∴△GFD≌△BED(AAS),∴BD=GF,设CG=x,∵Rt△CFG中,∠G=60°,∴∠CFG=30°,∴GF=2x,FC=x,∴BD=2x,CD=1﹣2x,在Rt△DCF中,由勾股定理得,DC2+CF2=DF2,∴DF=EF==,∵0≤2x≤1,即0≤x≤,∴当x=时,EF=,最小值∴EF的最小值为,故答案为:.15.解:如图,连接AP1,AP,AP2,作AH⊥BC于H.∵P1,P2分别为点P关于直线AB,AC的对称点,∴AP=AP1=AP2,∠P AB=∠BAP1,∠P AC=∠CAP2,∵∠BAC=45°,∴∠P1AP2是等腰直角三角形,∴P1P2=AP2=P A.∵CD⊥AB,∴∠ADC=90°,∠DAC=∠DCA=45°,∴AD=DC=6,∴AC=6>AB,∵AB=8,∴BD=2,BC===2,∵S=•BC•AH=•AB•CD,△ABC∴AH==,∵≤P A≤6,∴≤P1P2≤12.故答案为≤P1P2≤12.16.解:如图在线段DC上取一点F使得DF=AD,在DF的下方以DF为斜边构造直角△DFG,使得FG=2DG.连接GN,MG,过点E作EK⊥AC于K,过点G作GP⊥EK交EK的延长线于P,GJ⊥AC于J.∵BD⊥AC,∴∠ADB=∠CDB=90°,∵tan A==3,∴可以设AD=x,BD=3x,则CD=50﹣x,在Rt△BDC中,BC2=BD2+CD2,∴502=(3x)2+(50﹣x)2,解得x=10,∴AD=10,BD=30,CD=40,∵DN﹣AD=DN﹣DF=FN=2DM,∴==2,∵∠MDG=90°+∠GDF,∠GFN=90°+∠GDF,∴∠MDG=∠GFN,∴△GFN∽△GDM,∴==,∠FGN=∠DGM,∴∠DGF=∠MGN=90°,GN=2MG,∴MG=MN,在Rt△DFG中,∠DGF=90°,DF=10,FG=2DG,∴DG=2,GF=4,∵GJ⊥DF,∴GJ==4,DJ===2,∵AE=EB,EK∥BD,∴AK=DK=5,∴EK=BD=15,KJ=KD+DJ=7,∵四边形PGJK是矩形,∴PG=KJ=7,PK=GJ=4,∴PE=EK+PK=19,∴EG===,∵EM+MN=(EM+MN)=(EM+MG),∵EM+MG≥EG,∴EM+MN≥5.∴EM+MN的最小值为5.故答案为:5.17.解:如图,在BA上取一点T,使得BT=,连接TM′,TC.∵BM′=BM=2,BT=,BA=6,∴M′B2=BT•BA,∴=,∵∠ABM′=∠M′BT,∴△BAM′∽△BM′T,∴==,∴TM′=AM′,∵2CM′+AM′=2(CM′+AM′)=2(CM′+TM′),∵CM′+TM′≥CT,CT===,∴2CM′+AM′≥,∴2CM′+AM′的最小值为.故答案为.18.解:在CA上截取CM,使得CM=4,连接DM,BM.∵CD=6,CM=4,CA=9,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴AD+BD=DM+BD,∵DM+BD≥BM,在Rt△CBM中,∵∠MCB=90°,CM=4,BC=12,∴BM==4,∴AD+BD≥4,∴AD+BD的最小值为4.故答案为4.19.解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.20.解:如图所示:∵EF⊥AE,∴∠AEF=90°,又∵∠AED+∠AEF+∠CEF=180°,∴∠AED+∠CEF=90°,又∵四边形ABCD是矩形,∴∠D=∠C=90°,又∵∠AED+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF,∴,又∵AB=4,AD=6,AB=EC+ED,∴,解得:CF==,又∵0≤CE≤4,∴,故答案为.21.解:如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.∵△ABC,△DEF都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE∥TC,∵DE=BT=1,∴四边形DEBT是平行四边形,∴BE=DT,∴BD+BE=BD+DT,∵B,W关于直线AC对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,∴∠WCK=60°,∵WK⊥CK,∴∠K=90°,∠CWK=30°,∴CK=CW=,WK=CK=,∴TK=1+3+=,∴TW===,∴DB+BE=DB+DT=DW+DT≥TW,∴BD+BE≥,∴BD+BE的最小值为.故答案为.22.解:如图,连接BQ,取BC的中点T,连接TQ.∵BM是直径,∴∠BQM=∠BQC=90°,∵BT=CT=3,∴QT=BC=3,∴当P,Q,T共线时,PQ的长最小,要使得PQ+PD的值最小,只要PT+PD的值最小即可,作点T关于直线AB的对称点T′,连接DT′交AB于P′,连接P′T交⊙T 于Q′,此时P′T+P′D的值最小,最小值=DT′的长,过点D作DH⊥BC于H,则四边形ABHD是矩形,∴DH=AB=6,AD=BH=5,∴HT′=3+5=8,∴DT′===10,∴P′D+P′T的最小值为10,∴P′D+P′Q′的最小值=10﹣3=7,故答案为7.23.解:如图,将△BPC绕点B顺时针旋转120°,得△BP′C′,连接PP′,过点B作BD⊥PP′于点D,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC=BC′=,∴AC′=AB+BC′=2,∵∠CBC′=∠PBP′=120°,∴∠ABC′=∠ABC+∠CBC′=180°,∴点A,B,C′在同一条直线上,∵BP=BP′,∠PBP′=120°,BD⊥PP′,∴∠BPP′=∠BP′P=30°,∴PD=PB,∴PP′=2PD=PB,∴P A+PP′+PC=P A+PB+PC>AC′,因为等边三角形的边长为,∴P A+PB+PC的取值范围为大于等于2,故答案为:大于等于2.24.解:如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F作FH⊥CA交CA的延长线于H.∵AD=AE,∠DAE=120°,BD=EF,∴DE=AD,∴DC+DB+DA=DC+DE+EF,∵CD+DE+EF≥CF,在Rt△ABC中,∠ACB=90°,AB=8,∠BAC=30°,∴AB=AB•cos30°=4,在Rt△AFH中,∠H=90°,AF=AB=8,∠F AH=30°,∴FH=AF=4,AH=FH=4,∴CH=AC+AH=8,∴CF===4,∴CD+DB+AD≥4,∴CF的最小值为4.故答案为:.25.解:如图1中,将△ADN绕点A顺时针旋转90°得到△ABJ,则AN=AJ,∠DAN=∠BAJ,∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,∵∠MAN=45°,∴∠MAJ=∠MAB+∠BAJ=∠MAB+∠DAN=45°,∴∠MAJ=∠MAN,∵AM=AM,AJ=AN,∴△AMJ≌△AMN(SAS),∴∠AMB=∠AMN,∵MA=MA,MB=MG,∴△MAB≌△MAG(SAS),∴AB=AG=4,∠ABM=∠AGM=90°,∵AF=FM,AE=EN,∴FG=AM,EG=AN,∴GF+GE=(AM+AN),下面证明当AM=AN时,AM+AN的值最小,如图2中,过点A在直线l∥MN,作点N关于直线l的对称点N′,连接AN′,MN′.∵N,N′关于直线对称,∴AN=AN′,∴AM+AN=AN′+AM,∴当A,M,N′共线时,AM+AN的值最小,此时∵AN=AN′,∴∠ANN′=∠AN′N,∵MN∥直线l,NN′⊥直线l,∴NN′⊥MN,∴∠MNN′=90°,∴∠AMN+∠AN′N=90°,∠ANM+∠ANN′=90°,∴∠AMN=∠ANM,∴AN=AM,∴当AM=AN时,AM+AN的值最小,如图1中,当AM=AN时,可知BH=DI,过点H作HP⊥AB于P,在AP上截取一点K,使得AK=KH,连接KH,设PH=PB=x,∵∠BAM=∠DAN=22.5°,KA=KH,∴∠KAH=∠KHA=22.5°,∴∠PKH=∠KAH+∠KHA=45°,∴PK=PB=PH=x.AK=KH=x,∵AB=4,∴2x+x=4,∴x=4﹣2,∴BH=DI=PB=4﹣4,∵BD=4,∴HI=4﹣2(4﹣4)=8﹣4,故答案为8﹣4.26.解:连接OE、OF,过O点作OM⊥EF,如图,则EM=FM,∵∠ACB=75°,∠ABC=45°,∴∠BAC=60°,∴∠EOF=2∠EAF=120°,∵OE=OF,∴∠OEF=∠OFE=30°,∴OM=OE,∴EM=OM=OE,∴EF=OE,当OE的值最小时,EF的值最小,∵D是线段BC上的一个动点,AD为直径,∴当AD垂直BC时,AD的值最小,过A点作AH⊥BC于H,∵∠ABH=45°,∴AH=AB=×4=2,即AD的最小值为2,∴OE的最小值为,∴EF的最小值为×=.故答案为:.27.解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP∽△POB′,∴,∴=P A﹣PB′≤AB',∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,28.(1)证明:如图2,在⊙O上任取一点C(不为点A、B),连接PC、OC.∵PO<PC+OC,PO=P A+OA,OA=OC,∴P A<PC.(2)解:连接AO与⊙O相交于点P,如图3,由已知定理可知,此时AP最短,∵∠ACB=90°,AC=BC=2,BC为直径,∴PO=CO=1,∴AO==,∴AP=﹣1,故答案为:﹣1;(3)解:如图4,由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,故点A′在以AD为直径的圆上,由模型可知,当点A′在BM上时,A′B长度取得最小值,∵边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,∵MA=MA′=MD,则BM⊥AM,∴BM==,故A′B的最小值为:﹣1;(4)①解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD==,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,DH最小值=OD﹣OH=﹣1.故答案为:﹣1;②解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图6,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣AM=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为:﹣3.29.解:(1)如图1,∵∠BAF=90°,tan∠AEB=,AB=8,∴AE==6,作CG⊥AF于G,∵△ABC是等边三角形,∴AC=AB=8,∠CAB=60°,∴∠CAG=30°,∴CG=AC=4,AG=AC•cos∠CAG=4,在Rt△CGF中,∠CFG=∠AEB,∴FG==3,∴EF=AF﹣AE=AG+FG﹣AE=4+3﹣6=4﹣3;(2)如图2,证明:作CP⊥CB交BE的延长线于P,作CM⊥BE于M,CN⊥EF于N,∴∠CNE=∠CME=90°,∵点F在CE的垂直平分线上,∴FC=FE,∴∠FCE=∠FEC,∵CF∥BE,∴∠FCE=∠CEB,∴∠CEF=∠CEB,∵CE=CE,∴△CNE≌△CME(AAS),∴CN=CM,EN=EM,∴∠BCP=90°,∵∠CBE=45°,∴∠CPB=45°,∴CP=CB,PB=CB=AB,∵AC=CB,∴CP=AC,∴△PCM≌△ACN(HL),∴AN=PM,∴AN﹣EN=PM﹣EM,∴PE=AE,∵∠BHG=60°,∠BHG=∠ABD+∠BAH,∴∠ABD+∠BAH=60°,∵∠BAC=60°,∴∠BAH+∠CAG=60°,∴∠ABD=∠CAG,∵∠ACB=∠BAC=60°,AC=AB,∴△ACG≌△BAD(ASA),∴BD=AG,∵PE+DE+BD=PB,∴AE+DE+AG=AB;(3)如图3,∵△KMN周长取得最小值,∴BK⊥CE,∵tan∠BCE=3,BC=4,∴sin∠BCE=,cos∠BCE=,∴CK=4•cos∠BCE=,BK=,∵I是BK的中点,∴KI==,作EP⊥BC于P,∵tan∠BCE==3,∴设EP=3k,CP=k,∵∠CBE=45°,∴BP=CP=3k,∵CB+BP=BC∴k+3k=4,∴k=1,∴CP=1,EP=3,∴CE=,∴EK=CE﹣CK=﹣=,∴EK=KI,∴△KEI是等腰直角三角形,以K为圆心,EK长为半径作⊙K,∵∠ETJ=45°,∴T在⊙K上运动,取KI的中点O,∴==,∵∠KTO=∠BKT,∴△TKO∽△BKT,∴==,∴OT=BT,∵OT﹣CT≤CK,∴当O、C、T(图中T′)共线时,OT﹣CT最大=OC,∵OK=KI=,CK=,,∴OC==,∴最大值是,∵BT﹣2CT=2•(),∴BT﹣2CT最大值是,∴最大值==.30.解:(1)如图1,DE=AF,理由如下:在正方形ABCD中,∠ABC=∠BAD=90°,AD=AB,∴∠BAF+∠AFB=90°,∵AF⊥DE,∴∠AOE=90°,∴∠BAF+∠AED=90°,∴∠AFB=∠AED,∴△ABF≌△DAE(AAS),∴DE=AF,故答案是“=”;(2)如图2,连接AC,交EF于O,∵线段EF恰好平分矩形ABCD的面积,∴O是矩形的对称中心,∴BE=DF=1,作DI∥EF,AJ∥GH,∵四边形ABCD是矩形,∴DF∥IE,∴四边形DIEF是平行四边形,∴EI=DF=1,∴AI=AB﹣BE﹣EI=2,同理可得,AJ=GH,∵EF⊥GH,∴DI⊥AJ,由(1)得,∠AID=∠AJB,∴△ADI∽△BAJ,∴=,∴=,∴BJ=,在Rt△ABJ中由勾股定理得,AJ===,∴GH=;(3)如图3,作EG⊥AD于G,∵,AD=4,∴AM=3,设DF=a,则BE=2a,∴GM=AM﹣AG=3﹣2a,在Rt△ADF中,AF==,在Rt△EGM中,ME==,∴ME+2AF=+=+ME+2AF最小值可以看作在平面直角坐标系中,点H(2a,0)到定点I(3,4),J(0,8)的距离之和最小,如图4,作J的对称点K,连接KI,则KI与x轴的交点是H点,此时ME最小,作IK⊥y轴于T,=KI===3.∴ME最小。

河北省保定市,2020~2021年中考数学压轴题精选解析

河北省保定市,2020~2021年中考数学压轴题精选解析

河北省保定市,2020~2021年中考数学压轴题精选解析河北省保定市中考数学压轴题精选~~第1题~~(2020北京.中考模拟) 在平面直角坐标系xOy 中,抛物线y =x ﹣2mx+m ﹣1与y 轴交于点C .(1) 试用含m 的代数式表示抛物线的顶点坐标;(2) 将抛物线y =x ﹣2mx+m ﹣1沿直线y =﹣1翻折,得到的新抛物线与y 轴交于点D .若m >0,CD =8,求m 的值;(3) 已知A (2k ,0),B (0,k ),在(2)的条件下,当线段AB 与抛物线y =x ﹣2mx+m ﹣1只有一个公共点时,直接写出k 的取值范围.~~第2题~~(2020定兴.中考模拟)如图,函数y=-x + x +c (-2020≤x≤1)的图象记为L , 最大值为M ;函数y=-x +2cx +1(1≤x≤2020)的图象记为L , 最大值为M . L 的右端点为A ,L 的左端点为B ,L , L 合起来的图形记为L .(1) 当c=1时,求M ,M 的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数;(3) 若M ,M 的差为 ,直接写出c 的值.~~第3题~~(2019保定.中考模拟) 已知点P(2,-3)在抛物线L :y=ax2-2ax+a+k(a ,k 均为常数且a≠0)上,L 交y 轴于点C ,连接CP .(1) 用a 表示k ,并求L 的对称轴;(2) 当L 经过点(4,-7)时,求此时L 的表达式及其顶点坐标;(3) 横,纵坐标都是整数的点叫做整点.如图14,当a<0时,若L 在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有5个整点,求a 的取值范围;(4) 点M(x ,y ),N(x ,y )是L 上的两点,若t≤x ≤t+1,当x ≥3时,均有y ≥y ,直接写出t 的取值范围.~~第4题~~(2019唐.中考模拟) 如图,在菱形ABCD 中,AB=6,∠ABC=120°,动点P 从点B 出发,沿BC-CD 边以每秒1个单位长度的速度运动,到点D 时停止.连接AP ,点Q 与点B 关于直线AP 对称,连接AQ ,PQ.设运动时间为t (秒).2222222112221212121211221212备用图(1) 菱形ABCD 对角线AC 的长为;(2) 当点Q 恰在AC 上时,求t 的值;(3) 当CP=3时,求△APQ 的周长;(4) 直接写出在整个运动过程中,点Q 运动的路径长.~~第5题~~(2019定州.中考模拟) 一个等腰三角形的两条边长分别是方程x ﹣7x+10=0的两根,则该等腰三角形的周长是( )A . 12B . 9C . 13D . 12或9~~第6题~~(2019定兴.中考模拟) 边长为2的正方形内接于⊙O , 则⊙O 的半径是( )A . 1B .C . 2D . 2~~第7题~~(2019定兴.中考模拟) 如图,以△ABC 的边AC 为直径的⊙O 恰为△ABC 的外接圆,∠ABC 的平分线交⊙O 于点D , 过点D 作DE ∥AC 交BC 的延长线于点E .(1) 求证:DE 是⊙O 的切线;(2) 探究线段EB ,EC ,ED 之间有何数量关系?写出你的结论,并证明;(3) 若BC = ,CE =,求⊙O 的半径长.~~第8题~~(2019保定.中考模拟) 问题提出2(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE +EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)~~第9题~~(2019保定.中考模拟) 如图,抛物线y=ax+bx﹣2a与x轴交于点A和点B(1,0),与y轴将于点C(0,﹣).(1)求抛物线的解析式;(2)若点D(2,n)是抛物线上的一点,在y轴左侧的抛物线上存在点T,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;(3)直线y=kx﹣k+2,与抛物线交于两点P、Q,其中在点P在第一象限,点Q在第二象限,PA交y轴于点M,QA交y 轴于点N,连接BM、BN,试判断△BMN的形状并证明你的结论.~~第10题~~(2019定兴.中考模拟) 如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F对应函数的二次项系数始终为,设MN离AB 的距离为m,抛物线F的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.河北省保定市中考数学压轴题答案解析~~第1题~~答案:22122解析:~~第2题~~答案:解析:~~第3题~~答案:解析:~~第4题~~答案:解析:~~第5题~~答案:解析:~~第6题~~答案:解析:~~第7题~~答案:解析:~~第8题~~答案:解析:~~第9题~~答案:解析:答案:解析:。

2020年河北省中考数学压轴卷含答案(5)

2020年河北省中考数学压轴卷含答案(5)

2020年河北省中考数学压轴卷(5)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,下列算筹表示负数的是()A.B.C.D.2.张燕同学按如图所示方法用量角器测量∠AOB的大小,她发现OB边恰好经过80°的刻度线末端.你认为∠AOB的大小应该为()A.80°B.40°C.100°D.50°3.熔喷布是口罩中间的过滤层,俗称口罩的“心脏”熔喷布以聚丙烯为主要原料是一种直径在2微米左右的超细静电纤维布.已知1微米=10﹣6米,则2微米用科学记数法可表示为()A.2×10﹣6米B.0.2×10﹣7米C.0.2×10﹣5米D.2×10﹣5米4.在下列各组视图中,能正确表示由4个立方体搭成几何体的一组视图为()A.B.C.D.5.已知分式(a,b为常数)满足下列表格中的信息:则下列结论中错误的是()x的取值﹣1 1 c d分式的值无意义 1 0 ﹣1 A.a=1 B.b=8 C.c=D.d=6.如图,在A、B两处观测到的C处的方向角分别是()A.北偏东60°,北偏西40°B.北偏东60°,北偏西50°C.北偏东30°,北偏西40°D.北偏东30°,北偏西50°7.如图,在△ABC中,AB=AC,∠BAC=45°,将△ABC绕点A逆时针方向旋转得△AEF,其中,E,F是点B,C旋转后的对应点,BE,CF相交于点D.若四边形ABDF为菱形,则∠CAE的大小是()A.45°B.60°C.75°D.90°8.如图,是嘉淇同学做的练习题,他最后的得分是()A.5分B.10分C.15分D.20分9. 图,已知△ABC中,AC=2,AB=3,BC=4,点G是△ABC的重心.将△ABC平移,使得顶点A与点G重合.那么平移后的三角形与原三角形重叠部分的周长为()A.2 B.3 C.4 D.4.510.如图,在▱ABCD中,∠ADB=40°,依据尺规作图的痕迹可判断∠1的度数是()A.100°B.110°C.120°D.130°11.如图,在平面直角坐标系xOy中,AB,CD,EF,GH是正方形OPQR边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且sinα>cosα,则点M所在的线段可以是()A.AB和CD B.AB和EFC.CD和GH D.EF和GH12.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8C.10 D.1213. 某区响应国家提出的垃圾分类的号召,将生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为了解居民生活垃圾分类的情况,随机对该区四类垃圾箱中总计1000吨生活垃圾进行分拣后,统计数据如表:垃圾箱种类垃圾量“厨余垃圾”箱“可回收物”箱“有害垃圾”箱“其他垃圾”箱垃圾种类(吨)厨余垃圾400 100 40 60可回收物30 140 10 20有害垃圾 5 20 60 15其他垃圾25 15 20 40下列三种说法:(1)厨余垃圾投放错误的有400t;(2)估计可回收物投放正确的概率约为;(3)数据显示四类垃圾箱中都存在各类垃圾混放的现象,因此应该继续对居民进行生活垃圾分类的科普.其中正确的个数是()A.0 B.1 C.2 D.314. 已知关于n的函数s=an2+bn(n为自然数),当n=9时,s<0;当n=10时,s>0.则n取()时,s的值最小.A.3 B.4 C.5 D.615.一条笔直的小路上顺次有A,B,C三个道口,甲、乙两人分别从A、B道口同时出发,各自匀速前往C道口,约定先到者在C道口等待,甲、乙两人间的距离y(米)与甲步行的时间x(分钟)之间的关系如图所示,则下列说法中错误的是()A.道口A、B相距660米B.道口B、C相距1440米C.甲的速度是70米/分D.乙的速度是64米/分16.一个大矩形按如图方式分割成十二个小矩形,且只有标号为A,B,C,D的四个小矩形为正方形,在满足条件的所有分割中,若知道十二个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.2 B.3C.4 D.5二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.举出一个m的值,说明命题“代数式2m2﹣1的值一定大于代数式m2﹣1的值”是错误的,那么这个m的值可以是.18.某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:1 2 3 4 5 6 7 8累计工作时长最多件数(时)种类(件)甲类件30 55 80 100 115 125 135 145乙类件10 20 30 40 50 60 70 80小时,且只送某一类件,那么他一天的最大收入为元;如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为元.19.如图,半径为4且坐标原点为圆心的圆交x轴、y轴于点B、D、A、C,过圆上的一动点P(不与A重合)作PE⊥PA,且PE=PA(E在AP右侧),连结PC,当PC=6时,则点P的横坐标是.连结OE,设线段OE的长为x,则x的取值范围是.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20. (本题满分8分)如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.21. (本题满分9分)面对突如其来的疫情,全国人民响应党和政府的号召,主动居家隔离.随之而来的,则是线上买菜需求激增.某小区为了解居民使用买菜APP的情况,通过制作无接触配送置物架,随机抽取了若干户居民进行调查(每户必选且只能选最常用的一个APP),现将调查结果绘制成如下两幅不完整的统计图:(A:天虹到家,B:叮咚买菜,C:每日优鲜,D:盒马鲜生)(1)本次随机调查了户居民;(2)补全条形统计图的空缺部分;(3)若该小区共有1200户居民,请估计该小区居民选择“C:每日优鲜”的大约有户;(4)某日下午,张阿姨想购买苹果和生菜,各APP的供货情况如下:天虹到家仅有苹果在售,叮咚买菜仅有生菜在售,每日优鲜仅有生菜在售,盒马鲜生的苹果、生菜均已全部售完,则张阿姨随机选择两个不同的APP能买到苹果和生菜的概率是.22. (本题满分9分)(1)图①表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.请你仔细观察表格,耐心寻找规律,根据你得到的规律填空:①m=;②n=;③x=;④y=;(2)若(1)题中的规律不变,把表①中的﹣1,8和y都去掉,如图②,则x=(用含m,n的式子表示).23. (本题满分9分)在△ABC中,∠ACB=90°,AC=BC=,以点B为圆心、1为半径作圆,设点M为⊙B上一点,线段CM绕着点C顺时针旋转90°,得到线段CN,连接BM、AN.(1)在图1中,补全图形,并证明BM=AN.(2)连接MN,若MN与⊙B相切,则∠BMC的度数为.(3)连接BN,则BN的最小值为;BN的最大值为.24. (本题满分10分)在平面直角坐标系xOy中,直线x=5与直线y=3,x轴分别交于点A,B,直线y=kx+b(k≠0)经过点A且与x轴交于点C(9,0).(1)求直线y=kx+b的表达式;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①结合函数图象,直接写出区域W内的整点个数;②将直线y=kx+b向下平移n个单位,当平移后的直线与区域W没有公共点时,请结合图象直接写出n的取值范围.25. (本题满分10分)如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE,DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋至如图2所示的位置上,则线段BE与DF 的位置关系是,数量关系是.(2)若AD=nAB(n≠1)将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明;若不成立,请写出正确结论,并说明理由.(3)若AB=6,BC=8,将△AEF旋转至AE⊥BE时,请直接写出DP的长.26. (本题满分12分)为了发展“地摊经济”,某人销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:(1)①求y关于x的函数解析式.(不要求写出自变量的取值范围)②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),若规定该商品售价不得超过70元/件,该人在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.2020年河北省中考数学压轴卷(5)参考答案一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)2分,把答案写在题中横线上)17. m=0(答案不唯一)18. 160180 19.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.解:(1)3;…………………………4分(2)∵点C到原点的距离为3,∴设点C表示的数为c,则|c|=3,即c=±3,∵点A在点B的左侧,点C在点A的左侧,且点B表示的数为2,∴点C表示的数为﹣3,∵BC﹣AC=4,∴2﹣(﹣3)﹣[a﹣(﹣3)]=4,解得a=﹣2.…………………………8分21.解:(1)200;…………………………2分(2)∵200﹣80﹣40﹣30=50,∴条形统计图的A:天虹到家为50,如图为补全的条形统计图,…………………………5分(3)240;…………………………7分(4).…………………………9分22.解:(1)2,3,…………………………2分﹣4,7;…………………………6分(2)﹣2m+n.…………………………9分23.(1)补全图形如图1所示:证明:由旋转的性质得:∠MCN=90°,CM=CN,∴∠ACB=∠MCN=90°,∴∠MCB=∠NCA,在△MCB和△NCA中,,∴△MCB≌△NCA(SAS),∴BM=AN;…………………………3分(2)45°或135°;…………………………6分(3)BN的最小值为1;BN的最大值为3;…………………………9分24.解:(1)由图可得,点A的坐标为(5,3),∵直线y=kx+b过点A(5,3),点C(9,0),∴,得,即直线y=kx+b的表达式是y=x+;…………………………4分(2)①由图象可得,区域W内的整点的坐标分别为(6,1),(6,2),(7,1),即区域W内的整点个数是3个;…………………………7分②由图象可知,当点A向下平移3个单位长度时,直线y=kx+b与区域W没有公共点,即n的取值范围是n≥3.…………………………10分25.解:(1)BE=DF,BE⊥DF.…………………………2分(2)如图3中,结论不成立.结论:DF=nBE,BE⊥DF,∵AE=AB,AF=AD,AD=nAB,∴AF=nAE,∴AF:AE=AD:AB,∴AF:AE=AD:AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF:BE=AF:AE=n,∠ABE=∠ADF,∴DF=nBE,∵∠ABE+∠AHB=90°,∠AHB=∠DHP,∴∠ADF+∠PHD=90°,∴∠DPH=90°,∴BE⊥DF.…………………………6分(3)4﹣3或4+3.…………………………10分26.解:(1)①设y关于x的函数解析式为y=kx+b,将(60,100),(70,80)分别代入得:,解得:.∴y关于x的函数解析式为y=﹣2x+220.…………………………3分②40,75,2450.…………………………9分(2)由题意得:w=(﹣2x+220)(x﹣40﹣m)=﹣2x2+(300+2m)x﹣8800﹣220m,∵二次项系数﹣2<0,抛物线开口向下,对称轴为:x=﹣=75+,又∵x≤70,∴当x<75+时,w随x的增大而增大,∴当x=70时,w有最大值:(﹣2×70+220)(70﹣40﹣m)=1600解得:m=10.∴周销售最大利润是1600元时,m的值为10.…………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010/26.(本小题满分12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售 价格y (元/件)与月销量x (件)的函数关系式为y=1 100x +150,成本为20元/件,无论销售多少,每月还需 支出广告费62500元,设月利润为w 内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为1501 元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x(件)时,每月还需缴纳 100 2 x 元的附加费,设月利润为w 外(元)(利润=销售额-成本-附加费).(1)当x=1000时,y =元/件,w内=元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内 销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还 是在国外销售才能使所获月利润较大?参考公式:抛物线2(0) yaxbxca 的顶点坐标是2 b4acb (,) 2a4a.2011/26.(本小题满分12分)如图15,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒1个单位长的速度运动t (t >0)秒,抛物线y=x 2+bx +c 经过点O 和点P.已知矩形ABCD 的三个顶点为A (1,0)、B (1,-5)、D (4,0).⑴求c 、b (用含t 的代数式表示);⑵当4<t <5时,设抛物线分别与线段A B 、CD 交于点M 、N.①在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;21 8②求△MPN 的面积S 与t 的函数关系式,并求t 为何值时,S=; ③在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分 成数量相等的两部分,请直接..写出t 的取值范围. yADPO -11 xNM BC图152012/26.(12分)如图1和2,在△ABC 中,AB=13,BC=14,cos ∠ABC=. 探究:如图1,AH ⊥BC 于点H ,则A H=,AC=,△ABC 的面积S △ABC=;拓展:如图2,点D 在AC 上(可与点A ,C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E ,F , 设BD=x ,AE=m ,CF=n (当点D 与点A 重合时,我们认为S △ABD=0)(1)用含x,m,n的代数式表示S△ABD及S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2013/26.(本小题满分14分)一透明的敞口正方体容器ABCD-A′B′C′装D有′一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图17-1所示).探究如图17-1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:(1)CQ与BE的位置关系是___________,BQ的长是____________dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S BCQ×高AB)3 (3)求α的度数.(注:sin49°=cos41°=,tan37°=4 3 4)拓展在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.延伸在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.2014/26(本小题满分13分)某景区的环形路是边长为800米的正方形ABCD,如图16-1和16-2,现有1号,2号两游览车分别从出口A和经典C同时出发,1号车顺时针,2号车逆时针沿环形路连续循环行驶,供游客随时乘车(上,下车的时间忽略不计),两车的速度均为200米/分。

C(景点)C(景点)2号车图16-12号车K(甲)BDBD1号车1号车图16-2 A(出口)A(出口)时间为t分探究:设行驶(1)当0≤t≤s时,分别写出1号车,2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;与2号车它(2)t为何值时,1号车第三次恰好经过点C?,并直接写出这一段时间内相遇过的次数。

16-2,游客甲在BC上一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米。

发现如图过2号车,便搭乘即将到来的1号车;情况一:若他刚好错情况二:若他刚好错过1号车,便搭乘即将到来的2号车;比较哪种情况用时较多?(含候车时间)决策已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P(不与D,A重合)时,刚好与2号车相遇。

(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?2015/26.(本小题满分14分)平面上,矩形ABCD与直径为QP的半圆K如图15-1摆放,分别延长D A和QP交于点O,且∠DOQ=6°0,OQ=OD=,3OP=2,OA=AB=1,让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为a(0a60).发现:(1)当a0,即初始位置时,点P直线AB上.(填“在”或“不在”)图15-1求当a是多少时,OQ经过点B?(2)在OQ旋转过程中,简要说明a是多少时,点P,A间的距离最小?并指出这个最小值;15-2,当点P恰好落在BC边上时,求a及S.(3)如图阴影图15-2图15-3拓展:如图15-3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sina的值.备用图2016/26.(本小题满分12分)1xtxt如图12.抛物线L:()(4)y(常数t>0)与x轴从左到右的交点为B.A.过线段OA2的中点M作MP⊥x轴.交双曲线⑴求k值;ky(k>0.x>0)于点P.且OA·MP=12 x⑵当t=1时.求AB长.并求直线MP与L对称轴之间的距离;⑶把L在直线MP左侧部分的图象(含与直线MP的交点)记为G.用t表示图象G最高点的坐标;⑷设L与双曲线有个交点的横坐标为x.且满足4x06.通过L位置随t变化的过程.直.接.写出t的取值范围图122017/26.(12分)某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x2(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2kn+9(k+3)(k为常数),且得到了表中的数据.﹣月份n(月)12成本y(万元/件)1112需求量x(件/月)120100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差很大,求m.2018/26.(11.00分)(2018?河北)如图是轮滑场地的截面示意图,平台A B距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.b与y轴交于点B;抛物线L:2019/26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣2y=﹣x+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019 和b=2019.5时“美点”的个数.答案2010/26.解:(1)14057500;(2)w内=x(y-20)-62500=11002+130x62500,xw外= 1x2+(150a)x.100(3)当x=2 130(1)100=6500时,w 内最大;分由题意得1224()(62500)1300(150)100a,114()4()100100解得a1=30,a2=270(不合题意,舍去).所以a=30.(4)当x=5000时,w内=337500,w外=5000a500000.若w内<w外,则a<32.5;若w 内=w外,则a=32.5;若w内>w外,则a>32.5.所以,当10≤a<32.5时,选择在国外销售;当a=32.5时,在国外和国内销售都一样;当32.5<a≤40时,选择在国内销售.(2011?河北)26、如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以2毎秒1个单位长的速度运动t秒(t>0),抛物线y=x+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,﹣5),D(4,0).(1)求c,b(用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段A B,CD交于点M,N.①在点P的运动过程中,你认为∠A MP的大小是否会变化?若变化,说明理由;若不变,求出∠A MP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,;为“好点”.若(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.考点:二次函数综合题。

相关文档
最新文档